JPS59200418A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59200418A
JPS59200418A JP7382083A JP7382083A JPS59200418A JP S59200418 A JPS59200418 A JP S59200418A JP 7382083 A JP7382083 A JP 7382083A JP 7382083 A JP7382083 A JP 7382083A JP S59200418 A JPS59200418 A JP S59200418A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor substrate
metal film
ions
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7382083A
Other languages
Japanese (ja)
Inventor
Yoshitaka Tsunashima
綱島 祥隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7382083A priority Critical patent/JPS59200418A/en
Publication of JPS59200418A publication Critical patent/JPS59200418A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To form a thick metal film faster by the CVD method at the temperature lower than the temperature at which the crystal structure in the surface starts recovering by a method wherein ions are implanted into a semiconductor substrate to make the surface of the substrate amorphous before the metal film is formed and the reactivity between the substrate and the introduced gas is improved. CONSTITUTION:An insulating protection film is formed on a semiconductor substrate and the insulating film is patterned by photoetching to expose some parts of the semiconductor substrate. Ions are implanted into the parts or the whole surface of the substrate so as to disturb the crystal structure in the surface and make the substrate surface amorphous. After that, without the heat- treatment, keeping the substrate surface amorphous, a thick metal layer (or layers) is formed on the exposed part (or parts) of the semiconductor substrate quickly by the CVD method at the temperature lower than 600 deg.C. For instance, in the manufacturing procedure of MOS transistor, after n<-> layers are formed by implantation of As<+> and the heat-treatment, As<+> ions are implanted again and at that state W films 7 are selectively formed on the source, drain and gate by the CVD method.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、半導体装置の製造方法に係り、特に半導体
基板上に、CVD法により一金属膜を形成する工程を含
む半導体装置の製造方法に関する。
[Detailed Description of the Invention] [Technical Field to which the Invention Pertains] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device including a step of forming a metal film on a semiconductor substrate by a CVD method. .

〔従来技術とその問題点〕[Prior art and its problems]

近年、半導体集積回路の高集積化上ともに、高速化に対
する要求が増々強くなってきている。そのためにゲート
、あるいは配線材料に多結晶シリコンの代わりに、抵抗
の低い高融点金属を用いた半導体素子が開発され始めて
おり、この金属膜を半導体1番と形成するのに、スパッ
ター法、CVD法等、多くの方法が行なわれている。
In recent years, as semiconductor integrated circuits have become more highly integrated, the demand for higher speeds has become stronger and stronger. For this reason, semiconductor devices are being developed that use low-resistance, high-melting-point metals instead of polycrystalline silicon for gates or wiring materials, and sputtering, CVD, and other methods are used to form this metal film as the semiconductor. Many methods are being used.

従来、CVD法により金属膜を基板上に形成する場合、
基板と導入気体との間の反応を利用して、金属膜を蒸着
するため、金属膜がある厚さまで形成されると、基板と
気体間の反応が阻止され、ある厚さ以上の金属膜の形成
が困難になり、できても非常に時間がかかる場合がある
。このような場合正こは、ある抵抗値以下の抵抗値を持
つ金属膜を得ることができず、希望している低抵抗の高
速素子ができない。
Conventionally, when forming a metal film on a substrate using the CVD method,
The metal film is deposited using the reaction between the substrate and the introduced gas, so when the metal film is formed to a certain thickness, the reaction between the substrate and the gas is blocked, and the metal film over a certain thickness is They can be difficult to form and, if possible, can be very time consuming. In such a case, it is impossible to obtain a metal film having a resistance value below a certain resistance value, and the desired low-resistance, high-speed device cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した問題点を改善したもので、金属膜形
成前に、半導体基板にイオンを注入し、基板表面の結晶
構造を乱して、アモルファス状にして、基板と導入気体
との反応性を高めて、表面の結晶構造が回復し始める温
度以下の温度において、CVD法により、より速く、厚
い金属膜を基板上に形成することを目的とする。
The present invention improves the above-mentioned problems by implanting ions into a semiconductor substrate before forming a metal film, disrupting the crystal structure of the substrate surface, making it amorphous, and causing a reaction between the substrate and the introduced gas. The purpose of this invention is to form a thick metal film on a substrate more quickly by CVD at a temperature below the temperature at which the surface crystal structure begins to recover.

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板上に絶縁保護膜を形成し。 The present invention forms an insulating protective film on a semiconductor substrate.

該絶縁膜を写真蝕刻法によりパターニングして半導体基
板の一部を露呈させた構造に対して、基板上に金属膜を
CVD法により形成する方法を提供するものである。
The present invention provides a method for forming a metal film on a substrate by CVD for a structure in which a part of the semiconductor substrate is exposed by patterning the insulating film by photolithography.

具体的には、上記の構造に対して、基板の一部あるいは
全面にイオンを注入して、表面の結晶構造を乱して、反
応活性なアモルファス状にする。
Specifically, with respect to the above structure, ions are implanted into a part or the entire surface of the substrate to disturb the crystal structure on the surface and make it reactively amorphous.

この後、熱処理工程を入れず、基板表面をアモルファス
状態のまま、600℃以下の温度において、CVD法を
用いて、露呈している半導体基板上に金属膜を速く、厚
く形成する。
Thereafter, a metal film is rapidly and thickly formed on the exposed semiconductor substrate using the CVD method at a temperature of 600° C. or less without performing a heat treatment step and leaving the substrate surface in an amorphous state.

すなわち、イオン注入により、基板表面をアモルファス
にして、CVD法で金属膜を形成する際、表面と導入ガ
スとの反応を促進させることを特徴とする。
That is, the substrate surface is made amorphous by ion implantation, and when a metal film is formed by the CVD method, the reaction between the surface and the introduced gas is promoted.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体基板−Eに、迅速に金属膜を厚
く形成することができ、低抵抗のゲート、配線を用いた
高速度素子を作ることができる。
According to the present invention, a thick metal film can be quickly formed on the semiconductor substrate -E, and a high-speed element using low-resistance gates and wiring can be manufactured.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を適用した実施例につき、図面を用いなが
ら、詳細に説明する。
Embodiments to which the present invention is applied will be described in detail below with reference to the drawings.

第り図に、シリコン基板上にWをCVD法により形成し
た場合の蒸着時間と蒸着したWのシート抵抗の関係を示
す。(a)図はイオン注入の無かった場合、(b)図は
イオン注入した場であり、蒸着条件は、反応ガスとして
、’ WF6を用い、温度450℃。
FIG. 2 shows the relationship between the deposition time and the sheet resistance of the deposited W when W is formed on a silicon substrate by the CVD method. The figure (a) shows the case without ion implantation, and the figure (b) shows the case where ions were implanted.The vapor deposition conditions were: WF6 was used as the reaction gas, and the temperature was 450°C.

WF、流量5cc 1キヤリアガスとしてAt を1O
cc流した。この図からも明らかなように、蒸着したW
のシート抵抗は、蒸着時間とともに減少するが、ある程
度時間がたつと、反応が飽和して、抵抗値も下がらなく
なる。しかし、As  イオンを40keVで3XlO
”ff1−打ち込んだ後にWを蒸着すると、飽和する抵
抗値もより小さくなることがわかる。すなわち、蒸着し
たW層が、より厚くなっている。
WF, flow rate 5cc, At 1O as 1 carrier gas
I streamed cc. As is clear from this figure, the evaporated W
The sheet resistance decreases with deposition time, but after a certain amount of time, the reaction becomes saturated and the resistance value no longer decreases. However, As ion is 3XlO at 40keV
It can be seen that when W is deposited after ff1-implantation, the saturated resistance value also becomes smaller. That is, the deposited W layer becomes thicker.

第2図は、本発明の一実施例として、MO8)ランジス
タの製造方法を示す工程断面図である。
FIG. 2 is a process sectional view showing a method of manufacturing a MO8) transistor as an embodiment of the present invention.

すなわち、6〜8ΩのP屋シリコン基板lにLOCO8
工程にしたがって熱酸化により、フィールド酸化膜2を
形成し、写真蝕刻法により、素子領域をつくる。再び、
1000℃、0.中で熱酸化して、厚さ400Aのゲー
ト酸化膜3を形成し、その上にさらにLPCVD法によ
り3000Aの多結晶シリコン膜4を形成したのち、写
真蝕刻法によって、多結晶シリコンゲート電極、および
ゲート酸化膜を素子領域に形成する(1g2図(a))
。この構造のままAs+を加速型BE 40keV テ
、5 X 10”e−”注入したノチ、1ooo”cで
30分熱処理を行ない、 Asを活性化させて、n一層
を形成する。さらJ(5iotyixt c V D 
法ic ヨ1,1 形成した後、反応性イオンエツチン
グによりゲート側壁に8101膜を残す(第2図(b)
)。この構造のまま、再びAs  を、今度は40ke
V テ3.5XIO”ffi″注入し1そのままt弗化
タングステンガスによるCVD法により、ソース・ドレ
イン上、およびゲート上にW膜7を選択的に形成する(
第2図(C))。この上に、プラズマCVDにより8i
0.膜8をかぶせて、600℃で熱処理した後、コンタ
クトホールをあけて、アルミ配線9をする(第2図(d
))。以上でMOSFETが完成するが、このトランジ
スタは、ゲート電極、およびソース・ドレイン領域上に
w膜7を形成しているため、低抵抗の高速の動作性を有
する。
In other words, LOCO8 is applied to Pya silicon substrate l of 6 to 8Ω.
According to the process, a field oxide film 2 is formed by thermal oxidation, and an element region is formed by photolithography. again,
1000℃, 0. A gate oxide film 3 with a thickness of 400 A is formed by thermal oxidation in the inside, and a polycrystalline silicon film 4 with a thickness of 3000 A is further formed thereon by LPCVD, and then a polycrystalline silicon gate electrode and a Forming a gate oxide film in the element area (Figure 1g2 (a))
. With this structure, heat treatment is performed for 30 minutes at 100"C with accelerated BE of 40keV Te, 5 x 10"e-" implanted, to activate As and form a single layer of n. c V D
After forming the 8101 film on the gate sidewalls by reactive ion etching (Figure 2(b))
). Keeping this structure, As again, this time 40ke
After implanting VTE3.5
Figure 2 (C)). On top of this, 8i
0. After covering with a film 8 and heat-treating at 600°C, a contact hole is made and an aluminum wiring 9 is placed (see Fig. 2 (d).
)). The MOSFET is thus completed, and since the W film 7 is formed on the gate electrode and source/drain regions, this transistor has low resistance and high speed operation.

以上、本発明の一実施例として、MOSFETへの応用
を示したが、金属膜をCVD法によって、基板上に形成
する工程を含む半導体装置であれば、広範囲に本発明を
適用することができる。また、上記例では、高融点金属
のWを形成したが、これは、MOでもA/でも金属膜を
CVD法にIり形成するのであれば差しつかえなく適用
できる。
Although the application of the present invention to a MOSFET has been described above as an example, the present invention can be widely applied to any semiconductor device that includes a step of forming a metal film on a substrate by CVD. . Further, in the above example, W, which is a high-melting point metal, is formed, but this can be applied without any problem if a metal film is formed using the CVD method, whether MO or A/.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による製造方法により形成したwgの
シート抵抗値と蒸着時間との関係を、従来方法の場合と
比較して示す特性図、第2図は、本発明の一実施例とし
てMOSFETの製造工程を示す工程断面図である。 l・・・P型シリコン基板 2・・・フィールド酸化膜
3・・・ゲート酸化膜 4・・・多結晶シリコンゲート電極 5・・・側壁sio、     6・・・n″″拡散層
7・・・タングステン層 8・・・酸化膜9・・・AI
!配線    1o・・・n拡散層(7317)  弁
理士  則 近 憲 佑 (はが1名)第  1  図 第2図 fD  ム
FIG. 1 is a characteristic diagram showing the relationship between the sheet resistance value and deposition time of WG formed by the manufacturing method of the present invention in comparison with that of the conventional method. FIG. It is a process cross-sectional view showing the manufacturing process of MOSFET. l...P-type silicon substrate 2...field oxide film 3...gate oxide film 4...polycrystalline silicon gate electrode 5...side wall sio, 6...n'''' diffusion layer 7...・Tungsten layer 8...Oxide film 9...AI
! Wiring 1o...n diffusion layer (7317) Patent attorney Noriyuki Chika (1 person) Fig. 1 Fig. 2 fD Mu

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に絶縁保護膜を形成し、該絶縁膜を写真蝕
刻法によりパターニングして半導体基板の一部を露呈さ
せた構造に対して、基板の一部あるいは全面にイオンを
注入し、600℃を越えた温度下の熱工程を経ることな
しに、600℃以下の温度において化学気相成長法によ
り、半導体基板上の一部あるいは全面に金属膜を形成す
ることを特徴とする半導体装置の製造方法。
For a structure in which an insulating protective film is formed on a semiconductor substrate and the insulating film is patterned by photolithography to expose a part of the semiconductor substrate, ions are implanted into a part or the entire surface of the substrate and heated at 600°C. Manufacturing of a semiconductor device characterized in that a metal film is formed on a part or the entire surface of a semiconductor substrate by chemical vapor deposition at a temperature of 600°C or less without undergoing a thermal process at a temperature exceeding 600°C. Method.
JP7382083A 1983-04-28 1983-04-28 Manufacture of semiconductor device Pending JPS59200418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7382083A JPS59200418A (en) 1983-04-28 1983-04-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7382083A JPS59200418A (en) 1983-04-28 1983-04-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59200418A true JPS59200418A (en) 1984-11-13

Family

ID=13529168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7382083A Pending JPS59200418A (en) 1983-04-28 1983-04-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59200418A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482620A (en) * 1987-09-25 1989-03-28 Toshiba Corp Manufacture of semiconductor device
US4855247A (en) * 1988-01-19 1989-08-08 Standard Microsystems Corporation Process for fabricating self-aligned silicide lightly doped drain MOS devices
US5028554A (en) * 1986-07-03 1991-07-02 Oki Electric Industry Co., Ltd. Process of fabricating an MIS FET
US5059555A (en) * 1990-08-20 1991-10-22 National Semiconductor Corporation Method to fabricate vertical fuse devices and Schottky diodes using thin sacrificial layer
US5215936A (en) * 1986-10-09 1993-06-01 Kabushiki Kaisha Toshiba Method of fabricating a semiconductor device having a lightly-doped drain structure
US5429958A (en) * 1986-01-15 1995-07-04 Harris Corporation Process for forming twin well CMOS integrated circuits
JP2012089807A (en) * 2010-10-22 2012-05-10 Shindengen Electric Mfg Co Ltd Semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429958A (en) * 1986-01-15 1995-07-04 Harris Corporation Process for forming twin well CMOS integrated circuits
US5028554A (en) * 1986-07-03 1991-07-02 Oki Electric Industry Co., Ltd. Process of fabricating an MIS FET
US5215936A (en) * 1986-10-09 1993-06-01 Kabushiki Kaisha Toshiba Method of fabricating a semiconductor device having a lightly-doped drain structure
JPS6482620A (en) * 1987-09-25 1989-03-28 Toshiba Corp Manufacture of semiconductor device
US4855247A (en) * 1988-01-19 1989-08-08 Standard Microsystems Corporation Process for fabricating self-aligned silicide lightly doped drain MOS devices
US5059555A (en) * 1990-08-20 1991-10-22 National Semiconductor Corporation Method to fabricate vertical fuse devices and Schottky diodes using thin sacrificial layer
JP2012089807A (en) * 2010-10-22 2012-05-10 Shindengen Electric Mfg Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
JPH0613403A (en) Self-aligned cobalt silicide on mos integrated circuit
JPS6072272A (en) Manufacture of semiconductor device
JPS59200418A (en) Manufacture of semiconductor device
JPH03227516A (en) Manufacture of semiconductor device
JPS6226573B2 (en)
JPH0126172B2 (en)
JP3111516B2 (en) Semiconductor device and manufacturing method thereof
JP3067433B2 (en) Method for manufacturing semiconductor device
JP3095452B2 (en) Method for manufacturing semiconductor device
JPH04266031A (en) Manufacture of semiconductor device
JPS62291146A (en) Manufacture of semiconductor device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JPS61228661A (en) Semiconductor device and manufacture thereof
JPH04188868A (en) Manufacture of semiconductor device
JPH0770725B2 (en) Method for manufacturing semiconductor device
JPH0318034A (en) Manufacture of semiconductor device
JPS59121834A (en) Manufacture of electrode wiring
JPH09107101A (en) Fabrication of semiconductor device
JPH01266745A (en) Manufacture of semiconductor device
JPH0349230A (en) Semiconductor device and manufacture thereof
JPS62143422A (en) Manufacture of semiconductor device
JPS62200747A (en) Manufacture of semiconductor device
JPS6016464A (en) Manufacture of semiconductor device
JPS60192363A (en) Manufacture of schottky barrier junction
JPH09293722A (en) Manufacture of semiconductor device