JPS59136074A - Switching regulator - Google Patents

Switching regulator

Info

Publication number
JPS59136074A
JPS59136074A JP1020783A JP1020783A JPS59136074A JP S59136074 A JPS59136074 A JP S59136074A JP 1020783 A JP1020783 A JP 1020783A JP 1020783 A JP1020783 A JP 1020783A JP S59136074 A JPS59136074 A JP S59136074A
Authority
JP
Japan
Prior art keywords
inductance
voltage
switching regulator
current
secondary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1020783A
Other languages
Japanese (ja)
Inventor
Shigeru Takeda
茂 武田
Mitsuhiro Hasegawa
光洋 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1020783A priority Critical patent/JPS59136074A/en
Publication of JPS59136074A publication Critical patent/JPS59136074A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To improve the constant voltage accuracy by connecting an inductance having simple attenuating characteristic of an inductance to a DC current of high frequency between the secondary winding of a transformer and a rectifier. CONSTITUTION:An inductance element 11 having a simple attenuating characteristic of an inductance to a DC current of high frequency in a DC magnetomotive force of 1.0AT or higher is connected between the secondary winding 1b of a transformer and a rectifier 9 in a self-excited switching regulator having a transistor 2, a transformr 1 and a pulse width controller 3. Accordingly, the voltage increase of the output voltage V0 at the low current time can be cancelled by the increase of the inductance of the element 11 to suppress the abrupt rise of the voltage and to shape the switching waveform, thereby remarkably improving the rate of variation of the output voltage and improving the constant voltage accuracy.

Description

【発明の詳細な説明】 本発明は、スイッチング・レギュレータの定・電圧制御
方式の1つとしての磁束制御方式の特性改良に関ηるも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the characteristics of a magnetic flux control method as one of constant voltage control methods for a switching regulator.

スイッチング・レギュレータには種々の定電圧方式かあ
るが、その中でも第1図に示すように出力電圧EO2を
一定にするために主スィッチング・トランジスタ2のO
N時間のパルス巾を制御するいわゆるP WM (P 
ulsa  W 1dth  M cdula−tia
nン制御方式が最も一般的である。第1図において、E
O+は入力の直流電圧であり、普通は制御されていない
。1は主トランスであり、1a。
There are various constant voltage methods for switching regulators, and among them, as shown in Figure 1, in order to keep the output voltage EO2 constant, the O of the main switching transistor 2 is
The so-called PWM (P
ulsa W 1dth M cdula-tia
The n control method is the most common. In Figure 1, E
O+ is the input DC voltage and is normally uncontrolled. 1 is the main transformer, 1a.

1bはぞれぞれ主トランス1の1次、2次の巻線を表わ
す、、9は整流平滑回路の全体を示し、この中で5,6
は整流素子、7はチョークコイル、8はコンデンサーで
ある。3は出力電圧EO2の変動に応じて主スィッチの
パルス巾を制御する回路であり、4は出力電圧EO2を
検出し1次側にフィルドパックする際に生ずる1次、2
次の電気的絶縁をはかるための絶縁1−ランスもしくは
光結合素子を含む回路である。この方式は制御回路3が
IC化されているため、比較的低価格でありかつ設計が
簡便であるが、スイッチング・レギュレータの保護機能
設計、安全性設計を加味した場合、1次、2次の絶縁耐
力を余り高くとれず、このこどか特に高耐圧の仕様に適
合したスイッチング・レギュレータを実現しよ°うとす
る時には常に問題どなる。これらの問題を避けるために
第2図に示づような磁束制御方式の回路か考えられてい
る。
1b represents the primary and secondary windings of the main transformer 1, and 9 represents the entire rectifying and smoothing circuit, in which 5 and 6
is a rectifier, 7 is a choke coil, and 8 is a capacitor. 3 is a circuit that controls the pulse width of the main switch according to fluctuations in the output voltage EO2, and 4 is a circuit that controls the primary and secondary pulse widths that occur when detecting the output voltage EO2 and filling it in the primary side.
This circuit includes an insulation lance or an optical coupling element for achieving the following electrical insulation. In this method, the control circuit 3 is integrated into an IC, so it is relatively inexpensive and easy to design. However, when considering the protection function design and safety design of the switching regulator, the primary and secondary Problems always arise when trying to realize a switching regulator that does not have a very high dielectric strength and meets especially high voltage specifications. In order to avoid these problems, a magnetic flux control type circuit as shown in FIG. 2 has been considered.

この方式は第1図と同じようにP W M制御を行なう
のであるが、出力電圧EO2ではなく、主トランス1の
磁束変化(至)を一定にするように考えられている。実
際には、第2図において、制御巻線1Cに接続された整
流回路10の出力電圧が一定になるように制御される。
This method performs PWM control in the same way as in FIG. 1, but it is designed to keep the change in magnetic flux of the main transformer 1 constant instead of the output voltage EO2. Actually, in FIG. 2, the output voltage of the rectifier circuit 10 connected to the control winding 1C is controlled to be constant.

R1は負荷抵抗である。R1 is a load resistance.

第1図と第2図を比較すると明らかなように、第2図で
は主トランスで1次と2次がはっきりと絶縁されている
ので、この耐圧さえ考慮すれば全体の絶縁耐力を箸しく
向上させることかできる。しかし、この方式の定電圧制
御の程度は第3図に示すように余り好ましいものではな
い。図中二は第1図の回路の1図中イは第2図の回路の
出力直流電流IOと出力直流電圧■0の関係をそれぞれ
示している。前者二の場合は、直流電流10が零に近い
領域でわずかに定電圧EOよりも上昇するだけであるが
、後壱イの場合は、直流電流IOが小さくなるにつれて
出力電圧VOが急激に大きくなるという欠点がある。こ
の傾向は、主スィッチング・[−ランジスタを流れる電
流波形とも関連があり、低減することはそうたやすいこ
とではない。
As is clear from comparing Figures 1 and 2, in Figure 2 the primary and secondary are clearly isolated in the main transformer, so if this withstand voltage is taken into account, the overall dielectric strength will be significantly improved. I can do it. However, the degree of constant voltage control of this method is not very desirable as shown in FIG. 2 in the figure shows the relationship between the output DC current IO and the output DC voltage 0 of the circuit in FIG. 1 and 1 in the circuit shown in FIG. In the former case 2, the DC current 10 only slightly rises above the constant voltage EO in a region close to zero, but in the latter case, the output voltage VO suddenly increases as the DC current IO becomes smaller. It has the disadvantage of becoming. This tendency is also related to the current waveform flowing through the main switching transistor, and it is not easy to reduce it.

本発明は上記従来技術の欠点を改良し、定電圧精度の著
しく改良された高耐圧の磁束制御方式のスイッチング・
レギュレータを提供することを目的としている。
The present invention improves the drawbacks of the above-mentioned prior art, and provides a high-voltage magnetic flux control switching system with significantly improved constant voltage accuracy.
The purpose is to provide a regulator.

上記目的を達成するために、本発明のスイッチング・レ
ギュレータは[−ランスの一次巻線に直列に接続され、
周期的に断続するスイッチング素子。
In order to achieve the above object, the switching regulator of the present invention is connected in series with the primary winding of the [-lance,
A switching element that periodically switches on and off.

前記[・ランスに別に巻かれた制御巻線、前記制御巻線
の出力電圧を一定にするために前記スイッチング素子の
0N−OFF時間を制御する制御回路。
A control winding separately wound around the lance, and a control circuit that controls the ON-OFF time of the switching element in order to keep the output voltage of the control winding constant.

前記1−ランスの二次巻線から整流回路を介して直流電
力をとり出すスイッチング・レギュレータにおいて、前
記二次巻線の少なくとも一方の端子と整流回路との間に
、1.QA T以上の直流起磁力で高周波のインダクタ
ンスが直流電流に対して単調な減衰特性を有するインダ
クタンス素子を直列に接続したことを主たる特徴として
いる。
In the switching regulator that extracts DC power from the secondary winding of the 1-lance via the rectifier circuit, 1. The main feature is that an inductance element having a DC magnetomotive force greater than QAT and a high frequency inductance having a monotonous attenuation characteristic with respect to DC current is connected in series.

以下、本発明を実施例に基づき詳細に説明する。Hereinafter, the present invention will be explained in detail based on examples.

第4図は本発明の1つの実施例を示す回路図で−ある。FIG. 4 is a circuit diagram showing one embodiment of the present invention.

二次巻線1bの一方の端子と整流素子5の間にインダク
タンス素子11が直列に接続されている。このインダク
タンス素子11は第5図に示すようなインダクタンス[
の直流電流重畳特性を有する。すなわち、直流電流1d
cが小さい時にはLは非常に大きいが、ldcが大きく
なるにつれて急激にLが小さくなる。一方、極端に直流
電流Idcが小さい領域では、コアの材料、形状によっ
て第5図ホのように凸状の特性を有するものもあるが、
本発明においてこの差は問題ではない。本発明で用いら
れるインダクタンス素子11としては第5図のよう(こ
起磁力1.QA丁以上でインダクタンスLが単調に減少
する特性が重要である。ここでAT(アンペア・ターン
)というのは直流電流ldcとコアの巻数Nの槓である
。Nが決まればIkに比例づ−る量である。
An inductance element 11 is connected in series between one terminal of the secondary winding 1b and the rectifying element 5. This inductance element 11 has an inductance [
It has DC current superposition characteristics. That is, DC current 1d
When c is small, L is very large, but as ldc becomes large, L rapidly becomes small. On the other hand, in a region where the DC current Idc is extremely small, depending on the material and shape of the core, some cores have convex characteristics as shown in Fig. 5(e).
This difference is not a problem in the present invention. It is important for the inductance element 11 used in the present invention to have the characteristic that the inductance L decreases monotonically when the magnetic force is 1.QA or more, as shown in FIG. It is a function of the current Idc and the number of turns of the core N. Once N is determined, it is a quantity proportional to Ik.

第5図のホ、への特性を有するインダクタンス素子11
を本発明の第4図の回路に適用した。絹6図がこの場合
の出力特性を示す。図中イ(ま従来技術の特性9口は第
5図へのインダクタンス素子を用いた場合の特性、ハは
第5図ホのインダクタンス素子を用いた場合の特性をそ
れぞれ示して(する。この図から明らかなように、従来
技術イ(こ比較して本発明のハ2口は出力電流に対する
出ノフ電圧の変動率が著しく改良されている。インダク
タンスLの大きいホの方がこの電圧変動率を低減する効
果が大きい。定量的に見れば、+30%以上の低電流時
の電圧の急激な立上りが本発明の口、]\の場合には+
15%、+9%まで抑えることがて゛きた。
Inductance element 11 having characteristics to E and E in FIG.
was applied to the circuit of FIG. 4 of the present invention. Figure 6 shows the output characteristics in this case. Characteristics of the prior art (9) in the figure show the characteristics when the inductance element shown in Fig. 5 is used, and C shows the characteristics when the inductance element shown in Fig. 5 (E) is used. As is clear from the above, the variation rate of the output voltage with respect to the output current is significantly improved in the conventional technology A (compared to the C2 of the present invention). The reduction effect is large. From a quantitative point of view, the sharp rise in voltage at a low current of +30% or more is the essence of the present invention.
We have been able to suppress it to 15%, +9%.

このような効果を実現できたのは、第6図イのような特
性が第5図に示すインダクタンス素子で補正されたため
である。丁度、低電流時のVOの 。
This effect was achieved because the characteristics shown in FIG. 6A were corrected by the inductance element shown in FIG. 5. Just like VO at low current.

電圧増加分をインダクタンス素子のインダクタンス増加
分で打消していることになるからである。
This is because the increase in voltage is canceled out by the increase in inductance of the inductance element.

第7図は本発明の他の実施例を示す回路図てある。これ
は、インダクタンス素子11は分割され11.11−の
2個として二次巻線1bの両端に直列に接続された場合
である。本実施例の効果は第4図と(Jどんど同じであ
った。第4図、第7図は)Aロートコンバータのオン−
オン方式の場合であるが、容易類推できるようにフライ
バック方式(こd−3いても効果は全く同じように実現
でさた。
FIG. 7 is a circuit diagram showing another embodiment of the present invention. This is a case where the inductance element 11 is divided into two parts 11 and 11-, which are connected in series to both ends of the secondary winding 1b. The effect of this embodiment was the same as that shown in Fig. 4 (Fig. 4 and Fig. 7).
This is the case with the on-type system, but as you can easily infer, the same effect could be achieved even with the flyback system (d-3).

また、これらは主スィッチング・[・ランジスタを−6
のみ用いI、;、場合であるが、第8図のようにプッシ
ュプル等のようにトランジスタ2a、2bの2石の場合
でも本発明の方式は実現できる。すなわち、二次巻線l
b、Ib−と両波整流回路の間にインダクタンス素子1
1.11−の2個がそれぞれ接続される。この場合も第
4図と同じような効果を実現できた。また、二次巻線の
中点と整流回路との間にインダクタンス素子11″を接
続することも可能である。第8図では一次側はプッシュ
プルの2石方式であったが、ぞの使ハーフブリッジ方式
、フルブリッジ方式等の釜石方式でも状況は同じであり
本発明の効果を実現できる。
Also, these are the main switching transistors -6
However, the method of the present invention can also be implemented in the case of two transistors, 2a and 2b, such as a push-pull transistor as shown in FIG. That is, the secondary winding l
b, Ib- and the inductance element 1 between the two-wave rectifier circuit.
1.11- are connected respectively. In this case as well, an effect similar to that shown in FIG. 4 could be achieved. It is also possible to connect an inductance element 11'' between the middle point of the secondary winding and the rectifier circuit. In Fig. 8, the primary side is a push-pull two-stone system, but for this purpose The situation is the same in Kamaishi systems such as half-bridge systems and full-bridge systems, and the effects of the present invention can be achieved.

以上実施例を用いて詳細に説明したように、本発明の回
路方式を用いれば一次二次間の高耐圧を維持しつつ、よ
り安定な定電圧特性を有ターる磁束制御方式のスイッチ
ング・レギュレータを実現できる。
As explained in detail using the embodiments above, if the circuit system of the present invention is used, a magnetic flux control type switching regulator that maintains a high withstand voltage between the primary and secondary components and has more stable constant voltage characteristics. can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来技術の回路図、第3図は従来技術
のスイッチング・レギュレータの特性図、第4図、第7
図、第8図は本発明の実施例のイれぞれの回路図、第5
図は本発明に用いられたインダクタンス素子の特性図、
第6図は本発明の効果を表わすスイッチング・レギュレ
ータの特性図である。 1:主1〜ランス 2:主スィッチング・1〜ランジス
タ 9:整流回路 11:インダクタンス素子羊  l
  図 羊  2 肥 羊  4− 匣 羊 ろ 図
Figures 1 and 2 are circuit diagrams of the prior art, Figure 3 is a characteristic diagram of a switching regulator of the prior art, and Figures 4 and 7.
8 are respective circuit diagrams of the embodiments of the present invention, and FIG.
The figure is a characteristic diagram of the inductance element used in the present invention.
FIG. 6 is a characteristic diagram of a switching regulator showing the effects of the present invention. 1: Main 1~Lance 2: Main Switching/1~Lance 9: Rectifier circuit 11: Inductance element l
Figure Sheep 2 Fertilizing Sheep 4- Box Sheep Ro Diagram

Claims (1)

【特許請求の範囲】[Claims] 1−ランスの一次巻線に直列に接続され、周期的に断続
りるスイッチング素子、前記[−ランスに別に呑かれた
制御巻線、前記制御巻線の出力電圧を一定にづるために
前記スイッチング素子の0N70 F F 115間を
制御する制御回路、前記[・ランスの二次巻線から整流
回路を介して直流電力をとり出Jスイッチング・レギュ
レータにおいて、前記二次巻線の少なくとも一方の端子
を整流回路との間に、1.0A T以上の直流起磁力で
高周波のインダクタンスが直流電流に対して単調な減衰
特性を有りるインタフタンス素子を直列に接続したこと
を特徴とりるスイッチング・レギュレータ。
1 - a switching element connected in series with the primary winding of the lance and periodically intermittent; - a control winding separately drawn by the lance; A control circuit that controls between 0N70 F F 115 of the element, and a switching regulator that extracts DC power from the secondary winding of the lance via a rectifier circuit, and connects at least one terminal of the secondary winding to the J switching regulator. A switching regulator characterized in that an interface element having a DC magnetomotive force of 1.0A T or more and a high frequency inductance having a monotonous attenuation characteristic with respect to DC current is connected in series between a rectifier circuit.
JP1020783A 1983-01-25 1983-01-25 Switching regulator Pending JPS59136074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1020783A JPS59136074A (en) 1983-01-25 1983-01-25 Switching regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1020783A JPS59136074A (en) 1983-01-25 1983-01-25 Switching regulator

Publications (1)

Publication Number Publication Date
JPS59136074A true JPS59136074A (en) 1984-08-04

Family

ID=11743820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1020783A Pending JPS59136074A (en) 1983-01-25 1983-01-25 Switching regulator

Country Status (1)

Country Link
JP (1) JPS59136074A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178557A (en) * 1989-12-04 1991-08-02 Hitachi Ltd Multi-output switching power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178557A (en) * 1989-12-04 1991-08-02 Hitachi Ltd Multi-output switching power supply

Similar Documents

Publication Publication Date Title
US5481238A (en) Compound inductors for use in switching regulators
US6356465B2 (en) Switching power supply apparatus with active clamp circuit
US6191965B1 (en) Switching power supply
US6515875B2 (en) Switching power supply circuit
US20020089863A1 (en) Switching power supply circuit
JPS59136074A (en) Switching regulator
JPS6259550B2 (en)
JPH07112349B2 (en) Full-wave output type word converter
JPH08331846A (en) Power supply
JPS59169364A (en) Self-excited switching regulator
JPS631025B2 (en)
JPS59139866A (en) Self-excited multioutput switching regulator
JPS59169361A (en) Switching regulator
JPS59169363A (en) Self-excited switching regulator
JPS59169362A (en) Self-excited switching regulator
JPS59162770A (en) Switching regulator
JPS59139861A (en) Multioutput switching regulator
JPS59136076A (en) Self-excited switching regulator
JPS59136073A (en) Self-excited switching regulator
JPS61185069A (en) Dc/dc converter
JPS59139863A (en) Multioutput switching regulator
JPS597204B2 (en) High frequency transformer for high frequency switching power supply
JPH0468863B2 (en)
JPS59129575A (en) Self-excited switching regulator
JPH0412793Y2 (en)