JPH04266031A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04266031A
JPH04266031A JP2629891A JP2629891A JPH04266031A JP H04266031 A JPH04266031 A JP H04266031A JP 2629891 A JP2629891 A JP 2629891A JP 2629891 A JP2629891 A JP 2629891A JP H04266031 A JPH04266031 A JP H04266031A
Authority
JP
Japan
Prior art keywords
film
metal silicide
oxide film
oxidation
electrode wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2629891A
Other languages
Japanese (ja)
Other versions
JP2997554B2 (en
Inventor
Tomio Katada
堅田 富夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2629891A priority Critical patent/JP2997554B2/en
Publication of JPH04266031A publication Critical patent/JPH04266031A/en
Application granted granted Critical
Publication of JP2997554B2 publication Critical patent/JP2997554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To provide a semiconductor device having a reliable electrode wiring of metal silicide. CONSTITUTION:An electrode wiring composed of metal silicide 15 is formed on a semiconductor substrate 11. The metal silicide is covered with silicon 21, which is heat-treated to form a silicon oxide 24 in order to prevent the abnormal oxidation of the metal silicide 15.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、金属シリサイドを用い
た電極配線を持つ半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device having electrode wiring using metal silicide.

【0002】0002

【従来の技術】従来より、集積回路等の各種半導体装置
の電極配線として多結晶シリコンが広く用いられている
。しかし、多結晶シリコンは不純物をドープしても、金
属配線に比べて抵抗が高い。したがって集積回路の高集
積化,高速化が進むにしたがって、電極配線での信号遅
延が問題になっている。特にMOS型集積回路では、通
常MOSトランジスタのゲート電極がそのまま第1層配
線として用いられるので、ここでの抵抗は素子の高速動
作の障害となる。多結晶シリコンに代る耐熱性の低抵抗
電極配線材料として、高融点金属のシリサイドが注目さ
れている。図3および図4は、ゲート電極配線にタング
ステン・シリサイド(WSix )膜を用いた従来のL
DD構造MOS型半導体装置の製造工程を示している。
2. Description of the Related Art Conventionally, polycrystalline silicon has been widely used as electrode wiring for various semiconductor devices such as integrated circuits. However, even when doped with impurities, polycrystalline silicon has higher resistance than metal wiring. Therefore, as integrated circuits become more highly integrated and faster, signal delays in electrode wiring become a problem. Particularly in MOS type integrated circuits, the gate electrode of the MOS transistor is usually used as the first layer wiring, so the resistance here becomes an obstacle to high-speed operation of the device. Refractory metal silicide is attracting attention as a heat-resistant, low-resistance electrode wiring material that can replace polycrystalline silicon. Figures 3 and 4 show a conventional L
The manufacturing process of a DD structure MOS type semiconductor device is shown.

【0003】図3(a) に示すように、シリコン基板
11に素子分離酸化膜12を形成した後、熱酸化によっ
て5〜20nm程度の薄いゲート酸化膜13を形成する
。次に図3(b) に示すように、CVD法によって1
00nm程度の多結晶シリコン膜14を堆積し、続いて
スパッタリングによって300nm程度のWSix 膜
15を形成する。 そして通常のフォトリソグラフィによってこれらのWS
ix 膜15と多結晶シリコン膜14をパターニングし
て、図3(c) に示すようにゲート電極配線16を形
成する。
As shown in FIG. 3A, after forming an element isolation oxide film 12 on a silicon substrate 11, a thin gate oxide film 13 of about 5 to 20 nm is formed by thermal oxidation. Next, as shown in Figure 3(b), 1
A polycrystalline silicon film 14 of about 300 nm thick is deposited, and then a WSix film 15 of about 300 nm thick is formed by sputtering. Then, these WS are formed by normal photolithography.
The ix film 15 and the polycrystalline silicon film 14 are patterned to form a gate electrode wiring 16 as shown in FIG. 3(c).

【0004】その後、ゲート電極をマスクとして不純物
のイオン注入を行って、図3(d) に示すように低濃
度の浅いソース,ドレイン拡散層18,19を形成する
。このとき、不純物活性化のためのイオン注入後の酸化
性雰囲気での熱処理によって、ゲート電極配線16の表
面には20〜30nmの後酸化膜17が形成される。ま
たこの熱処理工程で、当初アモルファス状態であったW
Six 膜15は結晶化され、WSi2 なる成分が多
くなる。
[0004] Thereafter, impurity ions are implanted using the gate electrode as a mask to form low concentration shallow source and drain diffusion layers 18 and 19 as shown in FIG. 3(d). At this time, a post-oxide film 17 with a thickness of 20 to 30 nm is formed on the surface of the gate electrode wiring 16 by heat treatment in an oxidizing atmosphere after ion implantation for impurity activation. In addition, during this heat treatment process, W, which was initially in an amorphous state,
The Six film 15 is crystallized and the WSi2 component increases.

【0005】その後、LDD構造を形成するために、C
VD法によってシリコン酸化膜20を堆積しこれをエッ
チングして、図4(a) に示すようにゲート電極側壁
に酸化膜20を残す。このとき、WSix 膜15の上
面は露出する。その後、ゲート電極16と酸化膜20を
マスクとして不純物のイオン注入を行って、高濃度のソ
ース,ドレイン拡散層を形成する。
[0005] Then, in order to form an LDD structure, C
A silicon oxide film 20 is deposited by the VD method and etched to leave the oxide film 20 on the side walls of the gate electrode as shown in FIG. 4(a). At this time, the upper surface of the WSix film 15 is exposed. Thereafter, impurity ions are implanted using the gate electrode 16 and the oxide film 20 as masks to form highly concentrated source and drain diffusion layers.

【0006】この様な一連の工程に於いて、2回目の不
純物イオン注入工程に先立って、基板表面に薄く熱酸化
膜を形成する工程が入る。これは、CMOS構造の場合
には、pチャネル領域とnチャネル領域のイオン注入の
打ち分けを行うが、その際、マスクとして用いるフォト
レジストが基板に直接接触するのを防止する必要がある
こと、また後の不純物活性化の際の不純物の外方拡散を
防止する必要があること、等の理由による。ところが、
この不純物イオン注入工程に先立つ酸化熱処理工程で、
WSix 膜15が深く酸化され、図4(b) に示す
ように異常酸化膜30が形成される。この異常酸化膜3
0は、SiO2 とWO3 からなるもので、体積膨脹
は約2.7倍に達する。この異常酸化膜30によってゲ
ート電極配線の抵抗は大幅に増大し、またしばしば膜が
剥がれる、といった問題が生じる。
In this series of steps, a step of forming a thin thermal oxide film on the substrate surface is performed prior to the second impurity ion implantation step. This is because in the case of a CMOS structure, ion implantation is performed separately for the p-channel region and the n-channel region, but at that time, it is necessary to prevent the photoresist used as a mask from coming into direct contact with the substrate. Another reason is that it is necessary to prevent outward diffusion of impurities during subsequent impurity activation. However,
In the oxidation heat treatment process that precedes this impurity ion implantation process,
The WSix film 15 is deeply oxidized, and an abnormal oxide film 30 is formed as shown in FIG. 4(b). This abnormal oxide film 3
0 is made of SiO2 and WO3, and the volume expansion reaches approximately 2.7 times. This abnormal oxide film 30 significantly increases the resistance of the gate electrode wiring, and often causes problems such as peeling of the film.

【0007】このWSix 膜の異常酸化は、図3(d
) に示す酸化膜17の形成工程では生じない。したが
ってこの異常酸化は、WSix が結晶化されているこ
とが前提となっている。本発明者等の検討によれば、こ
の現象は次のように理解される。WSix 膜がアモル
ファス状態では、酸化性雰囲気に晒したときに、WSi
x 中のSiが主として酸化されて良質の酸化膜(Si
O2)が形成され、これが表面を覆ってその後の酸化が
抑えられる。これに対して、WSix 膜が結晶化され
てWSi2 結晶粒が表面を覆っていると、酸化性雰囲
気に晒したとき酸化によるSiの消費に対してSiの供
給が不十分となり、Wが直接酸化される事態になるもの
と思われる。
This abnormal oxidation of the WSix film is shown in FIG.
) does not occur in the process of forming the oxide film 17 shown in FIG. Therefore, this abnormal oxidation is based on the premise that WSix is crystallized. According to the studies of the present inventors, this phenomenon can be understood as follows. When the WSix film is in an amorphous state, when exposed to an oxidizing atmosphere, the WSi
The Si in x is mainly oxidized to form a high quality oxide film (Si
O2) is formed, which covers the surface and suppresses subsequent oxidation. On the other hand, if the WSix film is crystallized and the surface is covered with WSi2 crystal grains, when exposed to an oxidizing atmosphere, the supply of Si will be insufficient for the consumption of Si by oxidation, and W will be directly oxidized. It seems likely that this will happen.

【0008】[0008]

【発明が解決しようとする課題】以上のように、従来の
金属シリサイド膜電極配線を用いた半導体装置の製造方
法では、シリサイド膜が複数回の酸化熱処理工程の後に
異常酸化膜が形成され、電極配線の信頼性が確保できな
いという問題があった。本発明は、この様な点に鑑みな
されたもので、信頼性の高い金属シリサイド電極配線を
持つ半導体装置の製造方法を提供することを目的とする
[Problems to be Solved by the Invention] As described above, in the conventional manufacturing method of semiconductor devices using metal silicide film electrode wiring, an abnormal oxide film is formed on the silicide film after multiple oxidation heat treatment steps, and the electrode There was a problem in that the reliability of the wiring could not be ensured. The present invention has been made in view of these points, and an object of the present invention is to provide a method for manufacturing a semiconductor device having highly reliable metal silicide electrode wiring.

【0009】[0009]

【課題を解決するための手段】本発明は、半導体基板上
に金属シリサイド膜からなる電極配線を形成し、第1の
酸化熱処理により金属シリサイド膜表面に酸化膜を形成
した後、金属シリサイド膜表面の酸化膜を一旦除去し、
第2の酸化熱処理を行う場合に、第2の熱酸化処理に先
立って露出している金属シリサイド膜表面をシリコン膜
で覆い、第2の酸化熱処理ではこのシリコン膜を酸化膜
に変換するようにしたことを特徴としている。
[Means for Solving the Problems] The present invention involves forming an electrode wiring made of a metal silicide film on a semiconductor substrate, forming an oxide film on the surface of the metal silicide film by a first oxidation heat treatment, and then forming an oxide film on the surface of the metal silicide film. Once the oxide film of
When performing the second oxidation heat treatment, the exposed surface of the metal silicide film is covered with a silicon film prior to the second thermal oxidation treatment, and this silicon film is converted into an oxide film in the second oxidation heat treatment. It is characterized by what it did.

【0010】0010

【作用】本発明によれば、結晶化した金属シリサイド膜
表面がシリコン膜で覆われた状態で酸化熱処理が行われ
、良質のシリコン酸化膜が形成されて金属シリサイド膜
が保護される。すなわち金属シリサイド膜自身の酸化は
防止され、従来のような異常酸化による電極配線の抵抗
増大や剥がれが生じることはなくなる。とくにシリコン
膜としてアモルファス・シリコン膜を用いると、膜堆積
時に結晶粒界が形成されることがなく、酸化開始温度が
低くまた酸化速度も大きいことから、安定でバリア性の
高い酸化膜が形成されて金属シリサイド膜自身の異常酸
化が確実に防止される。
According to the present invention, oxidation heat treatment is performed with the surface of the crystallized metal silicide film covered with a silicon film, and a high quality silicon oxide film is formed to protect the metal silicide film. That is, the metal silicide film itself is prevented from being oxidized, and the increase in resistance and peeling of the electrode wiring due to abnormal oxidation, which occurs in the prior art, is no longer caused. In particular, when an amorphous silicon film is used as the silicon film, grain boundaries are not formed during film deposition, the oxidation initiation temperature is low, and the oxidation rate is high, so a stable oxide film with high barrier properties can be formed. Thus, abnormal oxidation of the metal silicide film itself is reliably prevented.

【0011】[0011]

【実施例】以下、図面を参照しながら実施例を説明する
。図1(a) 〜(d) および図2(a) 〜(c)
 は、本発明の一実施例に係るMOS型半導体装置の製
造工程を示す断面図である。
Embodiments Hereinafter, embodiments will be described with reference to the drawings. Figures 1(a) to (d) and Figures 2(a) to (c)
1A and 1B are cross-sectional views showing a manufacturing process of a MOS type semiconductor device according to an embodiment of the present invention.

【0012】図1(a) に示すように、例えば比抵抗
6Ω・cmのp型シリコン基板11に、通常の工程にし
たがって素子分離酸化膜12を形成した後、熱酸化によ
って5〜20nmの薄いゲート酸化膜13を形成する。 次に図1(b) に示すように、LPCVD法によって
100nm程度の多結晶シリコン膜14を堆積する。堆
積した多結晶シリコン膜14には、As等の不純物を例
えば、ドーズ量1〜5×1015/cm2で注入する。 続いて、スパッタリングによって300nm程度のWS
ix膜15を形成する。このスパッタリングはたとえば
、WSi2.7 の合金ターゲットを用いた、Arガス
中でのDCマグネトロンスパッタによる。堆積後の膜は
X線回折によると非晶質であることが確認された。
As shown in FIG. 1(a), an element isolation oxide film 12 is formed on a p-type silicon substrate 11 having a resistivity of 6 Ω·cm, for example, according to a normal process, and then a thin film of 5 to 20 nm is formed by thermal oxidation. A gate oxide film 13 is formed. Next, as shown in FIG. 1(b), a polycrystalline silicon film 14 of about 100 nm is deposited by the LPCVD method. An impurity such as As is implanted into the deposited polycrystalline silicon film 14 at a dose of, for example, 1 to 5×10 15 /cm 2 . Next, WS of about 300 nm was formed by sputtering.
ix film 15 is formed. This sputtering is, for example, by DC magnetron sputtering in Ar gas using a WSi2.7 alloy target. The deposited film was confirmed to be amorphous by X-ray diffraction.

【0013】そして通常のフォトリソグラフィと反応性
イオンエッチングによって、WSix 膜15と多結晶
シリコン14の積層膜をパターニングして、図1(c)
 に示すようにゲート電極配線16を形成する。
Then, the laminated film of the WSix film 15 and the polycrystalline silicon 14 is patterned by ordinary photolithography and reactive ion etching to form the structure shown in FIG. 1(c).
A gate electrode wiring 16 is formed as shown in FIG.

【0014】その後、例えばリンを加速電圧40keV
,ドーズ量5×1013/cm2 の条件でイオン注入
し、酸化熱処理によって、図1(d) に示すように低
濃度の浅いソース,ドレイン拡散層18,19を形成す
る。この酸化熱処理は例えば、900℃の乾燥酸素中で
行う。これにより、ゲート電極配線16の表面には10
〜30nmの後酸化膜17が形成される。またこの熱処
理工程で、WSix 膜15は正方晶の結晶(WSi2
 )として結晶化される。
After that, for example, phosphorus is accelerated at a voltage of 40 keV.
, and a dose of 5.times.10.sup.13/cm.sup.2, followed by oxidation heat treatment to form shallow, low concentration source and drain diffusion layers 18 and 19, as shown in FIG. 1(d). This oxidation heat treatment is performed, for example, in dry oxygen at 900°C. As a result, the surface of the gate electrode wiring 16 has 10
A post-oxide film 17 of ~30 nm is formed. In addition, in this heat treatment process, the WSix film 15 is formed into a tetragonal crystal (WSi2
) is crystallized as

【0015】その後、LDD構造を形成するために、C
VD法によってシリコン酸化膜20を150nm程度堆
積し、これを反応性イオンエッチングによってエッチン
グして、図2(a) に示すようにゲート電極側壁に酸
化膜20を残す。このとき、WSix 膜15の上面は
露出する。
[0015] After that, in order to form an LDD structure, C
A silicon oxide film 20 is deposited to a thickness of about 150 nm using the VD method, and this is etched using reactive ion etching to leave the oxide film 20 on the side walls of the gate electrode as shown in FIG. 2(a). At this time, the upper surface of the WSix film 15 is exposed.

【0016】次いで、図2(b) に示すように、LP
CVD法によって約5nmのアモルファス・シリコン膜
21を堆積する。堆積条件は例えば、基板温度を550
℃に保ち、SiH4 ガスを100SCCM導入し、0
.5Torr〜1Torrの真空度で行なう。このとき
堆積速度は、約4nm/min である。
Next, as shown in FIG. 2(b), the LP
An amorphous silicon film 21 of about 5 nm is deposited by CVD. For example, the deposition conditions include a substrate temperature of 550°C.
℃, introduced 100 SCCM of SiH4 gas, and
.. The vacuum level is 5 Torr to 1 Torr. At this time, the deposition rate is about 4 nm/min.

【0017】その後、酸化熱処理によって、シリコン膜
21をすべて酸化して、図2(c) に示すようにWS
ix 膜表面には約15nmの後酸化膜24を形成する
。酸化膜20の側壁残しの工程でソース,ドレイン領域
の基板表面が露出している場合も、ここがシリコン膜2
1で覆われ、これが酸化膜に変換される。この酸化熱処
理の条件は例えば、乾燥酸素中で900℃,15分であ
る。そして最後にAs等をイオン注入し活性化熱処理を
行なって、高濃度のソース,ドレイン拡散層22,23
を形成する。Asのイオン注入条件は例えば、加速電圧
40keV,ドーズ量5×1015/cm2 とする。 この実施例によれば、WSix 膜の異常酸化が生じる
ことはなく、信頼性の高い電極配線が得られる。
Thereafter, the silicon film 21 is completely oxidized by oxidation heat treatment to form a WS as shown in FIG. 2(c).
A post-oxidation film 24 of about 15 nm is formed on the surface of the ix film. Even if the substrate surface of the source and drain regions is exposed in the process of leaving the sidewalls of the oxide film 20, this is the silicon film 2.
1, which is converted into an oxide film. The conditions for this oxidation heat treatment are, for example, 900° C. for 15 minutes in dry oxygen. Finally, As or the like is ion-implanted and an activation heat treatment is performed to form highly concentrated source and drain diffusion layers 22, 23.
form. The As ion implantation conditions are, for example, an acceleration voltage of 40 keV and a dose of 5×10 15 /cm 2 . According to this example, abnormal oxidation of the WSix film does not occur, and highly reliable electrode wiring can be obtained.

【0018】本発明は上記実施例に限られるものではな
い。実施例では、LDD構造のMOS型半導体装置を製
造する場合を説明したが、金属シリサイド膜形成工程と
、それが結晶化された後に酸化処理工程が入る他のあら
ゆる半導体装置の製造に適用して同様の効果が得られる
。また実施例では、Wのシリサイドを用いたが、その他
、Ti ,Zr ,Hf ,V,Nb ,Ta ,Cr
 ,Mo ,Co ,Ni ,Rh ,Pd,Ir ,
Pt 等のシリサイドを用いて電極配線を形成する場合
も同様に本発明を適用することができる。
The present invention is not limited to the above embodiments. In the embodiment, a case was explained in which a MOS type semiconductor device with an LDD structure was manufactured. However, the present invention can also be applied to the manufacturing of any other semiconductor device in which a metal silicide film formation process and an oxidation treatment process are performed after the metal silicide film is crystallized. A similar effect can be obtained. Further, in the example, W silicide was used, but other materials include Ti, Zr, Hf, V, Nb, Ta, Cr.
, Mo, Co, Ni, Rh, Pd, Ir,
The present invention can be similarly applied to the case where electrode wiring is formed using silicide such as Pt.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、金
属シリサイドを電極配線に用いる場合に、結晶化した後
に露出した金属シリサイド膜表面をシリコン膜で覆って
酸化熱処理を行なうことによって、金属シリサイドの異
常酸化を防止して、信頼性の高い電極配線を持つ半導体
装置を製造することができる。
As explained above, according to the present invention, when metal silicide is used for electrode wiring, the surface of the metal silicide film exposed after crystallization is covered with a silicon film and subjected to oxidation heat treatment, thereby making it possible to Abnormal oxidation of silicide can be prevented, and a semiconductor device with highly reliable electrode wiring can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例に係るMOS型半導体装置の
製造工程前半を示す断面図。
FIG. 1 is a cross-sectional view showing the first half of the manufacturing process of a MOS type semiconductor device according to an embodiment of the present invention.

【図2】同実施例の製造工程後半を示す断面図。FIG. 2 is a sectional view showing the latter half of the manufacturing process of the same embodiment.

【図3】従来例のMOS型半導体装置の製造工程前半を
示す断面図。
FIG. 3 is a cross-sectional view showing the first half of the manufacturing process of a conventional MOS type semiconductor device.

【図4】同従来例の製造工程後半を示す断面図。FIG. 4 is a sectional view showing the latter half of the manufacturing process of the conventional example.

【符号の説明】[Explanation of symbols]

11…シリコン基板、12…素子分離酸化膜、13…ゲ
ート酸化膜、14…多結晶シリコン膜、15…WSix
 膜、16…ゲート電極配線、17…熱酸化膜、18,
22…ソース拡散層、19,23…ドレイン拡散層、2
0…CVD酸化膜、21…アモルファス・シリコン膜、
24…熱酸化膜。
11... Silicon substrate, 12... Element isolation oxide film, 13... Gate oxide film, 14... Polycrystalline silicon film, 15... WSix
Film, 16... Gate electrode wiring, 17... Thermal oxide film, 18,
22... Source diffusion layer, 19, 23... Drain diffusion layer, 2
0...CVD oxide film, 21...amorphous silicon film,
24...Thermal oxide film.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に金属シリサイド膜からなる
電極配線を形成する工程と、第1の酸化熱処理により前
記金属シリサイド膜表面に酸化膜を形成する工程と、前
記金属シリサイド膜表面の酸化膜を除去する工程と、露
出した前記金属シリサイド膜表面にシリコン膜を堆積す
る工程と、第2の酸化熱処理により前記シリコン膜を酸
化膜に変換する工程と、を備えたことを特徴とする半導
体装置の製造方法。
1. A step of forming an electrode wiring made of a metal silicide film on a semiconductor substrate, a step of forming an oxide film on the surface of the metal silicide film by a first oxidation heat treatment, and a step of forming an oxide film on the surface of the metal silicide film. a step of depositing a silicon film on the exposed surface of the metal silicide film; and a step of converting the silicon film into an oxide film by a second oxidation heat treatment. manufacturing method.
JP2629891A 1991-02-20 1991-02-20 Method for manufacturing semiconductor device Expired - Fee Related JP2997554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2629891A JP2997554B2 (en) 1991-02-20 1991-02-20 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2629891A JP2997554B2 (en) 1991-02-20 1991-02-20 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04266031A true JPH04266031A (en) 1992-09-22
JP2997554B2 JP2997554B2 (en) 2000-01-11

Family

ID=12189432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2629891A Expired - Fee Related JP2997554B2 (en) 1991-02-20 1991-02-20 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2997554B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283214A (en) * 1994-04-04 1995-10-27 Mitsubishi Electric Corp Manufacture of semiconductor device
US6017809A (en) * 1996-12-11 2000-01-25 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device
WO2000057463A1 (en) * 1999-03-24 2000-09-28 Tokyo Electron Limited Heat treating method for thin film and forming method for thin film
JP2017022377A (en) * 2015-07-14 2017-01-26 株式会社半導体エネルギー研究所 Semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283214A (en) * 1994-04-04 1995-10-27 Mitsubishi Electric Corp Manufacture of semiconductor device
US6017809A (en) * 1996-12-11 2000-01-25 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device
WO2000057463A1 (en) * 1999-03-24 2000-09-28 Tokyo Electron Limited Heat treating method for thin film and forming method for thin film
US6448178B1 (en) 1999-03-24 2002-09-10 Tokyo Electron Limited Heat treating method for thin film and forming method for thin film
JP2017022377A (en) * 2015-07-14 2017-01-26 株式会社半導体エネルギー研究所 Semiconductor device
US10763373B2 (en) 2015-07-14 2020-09-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11393930B2 (en) 2015-07-14 2022-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JP2997554B2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
JP3395263B2 (en) Semiconductor device and manufacturing method thereof
JPH0794731A (en) Semiconductor device and its manufacturing method
JPH08321613A (en) Method of manufacturing semiconductor device
JPH10270380A (en) Semiconductor device
JPH04266031A (en) Manufacture of semiconductor device
JPH11289087A (en) Semiconductor device and its manufacture
JPH0922999A (en) Mis type semiconductor device and manufacture thereof
JP2792459B2 (en) Method for manufacturing semiconductor device
JPS59200418A (en) Manufacture of semiconductor device
JPH0613402A (en) Manufacture of semiconductor device
JPS61224435A (en) Semiconductor device
JP3264922B2 (en) Method for manufacturing semiconductor device
JPH07263686A (en) Manufacture of semiconductor device
JP3067433B2 (en) Method for manufacturing semiconductor device
JPH1126395A (en) Semiconductor device and its manufacture
JP3176796B2 (en) Method for manufacturing semiconductor device
JPH04155967A (en) Manufacture of semiconductor device
JPH07183515A (en) Manufacture of semiconductor device
JPH02181918A (en) Manufacture of semiconductor device
JP3238804B2 (en) Method for manufacturing semiconductor device
JPH08306913A (en) Manufacture of semiconductor device
JPS61168266A (en) Manufacture of mis type semiconductor device
JPH0770725B2 (en) Method for manufacturing semiconductor device
JPH1027902A (en) Formation of gate electrode
JPH0529346A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees