JPS59192840A - Control apparatus for internal-combustion engine - Google Patents

Control apparatus for internal-combustion engine

Info

Publication number
JPS59192840A
JPS59192840A JP6747683A JP6747683A JPS59192840A JP S59192840 A JPS59192840 A JP S59192840A JP 6747683 A JP6747683 A JP 6747683A JP 6747683 A JP6747683 A JP 6747683A JP S59192840 A JPS59192840 A JP S59192840A
Authority
JP
Japan
Prior art keywords
engine
rack position
fuel
starting
engine speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6747683A
Other languages
Japanese (ja)
Inventor
Masakuni Matsui
松井 正邦
Shigeo Tamaoki
玉置 重雄
Toshihiko Nishio
俊彦 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP6747683A priority Critical patent/JPS59192840A/en
Publication of JPS59192840A publication Critical patent/JPS59192840A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To obtain excellent starting performance of an engine, by controlling a desired rack position by use of a map representing the relasionship between the engine speed, fuel increasing rate and the time for continuing fuel increase at the time of starting the engine. CONSTITUTION:The quantity of fuel supplied to an engine 1 is controlled by the rack position of a fuel injection pump 2. The actual value of the rack position is detected by position sensors 5, 6, and the rack position is feedback controlled to come to an aimed rack position. At the time of steady operation of the engine, the aimed rack position is controlled by use of a first map representing the relationship between the engine speed and the maximum rack position. At the time of starting the engine, on the other hand, the aimed rack position is controlled by use of a second map representing the relationship between the engine speed, fuel increasing rate and the time for continuing fuel increase. Thus, it is enabled to obtain excellent starting performance of an engine.

Description

【発明の詳細な説明】 本発明は、始動時に燃料を増量して良好な始動性を得る
ようにした内燃機関の制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for an internal combustion engine that increases the amount of fuel at the time of starting to obtain good startability.

内燃a関を始動する場合に、燃料のP給量を増量するこ
とにより始動性を改善することは、機械式ガバナにおい
ても実施可能であるが、従来の始動時増鋤Fi機関回転
数に無関係に行なわれ、しかも機関性能すなわち最大噴
射量制限により上限が抑えられるため、機関回転数に対
応して最も適した燃料増かを行なうと七が困難であシ、
また温度等の環境条件に対応して増量幅や増量継続期間
を適切に制御することはなされていなかった。
When starting the internal combustion engine, it is possible to improve startability by increasing the amount of fuel P supplied with a mechanical governor, but the conventional increase in plow at startup is independent of the engine speed. Moreover, since the upper limit is suppressed by the engine performance, that is, the maximum injection amount limit, it is difficult to increase the fuel in the most appropriate manner according to the engine speed.
Further, the amount of increase and the duration of increase in amount have not been appropriately controlled in response to environmental conditions such as temperature.

本発明はこの点に名目し、いわゆる電子制御式のガバナ
を備えた内燃機関において、適切な始動時増量を行なっ
て始動性能を改善することを目的としてなされたもので
あり、機関回転数を検出す機関回転数と最大ラック位置
との関係を第1の数表の形で、またQ現条件に対応して
始動114における機関回転数、燃料増量、燃料増量継
続期間の関係を第2の数表の形でそれぞれ記4.tLす
る記憶手段と、定常運転時には、第10′#、表に基づ
いて機関回転故さアクセル位置の各検出値から所定の機
関回転数を得る目標ラック位置を決定して制御出力を出
し、また機関始動時には、一定期間第2の数表に基づい
た目標ランク位りを決定して制御出力を出す演算手段と
、演算手段の制御出力によりラック位置を調整するラッ
ク駆動平段とを備えたこさを特徴としている。
The present invention is aimed at improving the starting performance of an internal combustion engine equipped with a so-called electronically controlled governor by appropriately increasing the amount of fuel at starting. The relationship between the engine speed and the maximum rack position is expressed in the form of a first numerical table, and the relationship between the engine speed, the fuel increase, and the duration of the fuel increase at the start 114 is expressed in a second numerical table corresponding to the Q current conditions. 4. Write each in table form. tL storage means, and during steady operation, determines a target rack position to obtain a predetermined engine speed from each detected value of the engine speed and accelerator position based on the table No. 10'#, and outputs a control output; When the engine is started, the engine is equipped with a calculation means that determines a target rank based on a second numerical table for a certain period of time and outputs a control output, and a rack drive platform that adjusts the rack position based on the control output of the calculation means. It is characterized by

すなわち、零発すJの制f111装沿は、始動時用とし
て作成された数表に基づき、@現条件に応じて機関が始
動する寸で機関回転故に適した燃料増量を行なうもので
あり、予め失験等によってその検量に適した燃t1増も
4特性を確認して適切々数表を作成しておくことにより
、環境条件に左右されず常に良好な始動性能を得ること
ができるのであり、機関始動時の立上シ時間を短たdし
て燃料の無駄を省き、始!iIJ機の負担を軽減するこ
とが可能となるのである。ら”1.現条件としては実施
例の冷却水温度のほか、外気温度や始動機用バッテリ電
圧など、機関の始動特性に影響を与える種々の要素を対
象とすることができる。
In other words, the F111 engine control system for J that generates zero fire is based on a numerical table created for starting, and increases the amount of fuel appropriate for engine rotation failure according to the current conditions when the engine is about to start. By confirming the four characteristics of fuel t1 increase suitable for the calibration due to mistakes and creating an appropriate numerical table, it is possible to always obtain good starting performance regardless of environmental conditions. Shorten the start-up time when starting the engine, reduce waste of fuel, and start! This makes it possible to reduce the burden on the iIJ machine. 1. In addition to the cooling water temperature in the embodiment, the current conditions can include various factors that affect the starting characteristics of the engine, such as outside air temperature and starter battery voltage.

、以下、図示の一実施例により不発B1−1を具体的に
  。
Hereinafter, the unexploded B1-1 will be explained in detail according to an illustrated embodiment.

説明する。explain.

第1図は概念系統図であり、+1)u機関、(2)は燃
PI噴射ポンプ、+3)Hガバナ用アクチュエータ、(
4)はタイマ用アクチュエータ、(5++61は各アク
チュエータf3)+4)用の位置センナ、(7)は回転
数センサ、(8)はアクセル位詔センサ、(9)はアク
セル、!IQ)lriコントローラ、(11)l−1:
水温センサ、θ2)ハノズルである。
Figure 1 is a conceptual system diagram, +1) U engine, (2) fuel PI injection pump, +3) H governor actuator, (
4) is the timer actuator, (5++61 is the position sensor for each actuator f3)+4), (7) is the rotation speed sensor, (8) is the accelerator position sensor, (9) is the accelerator, ! IQ) lri controller, (11) l-1:
Water temperature sensor, θ2) nozzle.

機関(1)の運転状鯨は燃料噴射ポンプ(2)による噴
射が及び噴射時期で制御される。燃PI咄射f、)は、
燃料ランク(図示せず)をl’i貞躬fHj’、 aM
 整レバー03)を介してリニアソレノイド、ステッピ
ングモータ等を用いたアクチュエータ(3)で移催Jさ
せることにより調整されるようKなっており、差動トラ
ンス等を用いた位b・イセンサ(5)で検出されたアク
チュエータ(3)の位fM7 (従って燃t1ランクの
位1α)と、回転数センサ(7)で検出された機関回転
故とから噴射量は検出される。また噴射時期は、プリス
トロークの変更やカム位相の′:¥更によシ調整され、
これらの変更は機械的にあるいは油圧を利用し、タイミ
ング調整レバー(14)を介してリニアソレノイド、ス
テッピングモータ、電磁弁等を用いたアクチュエータ(
4)により行なわれ、差動トランス等を用いた位置セン
ダ(6)でアクチュエータ(4)の位置を検出すること
によって噴射時期は検出される。回転数センサ(7)と
しては、例えばフライホイール等の回転部θ5)に取付
けた磁性体からiる突起06)の動きを検出する電磁ピ
ックアップが用いられる。
The operating state of the engine (1) is controlled by the injection and timing of the fuel injection pump (2). Fuel PI injection f,) is,
Set the fuel rank (not shown) to l'i fHj', aM
Adjustment is made by moving an actuator (3) using a linear solenoid, stepping motor, etc. via an adjusting lever (03), and a position sensor (5) using a differential transformer, etc. The injection amount is detected from the position fM7 of the actuator (3) (therefore, the position 1α of the fuel t1 rank) detected by the rotation speed sensor (7) and the engine rotation error detected by the rotation speed sensor (7). In addition, the injection timing has been further adjusted by changing the prestroke and adjusting the cam phase.
These changes can be made mechanically or hydraulically, using actuators (such as linear solenoids, stepping motors, solenoid valves, etc.) via the timing adjustment lever (14).
4), and the injection timing is detected by detecting the position of the actuator (4) with a position sender (6) using a differential transformer or the like. As the rotational speed sensor (7), an electromagnetic pickup is used that detects the movement of a protrusion 06) from a magnetic body attached to a rotating part θ5) such as a flywheel.

機関運転状態に対するオペレータの指示は、アクセル(
9)Kよって行なわれ、これをアクセル(9)にJiけ
られたポテンショメーク等のアクセル位置センサ(8)
で検出してその出力信ぢをコントローラ(10)に入力
し、指示に対応するための噴射h1と噴射時期の制御は
コントローラ(lO)で行なわれる。コントローラ(1
0)としてはマイクロコンピュータが用いらfr、てお
り、各独入出カイ、」すのA/Dij扮、D/A仮]実
、パルスカウント、パルス出力等へのズ換及びそれらの
制御をするためのI10制御ROM (21j 。
The operator's instructions regarding the engine operating status are given by pressing the accelerator (
9) Accelerator position sensor (8) such as potentiometer made by K and connected to the accelerator (9)
The output signal is input to the controller (10), and the controller (10) controls the injection h1 and injection timing in response to the instruction. Controller (1
As for 0), a microcomputer is used for each input/output, conversion to actual output, pulse count, pulse output, etc., and control thereof. I10 control ROM for (21j.

制御演算及び入出力指示を与えるCPU (zr、CP
U (22の制御演算に使用されるRAM (z;) 
、制御プログラムを記憶しているプログラムROM例、
制御演算に必要な晶データを記憶しているテークROM
 12oi〜・で構成されている。
CPU that provides control calculations and input/output instructions (zr, CP
U (RAM used for control calculation of 22 (z;)
, an example of a program ROM that stores a control program,
Take ROM that stores crystal data necessary for control calculations
It is composed of 12oi~.

テークROM +25+には、機関回転数と最大ランク
位置との関係を定める第1の数表と、始11J時におけ
る冷却水温度等の環境条件に対応した板間回転数、燃料
#Jiド、燃料増五1R1;統期間の関係を定める第2
の数表とを記憶させである。
The take ROM +25+ contains the first numerical table that determines the relationship between the engine speed and the maximum rank position, and the plate speed, fuel #Ji de, and fuel corresponding to the environmental conditions such as the cooling water temperature at the first 11J hours. Masugo 1R1; 2nd section that determines the relationship between governing periods
Let me memorize the numerical table.

付表1は第1の数表を、41表2−1及び伺表2(付表
2−1:始動増量ラック数表) −2は第2の数表の一例であシ、第2図は付表1を、第
3図は付表2−1を、第4図は付表2−2をそれぞれグ
ラフ化して示したものである。表の中間値は補間法によ
って求められる。
Attached Table 1 shows the first numerical table, 41 Table 2-1 and Table 2 (Appended Table 2-1: Startup Increased Rack Number Table) -2 is an example of the second numerical table, and Figure 2 shows the attached table. 1, FIG. 3 is a graphical representation of Attached Table 2-1, and FIG. 4 is a graphical representation of Attached Table 2-2. Intermediate values in the table are determined by interpolation.

定常運転時における機関の最大トルクは付表1の最大ラ
ック位置によって決まり、付表1は機関の最大トルク特
性を定めるものである。また付表2−1は、始動時すな
わち回転数が零の時におけるラック位置を冷却水温度に
応じて定めるもので、一般に冷却水温度が低い場合にラ
ック位置を増大i   あ? 6 o * 2114゜
A、、ij:j。1゜□。、2゜位置を示す。付表2−
2は、始動機によって機関が回転を始めた後、いつまで
増量を継続するかを定めるものであシ、この例では冷却
水温度に対応して始動認識回転数によって継続期間を定
めている。この始動認識回転数というのは、機関回転数
が次第に増大してこの回転数に達したら燃料増献を停止
しても機関は始動に失敗せず自刃運転が可能であると判
断してよいという回転数のことであり、見方を変えれば
、この回転数を超えてまで増量を継続する必要はないと
いう始動増お°制限回転数と考えることができる。この
始動認識回転数(始動増量制徘回転数)は、付表2−2
に具体的な数値で示したように始動時の冷却水温度が一
20°Cの場合には、機関回転数が1l100rpに達
するまで、すなわち第2図のB点まで始動増量ラック位
置が保持され、以後付表1による制御に切換えられるの
であり、第2図に破線で示すように付表1による噴射量
を超えた燃料噴射を行なって確実に機関を始動させるの
である。
The maximum torque of the engine during steady operation is determined by the maximum rack position in Attached Table 1, and Attached Table 1 defines the maximum torque characteristics of the engine. Also, Appendix Table 2-1 determines the rack position at the time of startup, that is, when the rotation speed is zero, depending on the cooling water temperature.Generally, when the cooling water temperature is low, the rack position is increased. 6 o * 2114°A,, ij:j. 1゜□. , indicates the 2° position. Appendix 2-
2 determines how long the increase in fuel consumption will continue after the engine starts rotating by the starter, and in this example, the duration is determined by the recognized starting rotation speed in accordance with the cooling water temperature. This starting recognition rotation speed means that when the engine rotation speed gradually increases and reaches this rotation speed, it can be determined that even if fuel addition is stopped, the engine will not fail to start and will be able to operate on its own. It refers to the number of revolutions, and if you look at it from another perspective, it can be thought of as a starting increase or limit number of revolutions, meaning that there is no need to continue increasing the amount of power beyond this number of revolutions. This starting recognition rotation speed (starting increase control rotation speed) is shown in Appendix Table 2-2.
As shown in the concrete figures in Figure 2, if the cooling water temperature at startup is 120°C, the starting increase rack position will be maintained until the engine speed reaches 1l100rpm, that is, until point B in Figure 2. Thereafter, control is switched to the control according to Appendix Table 1, and as shown by the broken line in FIG. 2, fuel injection exceeding the injection amount according to Appendix Table 1 is performed to ensure that the engine is started.

次に、第5図(a)〜(C)に示す制御フローチャート
とともに制動1の動作について説明する。なおこれらの
第5図(a)〜(C)は一連のものである。
Next, the operation of braking 1 will be explained with reference to the control flowcharts shown in FIGS. 5(a) to 5(C). Note that FIGS. 5(a) to 5(C) are a series.

機力状態を詔職するための信号、すなわち機関回転数、
噴射量、噴射時期、アクセル位置等の信号FiI10制
御ROMシl)に管理され、CPU(社)K認識可能な
信号に変換されてCPU(社)に入力される。CPU(
社)は、第5図(a)〜(c) K示す手順に従って制
御演算を行ない、アクチュエータ(3)(4)を駆動す
るだめの信号を出力し、この信号はI10制御ROMし
】)の管理のもとてアクチュエータ+31 +41に認
識可能な制御出力に変換され、アクチュエータ+31 
+41が駆動される。
A signal for controlling the machine power status, i.e. engine speed,
The signals such as injection amount, injection timing, and accelerator position are managed by signals FiI (control ROM 10), converted into signals that can be recognized by CPU (K), and input to CPU (K). CPU(
The company) performs control calculations according to the procedure shown in Fig. 5 (a) to (c) K, outputs a signal to drive the actuators (3) and (4), and this signal is stored in the I10 control ROM. The control output is converted into a control output that can be recognized by the actuator +31 +41, and the actuator +31
+41 is driven.

捷ず、第5図(a)のステップ1で機関(1)が始動増
量制御を受ける状態にあるかどうかを判定する。
Instead, in step 1 of FIG. 5(a), it is determined whether the engine (1) is in a state where it is subject to starting increase control.

ステップ2では始動増量制御のために冷却水温度を検出
し、付表2−2の始動認識回転数数表により水温に対す
る始動認識回転数を計算し、また付表2−1の始動増量
ラック数表によシ水温に対する始動増量ラック位置を計
算する。ステップ3では実際回転数を検出し、アクセル
位置に対する無負荷回転数(アクセル回転数)を計算し
、実際回転数がアクセル回転数及び始11J認識回転数
より低い場合は増量が必要と判断して、目標ラック位置
を始動増量ラック位置に設定する。アクセル回転数が数
表の始動認識回転数より低い場合は、始動認識回転数は
アクセル回転数までとする。またデータROM伝四には
、実際回転数と実際ラック位置妊対応した目標噴射時期
を数表の形で記憶させてあシ、ステップ4ではこの数表
に基づいて目標噴射時期を計算する。これらの手順は一
定のクランク角θ0ごとに行なわれる。
In step 2, the cooling water temperature is detected for starting increase control, and the starting recognition rotation speed for the water temperature is calculated based on the starting recognition rotation speed table in Appendix 2-2. Calculate the starting increase rack position for the water temperature. In step 3, the actual rotational speed is detected, the no-load rotational speed (accelerator rotational speed) relative to the accelerator position is calculated, and if the actual rotational speed is lower than the accelerator rotational speed and the starting 11J recognized rotational speed, it is determined that an increase is necessary. , set the target rack position to the starting increase rack position. If the accelerator rotation speed is lower than the recognized starting rotation speed in the numerical table, the recognized starting rotation speed shall be up to the accelerator rotation speed. Further, the data ROM 4 stores target injection timings corresponding to the actual rotational speed and the actual rack position in the form of a numerical table, and in step 4, the target injection timing is calculated based on this numerical table. These procedures are performed at every fixed crank angle θ0.

ステップ5は定常運転の制御を行なう状態であるかどう
かを判定し、定常運転の場合にはステップ6に移る。ス
テップ6では実1祭回転数を検出し、付表1の最大ラッ
ク数表により実際回転数に対する最大ラック位置を求め
て上限を認識し、次いで比例積分微分計算で目標ラック
位置を計算する。
In step 5, it is determined whether or not steady operation control is to be performed, and in the case of steady operation, the process moves to step 6. In step 6, the actual number of rotations is detected, the maximum rack position relative to the actual number of rotations is determined from the maximum rack number table in Appendix 1, the upper limit is recognized, and then the target rack position is calculated by proportional-integral-differential calculation.

ステップ7では、噴射時期数表により実際回転数と実1
余ラック位置に対応した目標噴射時期を計算する。以上
は一定のクランク角θ0ごとに行なわれる。
In step 7, the actual rotation speed and the actual 1
Calculate the target injection timing corresponding to the remaining rack position. The above steps are performed at every fixed crank angle θ0.

ステップ8では、検出されたラック位置と噴射時期の去
除値と、ステップ3及び4あるいはステップ6及び7で
求めたこれらの目4:R値とを比較し、比例積分微分計
算でガバナ用アクチュエータ(3)及びタイマ用アクチ
ュエータ(4)のJd6動量を計算して出力値上を出し
、各アクチュエータ(3)(4)を駆動してラック位置
と噴射時期を目標値に合わせる。この動作はステップ1
〜7の実施間隔より短い間隔t2ごとに行なわれる。
In step 8, the removed values of the detected rack position and injection timing are compared with the R values obtained in steps 3 and 4 or steps 6 and 7, and the governor actuator ( 3) and the Jd6 movement of the timer actuator (4) to obtain an output value increase, and drive each actuator (3) and (4) to adjust the rack position and injection timing to the target value. This operation is step 1
It is performed at intervals t2 shorter than the implementation interval of ~7.

ステップ9では、アクセル位置センサ(8)の信りによ
ってオペレータの要求を入力する。このステラフ9id
ニステツプ8より長い間隔t3ごとに行なわハる。
In step 9, the operator's request is input based on the accelerator position sensor (8). This Stellaf9id
This is performed at intervals t3 longer than step 8.

このようなステップが順次繰返され、機関+1)は始動
時には付表2−1及び付表2−2による第2の数表に基
づき、才だ始動後に付表1による第1の数表に基づいて
制御されながら運転さh5る。
These steps are repeated in sequence, and the engine +1) is controlled based on the second numerical table according to Appendix Table 2-1 and Appendix Table 2-2 at the time of starting, and based on the first numerical table according to Appendix Table 1 after starting. Driving while driving.

以上の説明からりJらかなように、本発明によれば、始
動時の環境条件に対応して板μm回転数、燃料増上j1
燃料・増量綿ね°5ノリj間の関係を制御し、適切な増
hjを適切な時間待なうことにより、機関の始動性能を
向上して短時間に確実に始動させることが可能となるの
でるる。
As is clear from the above description, according to the present invention, the plate rotational speed μm and the fuel increase j1 in response to the environmental conditions at the time of startup.
By controlling the relationship between fuel and increase amount hj and waiting for an appropriate increase hj for an appropriate amount of time, it is possible to improve the starting performance of the engine and start it reliably in a short time. Node Ruru.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は不発リイの一実施例の似、念系統図、第2図は
最大ランク数表をグラフ化して示した図、第3図は始動
増おランク数表をグラフ化して示した図、第4図は始動
認識回転数数表をグラフ化して示した図、第5図(a)
〜(c)は制御++フローチャートである。 (1)・・・機関、(2)・・・燃料噴射ポンプ、(3
)・・・ガバナ用アクチュエータ、(4)・・・タイマ
用アクチュエータ、(5) +6)・・位1ひセンサ、
(7)・・回転数センサ、(8)・・・アクセル位置セ
ンサ、(”)・・・アクセル、(10i・・・コントロ
ーラ、(1す・・・水温センサ、(21)・・・I10
制狗i ROM 、し2)・・・CPU 、 (23j
・・1尼り、し4)・−・プログラムROM 、暢)・
・・データROM 。 特許出願人  ヤンマーディーゼル株式会社代JK)1
 人 弁灯士篠 1) 實 0  400     1100 −機関回転数(rpm) 第4図 一始初時ン令即水温/L(’C)
Figure 1 is a similar system diagram of an example of a misfire, Figure 2 is a graph showing the maximum rank number table, and Figure 3 is a graph showing the start increase rank number table. , Figure 4 is a graph showing the starting recognition rotation speed table, Figure 5 (a)
~(c) is a control++ flowchart. (1)... Engine, (2)... Fuel injection pump, (3
)... Actuator for governor, (4)... Actuator for timer, (5) +6)... Position 1 sensor,
(7)...Rotation speed sensor, (8)...Accelerator position sensor, ('')...Accelerator, (10i...Controller, (1su...Water temperature sensor, (21)...I10
Control i ROM, 2)...CPU, (23j
・・1尼り、し4)・・・Program ROM, Nobu)・
...Data ROM. Patent applicant: Yanmar Diesel Co., Ltd. (JK) 1
Person Bentoshi Shino 1) Actual 0 400 1100 - Engine speed (rpm) Figure 4 Water temperature from beginning to end / L ('C)

Claims (1)

【特許請求の範囲】[Claims] (1)機関回転数を検出する検出手段と、アクセル位置
を検出する検出手段と1 温度等の環境条件を検出する検出手段と、機関回転数と
最大ラック位置との関係を第1の数表の形で、また環境
条件に対応して始動時における機関回転数、燃料増量、
燃料増量継続期間の段と・ 定常運転時には、第1の数表に基づいて機関回転数とア
クセル位置の各検出値から所定の機関回転数を得る目標
ラック位置を決定して制御出力を演算手段と、 演算手段の制御出力によりラック位置を調整するラック
駆動手段、 とを備えたことを特徴とする内燃機団の制御装置0
(1) Detection means for detecting the engine speed, detection means for detecting the accelerator position, 1. Detection means for detecting environmental conditions such as temperature, and the relationship between the engine speed and the maximum rack position in the first numerical table. engine speed at startup, fuel increase,
During the fuel increase continuation period and during steady operation, the target rack position for obtaining a predetermined engine speed is determined from each detected value of the engine speed and accelerator position based on the first numerical table, and the control output is calculated by means for calculating the control output. A control device 0 for an internal combustion engine group, comprising: and a rack drive means for adjusting the rack position based on the control output of the calculation means.
JP6747683A 1983-04-14 1983-04-14 Control apparatus for internal-combustion engine Pending JPS59192840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6747683A JPS59192840A (en) 1983-04-14 1983-04-14 Control apparatus for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6747683A JPS59192840A (en) 1983-04-14 1983-04-14 Control apparatus for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS59192840A true JPS59192840A (en) 1984-11-01

Family

ID=13346051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6747683A Pending JPS59192840A (en) 1983-04-14 1983-04-14 Control apparatus for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59192840A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228840A (en) * 1990-12-27 1992-08-18 Toyota Motor Corp Fuel injection control device for diesel engine
WO1995006813A1 (en) * 1993-09-03 1995-03-09 Robert Bosch Gmbh Control system for high-pressure fuel injection system for an internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111015A (en) * 1978-01-28 1979-08-31 Bosch Gmbh Robert Method of and apparatus for measuring fuel for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111015A (en) * 1978-01-28 1979-08-31 Bosch Gmbh Robert Method of and apparatus for measuring fuel for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04228840A (en) * 1990-12-27 1992-08-18 Toyota Motor Corp Fuel injection control device for diesel engine
WO1995006813A1 (en) * 1993-09-03 1995-03-09 Robert Bosch Gmbh Control system for high-pressure fuel injection system for an internal combustion engine

Similar Documents

Publication Publication Date Title
US7261076B2 (en) Method and control system for positioning a crankshaft of an internal combustion engine
JP4329799B2 (en) Air-fuel ratio control device for internal combustion engine
JP2008215230A (en) Engine revolution stop control device
US4781162A (en) Throttle valve control system for an internal combustion engine
DE102008000384A1 (en) Engine stop control unit
JP2009191628A (en) Electronic control device of general-purpose engine
JPS63619B2 (en)
JPS59192840A (en) Control apparatus for internal-combustion engine
JPS6035150A (en) Control method of idle speed in engine
JP5461049B2 (en) Engine control device
JPS59160049A (en) Apparatus for controlling fuel supply rate
US9840977B1 (en) Engine stop position control system and method
JP2005155549A (en) Starting system of engine
JP2964128B2 (en) Control device for internal combustion engine
JPS59192839A (en) Control apparatus for internal-combustion engine
JP5189675B2 (en) Engine electronic control unit
JPS61232361A (en) Controller for internal-combustion engine
JPH0694833B2 (en) Control device for internal combustion engine
DK167546B1 (en) PROCEDURE FOR CHANGING THE FLASH PRESSURE IN A SELF-TENDING STAMP COMBUSTION ENGINE AND DEVICE FOR IMPLEMENTING THE PROCEDURE
JPS5885331A (en) Control method of fuel injection quantity in diesel engine
JPS62233450A (en) Control device for internal combustion engine
JP2004108355A (en) Control device for engine-driven generating device
JPS59211741A (en) Control method of idling rotation number of internal-combustion engine
JPS61232362A (en) Controller for internal-combustion engine
JPH02191849A (en) Warming-up period fuel injection advance timing device for fuel injection pump in diesel engine