JPS61163195A - Synthesizing method for diamond in gas phase and its apparatus - Google Patents

Synthesizing method for diamond in gas phase and its apparatus

Info

Publication number
JPS61163195A
JPS61163195A JP60000759A JP75985A JPS61163195A JP S61163195 A JPS61163195 A JP S61163195A JP 60000759 A JP60000759 A JP 60000759A JP 75985 A JP75985 A JP 75985A JP S61163195 A JPS61163195 A JP S61163195A
Authority
JP
Japan
Prior art keywords
diamond
substrate
hydrogen
pipe
base plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60000759A
Other languages
Japanese (ja)
Inventor
Shingo Morimoto
信吾 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP60000759A priority Critical patent/JPS61163195A/en
Publication of JPS61163195A publication Critical patent/JPS61163195A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes

Abstract

PURPOSE:To elevate the concn. of hydrocarbon, to accelerate the deposition of diamond and also to obtain the high-purity diamond by performing the excitation of gaseous hydrogen separately from hydrocarbon and bringing the hydrogen made to an atomic state into contact with a heated base plate quickly as much as possible. CONSTITUTION:A base plate 2 is rotatably provided on a holder 3 in the inside of a stainless steel case and the base plate 2 is elevated in temp. with a heater 5 when its temp. is deficient or it is controlled by controlling the distance between the base plate 2 and a W pipe 6. The pipe 6 is provided by directing the small holes 7 toward the base plate 2 and both the rear surface and the side are covered by a heat shielding plate 8 such as Mo insulated electrically from the pipe 6 and this pipe 6 is connected to a power source 11 via the copper terminals 9. Gaseous H2 is fed through a pipe 12 connected to the other terminal 9 and hydrocarbon is fed into the inside of a case 1 decompressed by an exhaust port 14 through a feed port 13. The hydrogen made to an atomic state is generated from gaseous hydrogen by controlling the power source 11 and heating the pipe 6 at the required temp., injected through the holes 7 and collided against the base plate 2.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は炭化水素ガスの熱分解によるいわゆる気相法(
CV[l)によるダイヤモンド合成に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention applies to the so-called gas phase method (
Regarding diamond synthesis by CV[l].

(ロ)従来技術 ダイヤモンドのCVDによる合成法は通常水素とメタン
などの炭化水素の混合ガスをマイクロ波、高周波、熱フ
ィラメントなどで励起して減圧下でz  tyy状態と
し、シリコンウェハーなト(7)加熱された基板上にダ
イヤモンドを析出させる方法である。基板は炭化水素が
熱分解する温度に加熱され、そこで分解した炭化水素か
ら少量のダイヤモンドを含む黒鉛が析出することは熱力
学的に証明されている。ここで共析した黒鉛は励起され
た原子状の水素で除去することによって極めて純度の高
いダイヤモンドとすることができる。
(b) Conventional technology The CVD synthesis method for diamond usually involves exciting a mixed gas of hydrogen and hydrocarbons such as methane using microwaves, high frequencies, hot filaments, etc. to bring it into the z-tyy state under reduced pressure. ) A method in which diamond is deposited on a heated substrate. It has been thermodynamically proven that the substrate is heated to a temperature at which the hydrocarbons pyrolyze, and graphite containing small amounts of diamond precipitates from the decomposed hydrocarbons. By removing the eutectoid graphite with excited atomic hydrogen, extremely pure diamond can be obtained.

水素と黒鉛、ダイヤモンドの反応(2H2+C→CH4
)については実測されており、黒鉛の反応速度の方が1
000倍程度速いことが確認されている(Journa
l  of  Chemical  and  Eng
ineering  Data。
Reaction of hydrogen, graphite, and diamond (2H2+C→CH4
) has been actually measured, and the reaction rate of graphite is 1
It has been confirmed that it is approximately 000 times faster (Journa
l of Chemical and Eng.
inering Data.

VOL、14.No、2.April 11?89 、
 223〜224 P)、 H2を励起して原子状水素
を用いるとより効率的にその反応が進む。
VOL, 14. No, 2. April 11?89,
223-224 P), the reaction proceeds more efficiently when H2 is excited and atomic hydrogen is used.

炭化水素と水素の混合ガスをマイクロ波や熱フィラメン
トで励起する方法(特開昭58−110494、特開昭
58−91100等)では高い濃度の水素原子を得よう
として、励起エネルギーを増すと炭化水素まで必要以上
に分解が進み黒鉛の析出が多くなる。
Methods in which a mixed gas of hydrocarbon and hydrogen is excited using microwaves or a hot filament (JP-A-58-110494, JP-A-58-91100, etc.) attempt to obtain a high concentration of hydrogen atoms, but when the excitation energy is increased, carbonization occurs. Hydrogen decomposition progresses more than necessary, resulting in increased precipitation of graphite.

こうなると励起された水素が多くても黒鉛が除去できな
くなるので、黒鉛成分を多く含むダイヤモンド層となる
In this case, graphite cannot be removed even if there is a large amount of excited hydrogen, resulting in a diamond layer containing a large amount of graphite component.

そのため、通常は混合ガスの励起は炭化水素の濃度を1
%(容量2)程度に下げて行なっている。炭化水素の濃
度が低いため当然ダイヤモンドの析出量も少なくなる。
Therefore, excitation of the gas mixture usually reduces the concentration of hydrocarbons by 1.
% (capacity 2). Naturally, since the concentration of hydrocarbons is low, the amount of diamond precipitation is also reduced.

上記した特開昭58−110494には先ず初めに水素
ガスをマイクロ波で励起し、これに炭化水素ガスを混合
して加熱した基板上に導き、ダイヤモンドを析出させる
方法も記載されている。この方法では水素ガスのみを励
起しているので、炭化水素とは無関係に原子状水素の濃
度を制御することができるが、原子状水素は再び結合し
て水素分子となり易く、該公報に開示されているように
励起した水素を反応管を通して基板に導くと再結合によ
る1水素分子化が避けられないので、ダイヤモンド析出
効率はおのず、と低下する。
The above-mentioned Japanese Patent Laid-Open No. 58-110494 also describes a method in which diamond is deposited by first exciting hydrogen gas with microwaves, mixing it with hydrocarbon gas, and introducing the mixture onto a heated substrate. Since this method excites only hydrogen gas, it is possible to control the concentration of atomic hydrogen independently of hydrocarbons, but atomic hydrogen tends to recombine to form hydrogen molecules, and as disclosed in the publication, When excited hydrogen is introduced to the substrate through a reaction tube as in the case of the present invention, it is unavoidable that it will be converted into a single hydrogen molecule due to recombination, and the efficiency of diamond precipitation will naturally decrease.

ガスの励起にとどまらず、基板やそのホルダー。Not only gas excitation, but also substrates and their holders.

反応容器等も加熱励起され、そこから元素や化合物が蒸
発し、それが基板上に析出してダイヤモンド膜の純度が
悪くなる8例えばホルダーにBN成形体、基板にSiウ
ェハーを使用し、マイクロ波で励起すると析出したダイ
ヤモンド膜にSi、 B、 Nなどが混入し、そのため
本来絶縁物であるダイヤモンド膜の電気抵抗が下ること
がある。
The reaction vessel etc. are also heated and excited, and elements and compounds evaporate from there, which precipitate on the substrate and deteriorate the purity of the diamond film8. When excited by , Si, B, N, etc. are mixed into the deposited diamond film, which may lower the electrical resistance of the diamond film, which is originally an insulator.

(ハ)発明が解決しようとする問題点 本発明はCVDダイヤモンド合成において、従来問題で
あった炭化水素の濃度を上げてダイヤモンドの析出速度
を早め、かつ原子状水素の作用効率を高め、さらにマイ
クロ波、高周波等による不純物の増加を回避して高純度
のダイヤモンドを得ることにある。
(c) Problems to be Solved by the Invention The present invention solves the conventional problems in CVD diamond synthesis by increasing the concentration of hydrocarbons, accelerating the diamond precipitation rate, increasing the efficiency of atomic hydrogen, and further The objective is to obtain high-purity diamonds by avoiding the increase in impurities caused by waves, high frequencies, etc.

(ニ)問題点を解決するための手段 水素ガスの励起は炭化水素と切離して行なうことを一つ
の特徴とする。これにより炭化水素とは無関係に水素ガ
スの励起を制御することができ、原子状水素の濃度を上
げることができる。
(d) Means for solving the problem One of the features is that hydrogen gas is excited separately from hydrocarbons. Thereby, the excitation of hydrogen gas can be controlled independently of hydrocarbons, and the concentration of atomic hydrogen can be increased.

原子状とした水素はその分子化を防ぐためできるだけ早
く基板に接触させ、基板上の析出黒鉛と反応させる。
In order to prevent hydrogen from becoming molecules, the atomic hydrogen is brought into contact with the substrate as soon as possible, and reacts with the graphite precipitated on the substrate.

水素ガスの励起は他の元素や化合物が蒸発しないような
装置で行ない、析出ダイヤモンドを高純度のものとする
。また炭化水素の基板上での熱分解については、水素ガ
スの励起とは無関係にダイヤモンドの析出量が最も多い
、温度、圧力に任意に設定できる。
Excitation of hydrogen gas is carried out in a device that does not evaporate other elements or compounds, thereby making the precipitated diamond highly pure. Further, regarding the thermal decomposition of hydrocarbons on the substrate, the temperature and pressure can be arbitrarily set so that the amount of diamond deposited is the largest, regardless of the excitation of hydrogen gas.

本発明はこれらの一連の工程によりダイヤモンドの析出
を早めると共に高純度のダイヤモンドを考に本発明を具
体的に説明する。
The present invention speeds up the precipitation of diamond through these series of steps, and the present invention will be specifically explained by considering high-purity diamond.

第1図はこの装置の概略の垂直断面図であり、第2図は
その中の加熱部の別の実施態様を示す断面図である。
FIG. 1 is a schematic vertical sectional view of the device, and FIG. 2 is a sectional view showing an alternative embodiment of the heating section therein.

図で1はステンレスケースで上下及び側面に気密に取付
けられて円筒状の反応容器が形成される。容器内には基
板2がホルダー3上に設置されている。基板及びホルダ
ーは回転軸に支持され、回転できるようになっている。
In the figure, 1 is a stainless steel case which is airtightly attached to the top, bottom and sides to form a cylindrical reaction vessel. A substrate 2 is placed on a holder 3 inside the container. The substrate and holder are supported by a rotating shaft and are rotatable.

5は加熱器で基板ブとの距離によっても調節される。5 is a heater which is also adjusted depending on the distance from the substrate.

水素ガスの加熱は電気抵抗により加熱体となる例えばタ
ングステンパイプ6によって行なう、このパイプには細
孔7が基板2に向けて設けられている。8はバイブロの
背面及び側面を覆うモリブデン等の遮熱板でバイブロと
は電気的に絶縁されている。遮熱板は、基板の温度が上
り過ぎるときはバイブロの前面(基板側)にも細孔を開
けて設ければよい、タングステンパイプ6は銅ターミナ
ル9を通して水冷鋼管10に接続され、これから電源1
1に接続する。
The hydrogen gas is heated by means of an electrical resistance heating element, for example, a tungsten pipe 6. This pipe is provided with a pore 7 facing toward the substrate 2. 8 is a heat shield plate made of molybdenum or the like that covers the back and side surfaces of the vibro and is electrically insulated from the vibro. When the temperature of the board becomes too high, a heat shield plate can be provided by opening a hole in the front side of the vibro (on the board side).The tungsten pipe 6 is connected to the water-cooled steel pipe 10 through the copper terminal 9, and from there the power supply 1
Connect to 1.

一方の銅ターミナルにはH2ガス供給パイプ12が接続
される。この図では他方のターミナルの所はH2ガスは
封止されている。
An H2 gas supply pipe 12 is connected to one copper terminal. In this figure, the other terminal is sealed from H2 gas.

ケースには炭化水素、例えばCHaガスの供給口13及
び装置内の排気、減圧のための排気口14が取付けられ
、ポンプ(図示してない)に接続される。
A supply port 13 for hydrocarbon gas, for example CHa gas, and an exhaust port 14 for exhausting and reducing pressure inside the device are attached to the case, and are connected to a pump (not shown).

第2図はH2ガスを加熱励起する加熱部の別の態様を示
すものでタングステンパイプ6の代りにタングステンフ
ィラメント6′が使用され、H2ガスは遮熱板8の背後
から供給パイプ12′より送られる。遮熱板が基板の温
度を調整するために細孔を開けて前面にも設けることが
できる等は上記と同様である。
FIG. 2 shows another embodiment of the heating section for heating and exciting H2 gas, in which a tungsten filament 6' is used instead of the tungsten pipe 6, and the H2 gas is sent from behind the heat shield plate 8 through the supply pipe 12'. It will be done. Similar to the above, the heat shield plate can also be provided with pores on the front surface in order to adjust the temperature of the substrate.

(ホ)作用 水素ガスの加熱はタングステンパイプ又はフィラメント
の電源を調整して行なう、加熱温度はH2ガスから原子
状水素が生ずる温度例えば2000〜2700℃程度で
ある。ここで生じた原子状水素はその対向位置に設けら
れた基板に向けて流れ基板に衝突する。こ、のため原子
状水素が発生してから基板に衝突するまでの時間を短時
間とすることができ、従ってその作用が効率的である。
(e) The heating of the working hydrogen gas is carried out by adjusting the power source of the tungsten pipe or filament. The heating temperature is a temperature at which atomic hydrogen is generated from the H2 gas, for example, about 2000 to 2700°C. The atomic hydrogen generated here flows toward the substrate provided at the opposite position and collides with the substrate. For this reason, the time from when atomic hydrogen is generated until it collides with the substrate can be shortened, and its action is therefore efficient.

この意味で第1図のようにバイブロの細孔7から噴出さ
せる構造のものが望ましい、この加熱部はタングステン
、モリブデン等を使用すれば蒸発成分がないのでダイヤ
モンドへの不純物混入が避けられる。
In this sense, it is desirable to have a structure in which the heat is ejected from the pores 7 of the vibro, as shown in FIG. 1. If tungsten, molybdenum, or the like is used in this heating part, there will be no evaporated components, so that contamination of the diamond with impurities can be avoided.

炭化水素ガスの供給は図のケースの側面から行なってい
るが、これは上面あるいは下面又は、中央のどちらでも
よく、排気口と反対側で、基板上に流れ易いようにすれ
ばよい。この炭化水素ガスには1部水素ガス及び/又は
不活性ガスを混合することもできる。
Although the hydrocarbon gas is supplied from the side of the case in the figure, it may be supplied from the top, bottom, or center, as long as it is on the side opposite to the exhaust port so that it can easily flow onto the substrate. A portion of hydrogen gas and/or inert gas may be mixed with this hydrocarbon gas.

水素ガスに対する炭化水素ガスの使用割合は、通常混合
ガスを加熱する場合では前者100容量部に対し、後者
1容量部程度であるが1本発明では後者を10容量部程
度まで高めることができる。
The ratio of hydrocarbon gas to hydrogen gas is usually 100 parts by volume of the former and about 1 part by volume of the latter when heating a mixed gas, but in the present invention, the latter can be increased to about 10 parts by volume.

基板は500〜1000℃程度に加熱し、そしてダイヤ
モンドを均一に析出させるためには基板を回転すること
が望ましい。
It is desirable to heat the substrate to about 500 to 1000° C. and rotate the substrate in order to uniformly deposit diamond.

一般にCVDによるダイヤモンドの析出は気圧10〜1
00 Torr程度で行なわれるが1本発明においても
ほぼこの範囲内が適する。
Generally, the deposition of diamond by CVD is performed at an atmospheric pressure of 10 to 1
00 Torr, and in the present invention, it is suitable to be approximately within this range.

(へ)実施例 直径400■、高さ300mmのディメンジョンをもつ
ステンレス製反応容器を用い、水素ガスの加熱源として
タングステンパイプ(外径的2mm、肉厚0.3mm、
直線部の長さ20cm)で下面に50個の細孔(直径約
0.1mm)を開けたものを使用した。
(f) Example A stainless steel reaction vessel with dimensions of 400 mm in diameter and 300 mm in height was used as a heating source for hydrogen gas using a tungsten pipe (2 mm in outer diameter, 0.3 mm in wall thickness,
The length of the straight part was 20 cm) and the bottom surface had 50 pores (about 0.1 mm in diameter).

基板としては鏡面研摩したシリコンウェハー(直径10
cm)をダイヤモンド微粉で表面に微小な傷をつけ使用
した。基板はアルミナ焼結体のホルダーに載せ回転させ
た。基板とタングステンパイプとの間隔は約4CI+で
ある。
The substrate is a mirror-polished silicon wafer (diameter 10
cm) was used by making small scratches on the surface with fine diamond powder. The substrate was placed on a holder made of alumina sintered body and rotated. The spacing between the substrate and the tungsten pipe is approximately 4 CI+.

運転条件 基板の温度 800℃、   回転数 5rphタング
ステンパイプ に供給した水素  300cc/分 CH4に混合した水素 200cc/分CH420cc
/分 タングステンパイプの温度  2300℃装置内圧力 
        50 Torr上の条件で5時間運転
したところウェハー表面に直径が1〜2ル膳で自形のあ
る結晶性のよいダイヤモンド粒子の集合体より成る膜(
厚さlOgm)が得られた。X線及びラマンスペクトル
で調べた結果ダイヤモンドのみであることが判明した。
Operating conditions: Temperature of the board: 800℃, rotation speed: 5rphHydrogen supplied to the tungsten pipe: 300cc/min Hydrogen mixed with CH4: 200cc/min CH420cc
/min Tungsten pipe temperature 2300℃ Pressure inside the device
After operating for 5 hours at 50 Torr, a film consisting of an aggregate of well-crystalline diamond particles with a diameter of 1 to 2 square meters and an euhedral shape was formed on the wafer surface.
A thickness of lOgm) was obtained. As a result of examining it with X-ray and Raman spectroscopy, it was found that it was only diamond.

そのヌープ硬度は7QOOKg/ mtrr′であった
。析出ダイヤモンド量の基板内分布は膜厚の分布で】O
±IJL層であった。
Its Knoop hardness was 7QOOKg/mtrr'. The distribution of the amount of precipitated diamond within the substrate is determined by the distribution of film thickness]O
±IJL layer.

実施例2 CH4ガスの供給量を50cc/分と大きくした他は実
施例1と同じ条件で実験を行なった結果、ダイヤモンド
の膜厚は1SIL層と厚くなったが、ダイヤモンド粒子
の結晶性はやや自形が崩れたものとなり、X線回着で黒
鉛に相当するピークがわずかに見られ、ヌープ硬度も8
500Kg/ m m’とやや下った。
Example 2 An experiment was conducted under the same conditions as Example 1 except that the CH4 gas supply rate was increased to 50 cc/min. As a result, the diamond film thickness was increased to 1 SIL layer, but the crystallinity of the diamond particles was slightly lower. The shape has collapsed, a peak corresponding to graphite is slightly seen in X-ray diffraction, and the Knoop hardness is 8.
It was slightly lower at 500Kg/mm'.

実施例3 実施例2の結晶性をよくするため、水素の加熱源の温度
を2500℃に上げ、原子状水素の発生量を多くした他
は同様に行なった結果、実施例1と同じ特性の膜が得ら
れ、その厚さは14Bmであった。
Example 3 In order to improve the crystallinity of Example 2, the temperature of the hydrogen heating source was raised to 2500°C and the amount of atomic hydrogen generated was increased. A membrane was obtained, the thickness of which was 14 Bm.

(ト)効果 本発明によれば原子状水素と黒鉛との反応が早いので炭
化水素の濃度を上げることができ、これに伴なってダイ
ヤモンドの析出速度も早い、また水素を励起する高温帯
域からの蒸発成分を殆んどなくすることができるので、
ダイヤモンドの純度を高めることができる。
(g) Effects According to the present invention, since the reaction between atomic hydrogen and graphite is fast, the concentration of hydrocarbons can be increased, and the speed of diamond precipitation is also fast, and the high temperature zone that excites hydrogen can be increased. It is possible to almost eliminate the evaporation components of
It can improve the purity of diamonds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る装置の垂直方向の断面図、第2図
は第1図の加熱源の別の態様を示す断面図である。 2・・・・・・基板、      3・・・・・・ホル
ダー、6・・・・・・タングステンパイプ 6′・・・・・・タングステンフィラメント、7・・・
・・・細孔、      8・・・・・・遮熱板、12
・・・・・・H2供給パイプ。
FIG. 1 is a vertical sectional view of the device according to the invention, and FIG. 2 is a sectional view of an alternative embodiment of the heating source of FIG. 2...Substrate, 3...Holder, 6...Tungsten pipe 6'...Tungsten filament, 7...
... Pore, 8 ... Heat shield plate, 12
...H2 supply pipe.

Claims (2)

【特許請求の範囲】[Claims] (1)減圧下で水素ガスを高温域に導入して原子状に解
離させ、その高温域に対向してダイヤモンド析出基板を
設置し、該基板に向けて前記水素原子を流すと共に炭化
水素ガスを加熱された基板上に導入することを特徴とす
るダイヤモンド気相合成法。
(1) Hydrogen gas is introduced into a high temperature region under reduced pressure to dissociate into atoms, a diamond deposition substrate is placed opposite the high temperature region, and the hydrogen atoms are flowed toward the substrate while hydrocarbon gas is A diamond vapor phase synthesis method characterized by introducing diamond onto a heated substrate.
(2)炭化水素導入口及び排気口を備えた耐熱性ケース
内にダイヤモンド析出基板を設け、該基板に対向して水
素ガスを導入可能に構成した電気抵抗加熱装置を設け、
該加熱装置は水素ガスを解離して水素原子が生ずるに十
分な加熱体を備え、かつ水素原子が前記基板に向けて流
れるように構成されてなるダイヤモンド気相合成装置。
(2) A diamond deposition substrate is provided in a heat-resistant case equipped with a hydrocarbon inlet and an exhaust port, and an electric resistance heating device configured to allow introduction of hydrogen gas is provided opposite to the substrate;
A diamond vapor phase synthesis apparatus, wherein the heating apparatus includes a heating element sufficient to dissociate hydrogen gas to generate hydrogen atoms, and is configured so that the hydrogen atoms flow toward the substrate.
JP60000759A 1985-01-09 1985-01-09 Synthesizing method for diamond in gas phase and its apparatus Pending JPS61163195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60000759A JPS61163195A (en) 1985-01-09 1985-01-09 Synthesizing method for diamond in gas phase and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60000759A JPS61163195A (en) 1985-01-09 1985-01-09 Synthesizing method for diamond in gas phase and its apparatus

Publications (1)

Publication Number Publication Date
JPS61163195A true JPS61163195A (en) 1986-07-23

Family

ID=11482618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60000759A Pending JPS61163195A (en) 1985-01-09 1985-01-09 Synthesizing method for diamond in gas phase and its apparatus

Country Status (1)

Country Link
JP (1) JPS61163195A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171993A (en) * 1986-01-23 1987-07-28 Toshiba Corp Production of diamond semiconductor
JPH01261298A (en) * 1988-04-11 1989-10-18 Idemitsu Petrochem Co Ltd Synthesis of diamond
US4938940A (en) * 1988-01-14 1990-07-03 Yoichi Hirose Vapor-phase method for synthesis of diamond
US4940015A (en) * 1988-07-30 1990-07-10 Kabushiki Kaisha Kobe Seiko Sho Plasma reactor for diamond synthesis
JPH03237092A (en) * 1990-02-15 1991-10-22 Yoichi Hirose Method for synthesizing diamond or hard carbon film and method for holding organic compound
JPH04280894A (en) * 1991-03-08 1992-10-06 Nec Corp Production of diamond
JPH05890A (en) * 1991-06-21 1993-01-08 Nec Corp Method for synthesizing thin diamond film and device therefor
WO1995006143A1 (en) * 1993-08-25 1995-03-02 Physikalisches Büro Steinmüller Gmbh Device for depositing diamond-like carbon films on a substrate
WO2018064694A1 (en) * 2016-10-04 2018-04-12 Carboncompetence Gmbh Device and method for applying a carbon layer
JP2020512573A (en) * 2017-03-08 2020-04-23 エーエスエムエル ネザーランズ ビー.ブイ. EUV cleaning system and method for extreme ultraviolet light source

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171993A (en) * 1986-01-23 1987-07-28 Toshiba Corp Production of diamond semiconductor
US4938940A (en) * 1988-01-14 1990-07-03 Yoichi Hirose Vapor-phase method for synthesis of diamond
JPH0524114B2 (en) * 1988-04-11 1993-04-06 Idemitsu Petrochemical Co
JPH01261298A (en) * 1988-04-11 1989-10-18 Idemitsu Petrochem Co Ltd Synthesis of diamond
US4940015A (en) * 1988-07-30 1990-07-10 Kabushiki Kaisha Kobe Seiko Sho Plasma reactor for diamond synthesis
JPH03237092A (en) * 1990-02-15 1991-10-22 Yoichi Hirose Method for synthesizing diamond or hard carbon film and method for holding organic compound
JPH04280894A (en) * 1991-03-08 1992-10-06 Nec Corp Production of diamond
JPH05890A (en) * 1991-06-21 1993-01-08 Nec Corp Method for synthesizing thin diamond film and device therefor
WO1995006143A1 (en) * 1993-08-25 1995-03-02 Physikalisches Büro Steinmüller Gmbh Device for depositing diamond-like carbon films on a substrate
WO2018064694A1 (en) * 2016-10-04 2018-04-12 Carboncompetence Gmbh Device and method for applying a carbon layer
CN109804110A (en) * 2016-10-04 2019-05-24 碳能力有限责任公司 For laying the device and method of carbon-coating
US20200270765A1 (en) * 2016-10-04 2020-08-27 Carboncompetence Gmbh Device And Method For Applying A Carbon Layer
CN109804110B (en) * 2016-10-04 2021-03-30 碳能力有限责任公司 Apparatus and method for applying a carbon layer
US11746415B2 (en) 2016-10-04 2023-09-05 Carboncompetence Gmbh Method for applying a carbon layer to a substrate comprising introducing a process gas into a deposition chamber via a gas inlet and gas activation element
JP2020512573A (en) * 2017-03-08 2020-04-23 エーエスエムエル ネザーランズ ビー.ブイ. EUV cleaning system and method for extreme ultraviolet light source

Similar Documents

Publication Publication Date Title
KR910006784B1 (en) Method and apparatus for vapor deposition of diamond
US5068871A (en) Process for synthesizing diamond and apparatus therefor
KR910001367B1 (en) Gaseous phase synthesized diamond film and method for synthesizing same
JPH0346436B2 (en)
JPS5927753B2 (en) Diamond synthesis method
JPS61163195A (en) Synthesizing method for diamond in gas phase and its apparatus
JPH059735A (en) Vapor synthesis of diamond
RU2032765C1 (en) Method of diamond coating application from vapor phase and a device for it realization
JPS6054995A (en) Synthesis of diamond
JPS62158195A (en) Synthesizing method of diamond
JP2501589B2 (en) Vapor-phase synthetic diamond and its synthesis method
JP2766668B2 (en) Synthesis method without diamond powder
JPH0667797B2 (en) Diamond synthesis method
JPH0481552B2 (en)
JP2803396B2 (en) Diamond thin film synthesis equipment
JP2773442B2 (en) Diamond production method
JP3024712B2 (en) Al-on-based composite material and method for synthesizing the same
JPS6261109B2 (en)
JPH0346438B2 (en)
JP2007331981A (en) Method for forming cubic boron nitride and device therefor
JPH08225394A (en) Method for carrying out vapor phase synthesis of diamond
JP3980138B2 (en) Diamond manufacturing method
JP3093836B2 (en) Diamond film fabrication method
JPS6241704A (en) Synthesis of aluminum nitride
JPH064915B2 (en) Method for synthesizing cubic boron nitride