JPS59162110A - Preparation of fine powder of silicon nitride - Google Patents

Preparation of fine powder of silicon nitride

Info

Publication number
JPS59162110A
JPS59162110A JP3365383A JP3365383A JPS59162110A JP S59162110 A JPS59162110 A JP S59162110A JP 3365383 A JP3365383 A JP 3365383A JP 3365383 A JP3365383 A JP 3365383A JP S59162110 A JPS59162110 A JP S59162110A
Authority
JP
Japan
Prior art keywords
gas
silicon nitride
stainless steel
si3n4
sicl4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3365383A
Other languages
Japanese (ja)
Inventor
Shoichi Onda
正一 恩田
Yukihisa Takeuchi
幸久 竹内
Tsukasa Hirayama
司 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP3365383A priority Critical patent/JPS59162110A/en
Publication of JPS59162110A publication Critical patent/JPS59162110A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon

Abstract

PURPOSE:To prepare extremely fine powder of Si3N4, by impressing high-frequency voltage to space between electrodes set opposingly in a vacuum container, feeding a mixed gas of NH3 and SiCl4 to it, making it into a plasma state, synthesizing Si3N4 in a gaseous phase. CONSTITUTION:High-frequency voltage is impressed to space between the stainless steel column 2 and the stainless steel cylinder 3 set opposingly in the vacuum container 1, an SiCl4 gas is fed from the quartz nozzle 9, an NH3 gas and a carier gas (N2, H2, etc.) are fed from the quartz nozzle 10 to the space between both the electrodes 2 and 3. Consequently, the mixed gas is made into a plasma state, and the reaction shown by the formula I takes place. SiCl4 and NH3 are ionized or activated in the plasma, Si3N4 is synthesized in a gaseous phase, sent to the exhaust pipe 11 while being floated, and collected by the filter member 12 cooled with water. HCl, another reaction product, is passed through the filter member 12 and exhausted.

Description

【発明の詳細な説明】 本発明は極めて微細な窒化珪素粉末を製造する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing extremely fine silicon nitride powder.

近年、セラミックスは多くの用途に使用され、非酸化物
セラミックスの研究も進められている。
In recent years, ceramics have been used for many purposes, and research on non-oxide ceramics is also progressing.

中でも窒化珪素は、常温、高温での強度が大きく、高温
での電気抵抗が大きく、かつ熱膨張係期待されている。
Among them, silicon nitride has high strength at room temperature and high temperature, high electrical resistance at high temperature, and is expected to have a high coefficient of thermal expansion.

しかしながら窒化珪素は難焼結性で、高密度焼結体を得
るだめにホットプレス、雰囲気加圧焼結を行なったシ、
焼結助剤を加えて強度向上をはかつているが、未だ満足
すべき強度が得られないのが現状である。この窒化珪素
焼結体の高密度、高強度化は原料粉末を微細化し、かつ
高純度化することにより改善され得る。
However, silicon nitride is difficult to sinter, and in order to obtain a high-density sintered body, hot pressing and atmospheric pressure sintering were performed.
Although attempts have been made to improve the strength by adding sintering aids, the current situation is that satisfactory strength has not yet been obtained. The high density and high strength of this silicon nitride sintered body can be improved by making the raw material powder fine and highly purified.

従来、窒化珪素粉末の製造法としては、例えば結晶シリ
コンを窒素中で加熱窒化し、ジェットミル粉砕等の手段
で粉砕する方法がとられているが、機械的粉砕では粒径
にも限度があシせいぜい0.5μ程度であシ、かつ粒径
にバラツキがある。また粉砕時に不純物の混入が避けら
れない。
Traditionally, silicon nitride powder has been produced by, for example, heating and nitriding crystalline silicon in nitrogen and pulverizing it by jet milling or other means, but mechanical pulverization has a limit on the particle size. The particle size is approximately 0.5μ at most, and the particle size varies. Furthermore, contamination with impurities is unavoidable during pulverization.

、第1図および第2図は窒化珪素焼結体における原料粉
末の粒径と曲げ強度の関係、および原料粉末中の不純物
(カルシウム、ナトリウム等)含有量と曲げ強度との関
係について発明者らの行なった実験結果を示すもので、
粒径が小さい程、また不純物が少ない程、強度が大きく
なる。
, Figures 1 and 2 show the relationship between the particle size of the raw material powder and the bending strength in a silicon nitride sintered body, and the relationship between the content of impurities (calcium, sodium, etc.) in the raw material powder and the bending strength. This shows the results of an experiment conducted by
The smaller the particle size and the fewer impurities, the greater the strength.

そこで本発明は従来のものよりも粒径が遥かに小さく、
かつ粒径分布範囲も小さく、更に不純物の混入も少ない
微粉末゛窒化珪素を製造することを目的とするものであ
る。
Therefore, the present invention has a much smaller particle size than the conventional one,
The object of the present invention is to produce a fine powder of silicon nitride that has a narrow particle size distribution range and is less contaminated with impurities.

そして本発明は、高周波電圧を印加した′を極間にアン
モニアと四塩化珪素の混合ガスを供給してプラズマ状態
となし、窒化珪素を気相合成することによシ上記の目的
を達成するものである。本発明によれば、平均粒径0.
01μ、粒径分布±0.005μで不純物の混入が1%
未満の窒化珪素粉末が得られる。
The present invention achieves the above-mentioned object by supplying a mixed gas of ammonia and silicon tetrachloride between the electrodes of the electrode to which a high-frequency voltage has been applied, creating a plasma state, and synthesizing silicon nitride in a vapor phase. It is. According to the present invention, the average particle size is 0.
01μ, particle size distribution ±0.005μ, contamination with impurities is 1%
A silicon nitride powder of less than 10% is obtained.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

第3図は本発明を実施するための装置であって、金属製
の円筒状容器1内にはその軸心に電’M ヲナスステン
レススチー)V(以下、ステンレスという)円柱2が、
そのまわシにはとれと同軸的に同じく電極をなすステン
レス円筒3が配設されている。ステンレス円柱2の下端
は容器1の底部を貫通する端子4に接続されている。
FIG. 3 shows an apparatus for carrying out the present invention, in which a metal cylindrical container 1 has an electric cylinder 2 (hereinafter referred to as stainless steel) at its axis.
A stainless steel cylinder 3, which also serves as an electrode, is disposed coaxially with the handle. The lower end of the stainless steel cylinder 2 is connected to a terminal 4 passing through the bottom of the container 1.

端子4は絶縁材61を介して容器底部に固定され、ステ
ンレス円柱2はこの端子4に支持されている。
The terminal 4 is fixed to the bottom of the container via an insulating material 61, and the stainless steel cylinder 2 is supported by the terminal 4.

上記ステンレス円筒3は絶縁材62により容器lの側壁
に支持されている。ステンレス円筒3の上面にはバンチ
ングメタl 7が接合してあり、これは容器lの頂面を
貫通する端子5の下端と接続している。端子5は絶縁材
63を介して容器1の頂面に支持されている。そして上
記ステンレス円柱2は端子4を介して高周波電源8に接
続され、ステンレス円筒3はパンチングメタ/I/7お
よび端子5を介して高周波電源8に接続されている。
The stainless steel cylinder 3 is supported by an insulating material 62 on the side wall of the container l. A bunching metal l7 is bonded to the upper surface of the stainless steel cylinder 3, and is connected to the lower end of a terminal 5 penetrating the top surface of the container l. The terminal 5 is supported on the top surface of the container 1 via an insulating material 63. The stainless steel cylinder 2 is connected to a high frequency power source 8 through a terminal 4, and the stainless steel cylinder 3 is connected to a high frequency power source 8 through a punching metal/I/7 and a terminal 5.

容器1には一列の石英製ノズ/L/9.10が導入せし
めてあり、これ等ノズ/l/9,10はステンレス円柱
2およびステンレス円筒3の間の間隙の下方に開口して
いる。容器1の上部にはガス排出管11が設けられ、そ
の開口にはステンレスメツシュを重ね合せだフィルタ部
材12が充填しである。そしてそのまわりには冷却水パ
イプ13が設けである。
A row of quartz nozzles /L/9,10 is introduced into the container 1, and these nozzles /L/9,10 open below the gap between the stainless steel cylinder 2 and the stainless steel cylinder 3. A gas exhaust pipe 11 is provided in the upper part of the container 1, and its opening is filled with a filter member 12 made of overlapping stainless steel mesh. A cooling water pipe 13 is provided around it.

ノズル9.10の容器外のパイプまわりにはヒータ14
が設けてあシ、まだ、容器lの外周にもヒータ15が設
けである。ヒータ15は断熱材16によシ囲まれている
Heater 14 is installed around the pipe outside the container of nozzle 9 and 10.
However, a heater 15 is also provided around the outer periphery of the container l. The heater 15 is surrounded by a heat insulating material 16.

次に上記装置にて本発明を実施するにはステンレス円柱
2およびステンレス円筒3間に高周波電圧を印加すると
ともに、ノズ/I/9より四塩化珪素ガスを、ノズル1
0よりアンモニアガスおよびキャリヤガス(屋素、水素
まだはアルゴン)を容器1内のステンレス円柱2および
ステンレス円筒3間に供給する。
Next, in order to carry out the present invention using the above apparatus, a high frequency voltage is applied between the stainless steel cylinder 2 and the stainless steel cylinder 3, and silicon tetrachloride gas is supplied from the nozzle/I/9 to the nozzle 1.
From zero, ammonia gas and carrier gas (oxygen, hydrogen, or argon) are supplied between the stainless steel cylinder 2 and the stainless steel cylinder 3 in the container 1.

これにより混合ガスをプラズマ状態にし、(1)式の反
応を起させる。
This brings the mixed gas into a plasma state and causes the reaction of equation (1) to occur.

3 S’xCe 4 + 4 NHs−+Sis N4
 + 12 HCe−−・(1)プラズマ中で四塩化珪
素およびアンモニアはイオン化または活性化され、窒化
珪素が気相合成されて浮遊しながら排出管11に至り、
水冷されたフィルタ部材12に°CC集果れる。また池
の生成物の塩化水素はフィルタ部材12を通過して装置
外へ排気される。
3 S'xCe 4 + 4 NHs-+Sis N4
+ 12 HCe-- (1) Silicon tetrachloride and ammonia are ionized or activated in the plasma, and silicon nitride is synthesized in a vapor phase and reaches the discharge pipe 11 while floating.
°C is collected on the water-cooled filter member 12. Further, the hydrogen chloride produced in the pond passes through the filter member 12 and is exhausted to the outside of the apparatus.

ここで注意すべきことは、(2)式および(3)式で示
すように四塩化珪素は常温でもアンモニアおよび酸素と
反応を起す。
It should be noted here that silicon tetrachloride reacts with ammonia and oxygen even at room temperature, as shown in formulas (2) and (3).

5ICe4+ 8NHs−+ 5i(NHx )a +
4NH4Cg−−(2)S :L C(14+ 02 
→S iO2+ 2 C11m −−−・−−−= (
3)そこで(2)式の反応を防ぐため本実施例では四塩
化珪素とアンモニアを別々の経路で直接に電柵間に注入
している。また(3)式の反応を防ぐためには、事前に
容器1からl O’ torr程度まで真空に引き酸素
を排除してガスを注入する。
5ICe4+ 8NHs-+ 5i(NHx)a +
4NH4Cg--(2)S:LC(14+02
→S iO2+ 2 C11m −−−・−−−= (
3) Therefore, in order to prevent the reaction of formula (2), in this embodiment, silicon tetrachloride and ammonia are directly injected between the electric fences through separate routes. In order to prevent the reaction of formula (3), the container 1 is evacuated to about 1 O' torr in advance to remove oxygen and then gas is injected.

また反応を促進させるために容器外壁をヒータ15で加
熱し、かつノズ/I/9.1oへ供給されるガスをヒー
タ14で予熱する。また、原料ガスはいずれも不純物I
PPM以下のものを使用し、四塩化珪素については常温
で液体であるので、四塩化珪素を入れたタンクを恒温器
で保温し蒸気化したものを用いる。実験条件の詳細を第
31表に示す。
Further, in order to promote the reaction, the outer wall of the container is heated with a heater 15, and the gas supplied to the nozzle/I/9.1o is preheated with a heater 14. In addition, all raw material gases contain impurity I.
PPM or less is used, and since silicon tetrachloride is liquid at room temperature, a tank containing silicon tetrachloride is kept warm in a thermostat and vaporized. Details of the experimental conditions are shown in Table 31.

このようにして合成され、フィルタ部材12で捕集され
た窒化珪素微粒子を超音波洗浄法でフィルり部材より取
出し、X線回折、赤外分光器および電子顯徽鏡でしらべ
た処、アモルファス窒化珪素であることが確認された。
The silicon nitride fine particles synthesized in this way and collected by the filter member 12 were taken out from the filter member using an ultrasonic cleaning method and examined using X-ray diffraction, an infrared spectrometer, and an electronic microscope. It was confirmed that it was silicon.

分析結果は第2表に示す通りである。The analysis results are shown in Table 2.

第 1 表 口罷 第  2  表 なお、本発明の実施に用いる装置は上記実施例に限定さ
れるものではなく、要は電極間に高周波電圧を印加し、
これにアンモニアおよび四塩化珪素の混合ガスを供給し
てプラズマ状態となし得るものであればよい。
Table 1 Table 2 Note that the apparatus used to carry out the present invention is not limited to the above embodiments; in short, a high frequency voltage is applied between the electrodes,
Any material that can be made into a plasma state by supplying a mixed gas of ammonia and silicon tetrachloride to this may be used.

以上説明したように本発明はプラズマを利用して窒化珪
素を気相合成するもので、本発明によれば極めて微細か
つ粒径が均一であシ、かつ高純度の窒化珪素粉末を得る
ことができる。
As explained above, the present invention uses plasma to synthesize silicon nitride in a vapor phase, and according to the present invention, it is possible to obtain silicon nitride powder that is extremely fine, has a uniform particle size, and has high purity. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は窒化珪素粉末の粒径と焼結体の強度との関係を
示す図、第2図は蟹化珪素粉末の不純物含有量と焼結体
の強度との関係を示す図、第3図は本発明を実施するだ
めの装置の断面図である。 1・・・・・容 器 2.3・・・・・・電 極 8・・・・・高周波電源 9.10・・・・・・ガス供給用ノズル12・・・・微
粒子捕集用フィルタ部材43 (Dd囚)型開1.11鼾 (I)dW)  東爾1.↓j亜
Figure 1 is a diagram showing the relationship between the particle size of silicon nitride powder and the strength of the sintered body, Figure 2 is a diagram showing the relationship between the impurity content of silicon crabide powder and the strength of the sintered body, and Figure 3 is a diagram showing the relationship between the impurity content of silicon nitride powder and the strength of the sintered body. The figure is a sectional view of a device for carrying out the invention. 1... Container 2.3... Electrode 8... High frequency power supply 9.10... Gas supply nozzle 12... Particulate collection filter Member 43 (Dd Prisoner) Mold Opening 1.11 Snore (I) dW) Toji 1. ↓j

Claims (1)

【特許請求の範囲】[Claims] 真空容器内に電極を対設して電極間に高周波電圧を印加
し、上記容器内の電極間にアンモニアおよび四塩化珪素
の混合ガスを供給してプラズマ状態となして窒化珪素を
気相合成させることを特徴とする微粉末窒化珪素の製造
方法。
Electrodes are placed opposite each other in a vacuum container, a high frequency voltage is applied between the electrodes, and a mixed gas of ammonia and silicon tetrachloride is supplied between the electrodes in the container to create a plasma state and silicon nitride is synthesized in a vapor phase. A method for producing fine powder silicon nitride, characterized by:
JP3365383A 1983-02-28 1983-02-28 Preparation of fine powder of silicon nitride Pending JPS59162110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3365383A JPS59162110A (en) 1983-02-28 1983-02-28 Preparation of fine powder of silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3365383A JPS59162110A (en) 1983-02-28 1983-02-28 Preparation of fine powder of silicon nitride

Publications (1)

Publication Number Publication Date
JPS59162110A true JPS59162110A (en) 1984-09-13

Family

ID=12392401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3365383A Pending JPS59162110A (en) 1983-02-28 1983-02-28 Preparation of fine powder of silicon nitride

Country Status (1)

Country Link
JP (1) JPS59162110A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331536A (en) * 1986-07-25 1988-02-10 Natl Res Inst For Metals Plasma gaseous phase reaction apparatus
JPH0360732A (en) * 1989-07-29 1991-03-15 Nippon Steel Corp Method and device for producing fine powder and is utilization
EP0618171A1 (en) * 1993-04-01 1994-10-05 Tioxide Specialties Limited Process for the production of silicon nitride
CN105712305A (en) * 2014-12-02 2016-06-29 沈阳鑫劲粉体工程有限责任公司 New silicon nitride powder synthesis method
CN106672923A (en) * 2015-11-11 2017-05-17 新特能源股份有限公司 Preparation method of silicon nitride and system for producing silicon nitride

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331536A (en) * 1986-07-25 1988-02-10 Natl Res Inst For Metals Plasma gaseous phase reaction apparatus
JPH0410376B2 (en) * 1986-07-25 1992-02-25
JPH0360732A (en) * 1989-07-29 1991-03-15 Nippon Steel Corp Method and device for producing fine powder and is utilization
EP0618171A1 (en) * 1993-04-01 1994-10-05 Tioxide Specialties Limited Process for the production of silicon nitride
US5470446A (en) * 1993-04-01 1995-11-28 Tioxide Specialties Limited Process for the production of silicon nitride
CN105712305A (en) * 2014-12-02 2016-06-29 沈阳鑫劲粉体工程有限责任公司 New silicon nitride powder synthesis method
CN106672923A (en) * 2015-11-11 2017-05-17 新特能源股份有限公司 Preparation method of silicon nitride and system for producing silicon nitride
CN106672923B (en) * 2015-11-11 2019-05-17 新疆晶硕新材料有限公司 A kind of system of the preparation method of silicon nitride and production silicon nitride

Similar Documents

Publication Publication Date Title
Oh et al. Preparation of AlN fine powder by thermal plasma processing
TW201037107A (en) Apparatus and method of manufacturing polysilicon
Li et al. Rapid preparation of aluminum nitride powders by using microwave plasma
JPH0710519A (en) Method for preparation of disilane and reactor for use in said method
JPS59162110A (en) Preparation of fine powder of silicon nitride
KR20040025590A (en) Deposition of a solid by thermal decomposition of a gaseous substance in a cup reactor
US20040250764A1 (en) Method and apparatus for production of high purity silicon
JPH0352402B2 (en)
JPS61163195A (en) Synthesizing method for diamond in gas phase and its apparatus
KR101409160B1 (en) Manufacturing method of aluminum nitride nano powder
US20040038409A1 (en) Breath-alcohol measuring instrument
JP2736548B2 (en) Method for producing aluminum nitride and continuous furnace for producing the same
RU2354503C1 (en) Method of sodium diboride nano-powders production
JPS6259507A (en) Production of ultrafine powder of ti nitride and device therefor
JPH01230779A (en) Production of aluminum nitride
Chu et al. Rapid synthesis of aluminum nitride nanopowders from gaseous aluminum chloride
JPS6241704A (en) Synthesis of aluminum nitride
JPS5825045B2 (en) Method for producing SiC ultrafine particles
JPH0458404B2 (en)
JPS6257642A (en) Method and apparatus for producing ultrafine powder
JPS63103899A (en) Production of silicon carbide whisker of high-quality and apparatus therefor
JPS61141606A (en) Method for producing ultrafine powder of metal nitride, and apparatus therefor
Juhász et al. Preparation of Raw Materials for Fine Ceramics in Plasmas
JPS62148310A (en) Preparation of aluminum nitride
KR20150000588A (en) Method and apparatus for preparing polycrystalline silicon by using plasma