JPS5832037A - Preparation of glass containing additive - Google Patents

Preparation of glass containing additive

Info

Publication number
JPS5832037A
JPS5832037A JP12597681A JP12597681A JPS5832037A JP S5832037 A JPS5832037 A JP S5832037A JP 12597681 A JP12597681 A JP 12597681A JP 12597681 A JP12597681 A JP 12597681A JP S5832037 A JPS5832037 A JP S5832037A
Authority
JP
Japan
Prior art keywords
glass
fine particles
particles
sintering
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12597681A
Other languages
Japanese (ja)
Other versions
JPS6346015B2 (en
Inventor
Yasuji Omori
保治 大森
Gotaro Tanaka
豪太郎 田中
Masao Hoshikawa
星川 政雄
Kunio Fujiwara
藤原 国生
Minoru Watanabe
稔 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12597681A priority Critical patent/JPS5832037A/en
Publication of JPS5832037A publication Critical patent/JPS5832037A/en
Publication of JPS6346015B2 publication Critical patent/JPS6346015B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a glass, containing additives, and having improved light transmitting property, by forming an assembly of fine glass particles having a lower viscosity in the outer surface than in the interior, and sintering the resultant formed material. CONSTITUTION:In preparing a glass containing nitrogen, fine particles 10 of Si2N3 are first prepared, and the outer surface layers 11 are formed on the outer surfaces of the fine particles 10. The resultant coated fine particles 10 are then sintered to prepare quartz glass 12 containing the nitrogen. A low-molecular gas, inert to the glass component e.g. He is used as the sintering atmosphere to diffuse into the glass easily and make the glass 12 transparent without remaining in the glass as bubbles. The sintering temperature is preferably 700- 1,200 deg.C.

Description

【発明の詳細な説明】 本発明は高密度で透光性の秀れた添加物含有ガラスの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing additive-containing glass with high density and excellent light transmission.

一般にガラスの物性2例えば屈折率や透光性などの光学
特性あるいは熱膨張係数などを変えるためガラス成分に
添加物を配合することが行なわれる。ところが微粒子ガ
ラスを焼結することにより熔融ガラス体を造る場合添加
物の種類によっては該添加物をガラス成分中に含有させ
た為に軟化点が上昇し、このためガラス微粒子の焼結が
困難になり熔融した透明ガラス体を得られない場合があ
る。例えば窒素含有石英ガラスについては従前次のよう
なUSP 4203744にみられるような製造方法が
知られている。この方法は、先づ第1図に示すように8
102の微粒子状の石英ガラス1又は多孔質ガラスを造
り、次にこれをNH,含有雰囲気中で処理した後これを
焼結して窒素をドープした石英ガラス3を得る方法であ
る。ところがこの方法では窒素含有量の多い透光性のあ
るガラス体を得ることができなかった。
Generally, additives are added to glass components to change the physical properties of glass, such as optical properties such as refractive index and translucency, or coefficient of thermal expansion. However, when producing a molten glass body by sintering fine glass particles, depending on the type of additive, the softening point may increase due to the inclusion of the additive in the glass component, making it difficult to sinter the glass fine particles. Therefore, it may not be possible to obtain a molten transparent glass body. For example, for nitrogen-containing quartz glass, the following manufacturing method is known, as disclosed in US Pat. No. 4,203,744. In this method, first, as shown in Figure 1, 8
In this method, 102 particles of quartz glass 1 or porous glass are produced, then treated in an atmosphere containing NH, and then sintered to obtain nitrogen-doped silica glass 3. However, with this method, it was not possible to obtain a transparent glass body with a high nitrogen content.

本発明は上記欠点を解消し、比較的窒素含有量の多い、
かつ透光性のあるガラスを提供するものであって、その
構成は、内部よりも低粘性であるガラス微粒子集合体を
形成した後に、該微粒子集合体を焼結することを特徴と
する特 以下に本発明を実施例と共に詳細に説明する。
The present invention solves the above-mentioned drawbacks, and the present invention solves the above-mentioned drawbacks.
and a translucent glass, the structure of which is characterized in that after forming a glass particle aggregate having a lower viscosity than the inside, the particle aggregate is sintered. The present invention will be explained in detail together with examples.

本発明はガラス微粒子の内部と外表面層との粘性を変え
、ガラス微粒子内部の粘度を高くし、外表面層の粘度を
低くすることを基本とする。
The present invention is based on changing the viscosity between the inside and the outer surface layer of the glass fine particles, increasing the viscosity inside the glass fine particles and lowering the viscosity of the outer surface layer.

添加物を含有させた時に、その粘性が高くなり、このた
め、粘性流動により支配される焼結が進まなくなる場合
、本発明では、添加物を含有した超微粒子を合成し、こ
の微粒子表面層の添加物量を減少させることにより、又
は添加物を含有した超微粒子の表面層上に、添加物の少
ない層を合成することにより微粒子表面を低粘性状態と
し、この物性により焼結を進める。出発材料のガラス微
粒子としては、透過させる光の波長よりも小さ々ガラス
微粒子を用いる。例えば可視光が対象であれば、約0.
5μm径以下が望ましい。
When additives are added, their viscosity becomes high, which prevents sintering controlled by viscous flow from progressing. In the present invention, ultrafine particles containing additives are synthesized and the surface layer of these particles is By reducing the amount of additives, or by synthesizing a layer with less additives on the surface layer of ultrafine particles containing additives, the surface of the microparticles is brought into a low viscosity state, and sintering proceeds based on this physical property. As the starting material glass particles, glass particles smaller than the wavelength of the light to be transmitted are used. For example, if visible light is the target, approximately 0.
A diameter of 5 μm or less is desirable.

本発明により窒素含有石英ガラスを製造する場合、第2
図に示すように先づ窒化硅素S l 2N、の微粒子1
0を造り、該微粒子10の外表面に二酸化硅素SiO□
の外表面層11を形成し、これを焼結して窒素含有石英
ガラス12を製造する。
When manufacturing nitrogen-containing quartz glass according to the present invention, the second
As shown in the figure, first, silicon nitride S l 2N fine particles 1
silicon dioxide SiO□ on the outer surface of the fine particles 10.
A nitrogen-containing quartz glass 12 is manufactured by forming an outer surface layer 11 and sintering this.

ありかつ分子の小さなガス例えばHeガス等を用いると
、これらのガスはガラス中に容易に拡散し、又、ガラス
中に溶解し易いため気泡として残らず、従って残留気泡
の一層少ないものが得られる。
When a gas with a small molecular weight, such as He gas, is used, these gases easily diffuse into the glass and are easily dissolved in the glass, so they do not remain as bubbles, and therefore, a product with fewer residual bubbles can be obtained. .

次に内部が高粘性であり、外表面層が低粘性の構成を有
する微粒子を造るには次の2種類の方法がある。第1の
方法は高粘性を有する微粒子を出発材料とし、この微粒
子表面層の組成ないし成分を反応処理して低粘性のもの
に変化させる方法である。例えば出発材料として気相合
成法などで得られる窒化硅素微粒子Si、H,を用い、
この粒子表面を酸化処理して二酸化硅素5I02の表面
層を形成する。この場合、急激な酸化処理は好ましくな
い。粒子が小さい場合窒化物の微粒子は酸化され易く不
安定なため急激に酸化すると局所的に粒子全体が酸化物
のシリカSIO□となり残留窒素が急激に減少するから
である。酸化処理の温度範囲としては700℃〜120
clが好ましい。この範囲を超えると酸化した微粒子が
焼結し始め均一な酸化を妨げる。上記微粒子を造る第2
の方法は高粘性を有する微粒子表面上に低粘性の膜をコ
ーティングする方法である。
Next, there are two methods for producing fine particles having a high viscosity inside and a low viscosity outer surface layer. The first method is to use fine particles having high viscosity as a starting material, and to change the composition or components of the surface layer of the fine particles to a low-viscosity one by subjecting them to a reaction treatment. For example, using silicon nitride fine particles Si, H, obtained by vapor phase synthesis method etc. as a starting material,
The surface of this particle is oxidized to form a surface layer of silicon dioxide 5I02. In this case, rapid oxidation treatment is not preferred. This is because if the particles are small, the nitride fine particles are easily oxidized and unstable, so if they are rapidly oxidized, the entire particle locally becomes an oxide, silica SIO□, and the residual nitrogen is rapidly reduced. The temperature range for oxidation treatment is 700°C to 120°C.
cl is preferred. When this range is exceeded, oxidized fine particles begin to sinter and prevent uniform oxidation. 2nd to make the above fine particles
This method is a method in which a low-viscosity film is coated on the surface of fine particles with high viscosity.

即ち、粘性の高い物質で核を形成し、この核の表面に低
粘性の物質を成長させるように気相反応系の原料1反応
条件を構成する。例えば5iO2−820、系ガラスを
得る場合、原料として5tcz、。
That is, the reaction conditions for the raw material 1 of the gas phase reaction system are configured so that a nucleus is formed from a highly viscous substance and a low viscosity substance is grown on the surface of this nucleus. For example, when obtaining 5iO2-820 glass, 5tcz is used as the raw material.

BBr3 、02 を用い、まず最初に約1200℃以
上の反応温度下で5ICt、 、 02  を供給し5
IC4,→5IO2の均一気相反応を進めてガラス微粒
子の核を生成させ、引き続きB B r−、を供給し、
BBr、−+B20.の反応を進めて上記8102の表
面に320.の膜を形成する。
Using BBr3, 02, 5ICt, , 02 was first supplied at a reaction temperature of about 1200°C or higher, and 5
Proceed with the homogeneous gas phase reaction of IC4,→5IO2 to generate nuclei of glass particles, and then supply B B r-,
BBr, -+B20. The reaction proceeds to form 320. on the surface of the above 8102. Forms a film of

次に微粒子を集合して焼結するには次のような方法によ
ればよい。第1の方法は、高粘性の微粒子10を出発拐
料とし、この微粒子の表面に前述したような表面処理反
応又は低粘性膜のコーティングにより低粘性の表面層1
1を形成し、その後この表面層を有する微粒子を集合さ
せた後に焼結する(第3図(−)参照)。第2の方法は
、第1の方法と同様に表面層を有する微粒子を形成した
後、熱間静圧成形などにより微粒子集合体を成形すると
同時に焼結する(第3図(b) か照)。第3の方法は
予め静圧成形などにより微粒子集合体を形成した後、前
述したような表面処理反応又は低粘性膜のコーティング
により個々の粒子表面に低粘性の表面層を形成し、これ
を焼結する(第3図(c)参照)。
Next, the following method may be used to collect and sinter the fine particles. In the first method, high viscosity fine particles 10 are used as a starting material, and a low viscosity surface layer 1 is applied to the surface of the fine particles by a surface treatment reaction or coating with a low viscosity film as described above.
1 is formed, and then the fine particles having this surface layer are aggregated and then sintered (see FIG. 3 (-)). In the second method, like the first method, after forming fine particles with a surface layer, a fine particle aggregate is formed by hot isostatic pressing or the like and simultaneously sintered (see Fig. 3(b)). . The third method is to form a fine particle aggregate in advance by static pressure molding, etc., then form a low-viscosity surface layer on the surface of each particle by the above-mentioned surface treatment reaction or coating with a low-viscosity film, and then bake this. (See Figure 3(c)).

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例1 出発材料として、5iCtllとNH,とを高周波プラ
ズマ火炎中の高温帯にて反応させた後急冷し、補集して
得た微粒千秋窒化硅素を用意し7た。この粒子はほぼ球
状で約0.5μm程度の粒径を有する。この粒子の粉末
をベレット状(15個φX15+nm)に加圧成形し、
この成形体を焼結炉内にセットした。
Example 1 As a starting material, fine particles of silicon nitride obtained by reacting 5iCtll and NH in a high-temperature zone in a high-frequency plasma flame, followed by rapid cooling and collection were prepared. The particles are approximately spherical and have a particle size of about 0.5 μm. This particle powder was pressure-molded into a pellet shape (15 pieces φX15+nm),
This compact was placed in a sintering furnace.

炉内温度を500℃に保ち、He ガス100 c c
/fj流した状態で、約10時間保持した。この後、炉
内温度を900℃に上昇させ、02を50 cc/分加
え、2時間保持した。引き続き02 を停止し、He 
を流したまま炉温を1600℃に上昇させ、この状態で
30分保持した後、約2時間かけて、試料を室温程度に
下げた。得られた試料は殆んど透明であり、窒素の含有
量が約5重量パーセントの窒素含有シリカガラスが得ら
れた。
The temperature inside the furnace was maintained at 500°C, and He gas was heated at 100 cc.
/fj was maintained for about 10 hours. Thereafter, the temperature inside the furnace was raised to 900°C, 50 cc/min of 02 was added, and the temperature was maintained for 2 hours. Continue to stop 02 and
The furnace temperature was raised to 1,600° C. while the gas was flowing, and this state was maintained for 30 minutes, and then the sample was cooled to about room temperature over about 2 hours. The resulting sample was almost transparent, yielding a nitrogen-containing silica glass with a nitrogen content of approximately 5 weight percent.

以上、主に窒素含有石英ガラスを例にして本発明を説明
したが、本発明は上記のものに限らず、硅素以外の窒化
物例えばBN 、 TI 、N、 、 AtNなどにつ
いても適用でき、また更に窒化物以外の化合物について
も適用できる。例えば出発材料として酸化物の微粒子を
用い該酸化物微粒子の表面にドーパントを含む低粘性の
表面層を気相反応にて形成し、これを焼結することによ
りドーパント含有量の大きな透光性の秀れたガラスを容
易に製造することができる。また本発明はその他の複合
材料にも適用することができる。
The present invention has been explained above mainly using nitrogen-containing quartz glass as an example, but the present invention is not limited to the above, but can also be applied to nitrides other than silicon, such as BN, TI, N, AtN, etc. Furthermore, it can also be applied to compounds other than nitrides. For example, by using oxide fine particles as a starting material, forming a low-viscosity surface layer containing a dopant on the surface of the oxide fine particles through a gas phase reaction, and sintering this, a light-transmitting layer with a large dopant content is formed. Excellent glass can be manufactured easily. The present invention can also be applied to other composite materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の製造方法の説明図、第2図は本発明の製
造原理を示す説明図、第3図(a)(b)(C)は本発
明の製造手順の概略を示す説明図である。図面中、1・
・・S r 02微粒子、2・・・窒化硅素の表面層、
3・・窒素ドープした石英ガラス、10・・・微粒子、
12・・・焼結体である。 特許出願人 日本電信電話公社 住友電気工業株式会社
Fig. 1 is an explanatory diagram of the conventional manufacturing method, Fig. 2 is an explanatory diagram showing the manufacturing principle of the present invention, and Fig. 3 (a), (b), and (C) are explanatory diagrams showing the outline of the manufacturing procedure of the present invention. It is. In the drawing, 1.
... S r 02 fine particles, 2 ... silicon nitride surface layer,
3...Nitrogen-doped quartz glass, 10...Fine particles,
12... Sintered body. Patent applicant: Nippon Telegraph and Telephone Public Corporation Sumitomo Electric Industries, Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)外表面層が内部よりも低粘性であるガラス微粒子
集合体を形成した後に該微粒子の集合体を焼結すること
を特徴とする添加物含有ガラスの製造方法。
(1) A method for producing additive-containing glass, which comprises forming an aggregate of glass fine particles in which the outer surface layer has a lower viscosity than the inner layer, and then sintering the aggregate of the fine particles.
(2)前記ガラス微粒子の内部が窒化硅素であり、外表
面層が二酸化硅素であることを特徴とする特許請求の範
囲第1項記載の添加物含有ガラスの製造方法。
(2) The method for producing additive-containing glass according to claim 1, wherein the inside of the glass fine particles is silicon nitride, and the outer surface layer is silicon dioxide.
(3)前記ガラス微粒子の直径が0.5μm以下の超微
粒子であることを特徴とする第1項又は第2項記載の添
加物含有ガラスの製造方法。
(3) The method for producing additive-containing glass according to item 1 or 2, wherein the glass fine particles are ultrafine particles having a diameter of 0.5 μm or less.
JP12597681A 1981-08-13 1981-08-13 Preparation of glass containing additive Granted JPS5832037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12597681A JPS5832037A (en) 1981-08-13 1981-08-13 Preparation of glass containing additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12597681A JPS5832037A (en) 1981-08-13 1981-08-13 Preparation of glass containing additive

Publications (2)

Publication Number Publication Date
JPS5832037A true JPS5832037A (en) 1983-02-24
JPS6346015B2 JPS6346015B2 (en) 1988-09-13

Family

ID=14923642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12597681A Granted JPS5832037A (en) 1981-08-13 1981-08-13 Preparation of glass containing additive

Country Status (1)

Country Link
JP (1) JPS5832037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042244A (en) * 1983-08-12 1985-03-06 Toshiba Ceramics Co Ltd Quartz glass having resistance to melting loss
JPS6265949A (en) * 1985-09-13 1987-03-25 Fujikura Ltd Production of optical glass and optical fiber base material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2525539Y2 (en) * 1990-03-02 1997-02-12 三菱鉛筆株式会社 Liquid applicator
JP2525538Y2 (en) * 1990-03-02 1997-02-12 三菱鉛筆株式会社 Liquid applicator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042244A (en) * 1983-08-12 1985-03-06 Toshiba Ceramics Co Ltd Quartz glass having resistance to melting loss
JPH0135780B2 (en) * 1983-08-12 1989-07-27 Toshiba Ceramics Co
JPS6265949A (en) * 1985-09-13 1987-03-25 Fujikura Ltd Production of optical glass and optical fiber base material

Also Published As

Publication number Publication date
JPS6346015B2 (en) 1988-09-13

Similar Documents

Publication Publication Date Title
KR100653861B1 (en) Method for producing synthetic quartz glass and synthetic quartz glass article
US10843954B2 (en) Synthetic opaque quartz glass and method for producing the same
JP2003512988A (en) Manufacturing method of nanocrystalline glass ceramic fiber
JPH029727A (en) Production of optical fiber preform
JP3092675B2 (en) Oxynitride glass and method for producing the same
JPH07300324A (en) Production of heat-resistant synthetic quartz glass
JPS5832037A (en) Preparation of glass containing additive
RU2175647C2 (en) Lens for step-by-step multiplication unit made from quartz glass
GB2181727A (en) Method of preparing a silica glass member
JPS5854102B2 (en) Doped silica glass
JPS62246834A (en) Production of base material for optical fiber
JPH11199252A (en) Opaque quartz glass
JPS6110037A (en) Production of parent material of optical fiber
JPS6234701B2 (en)
JPH0818843B2 (en) Method for manufacturing preform for optical fiber
JP5992842B2 (en) Method for producing silica titania glass and method for selecting silica titania glass
JPH0920531A (en) High-strength quartz glass foam
JPS63147840A (en) Production of quartz glass material
JPH01294545A (en) Method for forming glass
JPS5925739B2 (en) Method of manufacturing optical transmission glass
EP4227271A1 (en) Black quartz glass and method of manufacturing same
JPH1059730A (en) Production of synthetic quartz glass
GB2398564A (en) Method for producing silica glass
JPH05155636A (en) Method for forming quartz glass waveguide
JPS6230144B2 (en)