JPS6230144B2 - - Google Patents

Info

Publication number
JPS6230144B2
JPS6230144B2 JP15496080A JP15496080A JPS6230144B2 JP S6230144 B2 JPS6230144 B2 JP S6230144B2 JP 15496080 A JP15496080 A JP 15496080A JP 15496080 A JP15496080 A JP 15496080A JP S6230144 B2 JPS6230144 B2 JP S6230144B2
Authority
JP
Japan
Prior art keywords
silica glass
doped silica
dopant
glass
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15496080A
Other languages
Japanese (ja)
Other versions
JPS5782131A (en
Inventor
Shoichi Sudo
Hiroyuki Suda
Fumiaki Hanawa
Motohiro Nakahara
Nobuo Inagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15496080A priority Critical patent/JPS5782131A/en
Priority to GB8126332A priority patent/GB2083806B/en
Priority to CA000384809A priority patent/CA1188895A/en
Priority to US06/300,296 priority patent/US4414012A/en
Priority to FR8117174A priority patent/FR2489808B1/fr
Priority to IT8123880A priority patent/IT1139603B/en
Priority to NL8104196A priority patent/NL190841C/en
Priority to KR1019810003418A priority patent/KR860001248B1/en
Priority to DE19813136429 priority patent/DE3136429C2/en
Publication of JPS5782131A publication Critical patent/JPS5782131A/en
Publication of JPS6230144B2 publication Critical patent/JPS6230144B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/26Parabolic or graded index [GRIN] core profile
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/16Non-circular ports, e.g. square or oval
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/18Eccentric ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/26Multiple ports for glass precursor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明はドープトシリカガラスの製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing doped silica glass.

従来、主としてGeO2を含むドープトシリカガ
ラスは第1図に示す製造工程(いわゆるスートプ
ロセス)により製造されていた。第1図はこの製
造工程を示すブロツク図であり、図中の各ブロツ
クにおいて、Aはガラス形成原料、Bはガラス微
粒子、Cは多孔質ガラス体、Dは透明ガラス体を
示す。a,b,cはそれぞれの工程において旋す
処理を示し、aは火炎加水分解反応、bは焼結、
cは高温溶融の各処理を表わしている。
Conventionally, doped silica glass mainly containing GeO 2 has been manufactured by the manufacturing process shown in FIG. 1 (so-called soot process). FIG. 1 is a block diagram showing this manufacturing process, and in each block in the figure, A indicates a glass forming raw material, B indicates glass fine particles, C indicates a porous glass body, and D indicates a transparent glass body. a, b, c indicate the spinning process in each step, a is flame hydrolysis reaction, b is sintering,
c represents each high-temperature melting process.

この第1図より明らかなように、GeO2を含む
ドープトシリカガラスは、SiCl4、GeCl4等のガラ
ス形成原料Aを火炎加水分解aして、SiO2
GeO2のガラス微粒子Bを形成せしめ、これを焼
結bして多孔質ガラス体Cとし、その後、高温溶
融cして透明ガラス体D(ドープトシリカガラ
ス)を形成せしめるものであつた。
As is clear from FIG. 1, doped silica glass containing GeO 2 is produced by flame hydrolysis of glass forming raw materials A such as SiCl 4 and GeCl 4 .
GeO 2 glass particles B were formed, sintered to form a porous glass body C, and then melted at a high temperature to form a transparent glass body D (doped silica glass).

このような従来のドープトシリカガラスの製造
方法(スートプロセス)において、単位時間当り
のガラス形成原料供給量を増加し、ドープトシリ
カガラスの製造速度を向上せしめようとした場
合、火炎加水分解反応によるガラス微粒子の合成
効率が低下するという欠点があつた。また、ガラ
ス微粒子の合成、GeO2の添加および焼結とを同
時にかつ同一の熱源によつて行なうため、ガラス
形成原料供給量を増加すると、焼結が不十分とな
り、多孔質ガラス体を形成するのが困難になると
いう欠点があつた。本発明者らの検討によると、
上記のような制限によりスートプロセスによるド
ープトシリカガラスの製造方法では、単位時間当
りの製造量を毎時500g以上にすることは困難で
あり、また製造効率も80%が上限であつた。
In such a conventional manufacturing method (soot process) for doped silica glass, when trying to increase the supply amount of glass forming raw materials per unit time and improve the manufacturing speed of doped silica glass, flame hydrolysis reaction The disadvantage was that the synthesis efficiency of glass fine particles was lowered. In addition, since the synthesis of glass particles, addition of GeO 2 and sintering are performed simultaneously and using the same heat source, increasing the amount of glass forming raw materials supplied will result in insufficient sintering, resulting in the formation of a porous glass body. The disadvantage was that it was difficult to According to the inventors' study,
Due to the above-mentioned limitations, in the soot process method for producing doped silica glass, it is difficult to increase the production amount per unit time to 500 g or more per hour, and the production efficiency has also been limited to 80%.

また上記のガラス製造速度の向上におけるスー
トプロセスの欠点を回避するために、火炎温度を
高め、ガラス微粒子から直接透明なガラス体を製
造する方法(いわゆる直接ガラス化法)を採用し
た場合、GeO2が透明ガラス体中に添加できず、
ドープトシリカガラスが得られなかつた。
In addition, in order to avoid the drawbacks of the soot process in improving the glass production speed mentioned above, if a method is adopted in which the flame temperature is increased and a transparent glass body is directly produced from glass particles (the so-called direct vitrification method), GeO 2 cannot be added to the transparent glass body,
No doped silica glass was obtained.

このような欠点を除去するため、本発明者等は
あらかじめシリカガラス微粒子を合成し、これを
SiCl4;H2Oと反応してSiO2と固溶体を形成しう
るドーパントを生成可能なガス状添加物;水蒸気
を含むドープトシリカガラス形成ガスに500〜
1000℃の温度で曝して、ドーパント(たとえば
GeO2)をSiO2−ドーパント固溶体としてこのガラ
ス微粒子に添加し、しかる後透明ガラス化するド
ープトシリカガラスの製造方法を発明した(改良
スートプロセス法;Improved Soot Process;
ISPと仮称す)。この方法によればシリカガラス
微粒子の合成、ドーパントの添加、透明ガラス化
が別々の工程でなされるため、前述のような種々
の要因により製造速度が制限されないと言う利点
がある。
In order to eliminate such drawbacks, the present inventors synthesized silica glass particles in advance and
SiCl 4 ; gaseous additive capable of producing a dopant that can react with H 2 O to form a solid solution with SiO 2 ;
Dopants (e.g.
We have invented a method for manufacturing doped silica glass in which GeO 2 ) is added as a SiO 2 -dopant solid solution to the glass particles and then the glass becomes transparent (Improved Soot Process).
(tentatively named ISP). According to this method, the synthesis of silica glass particles, the addition of dopants, and the formation of transparent glass are performed in separate steps, so there is an advantage that the production speed is not limited by the various factors mentioned above.

このような改良スートプロセス法において、シ
リカガラス微粒子へのドーパントの固溶添加後、
ドーパント添加ガラス微粒子を焼結し透明化する
とき、第2図に示すような装置を用いていた。第
2a図は合成装置の概略図、第2b図は合成トー
チの断面図であり、1は合成トーチ、2は火炎用
ガス供給口、3はドープトシリカガラス微粒子供
給口、4は火炎流、5はドープトシリカガラス微
粒子流、6はドープトシリカガラス、7は受台、
Gはドープトシリカガラス微粒子である。
In such an improved soot process method, after adding a dopant as a solid solution to silica glass particles,
When dopant-added glass particles were sintered to make them transparent, an apparatus as shown in FIG. 2 was used. FIG. 2a is a schematic diagram of the synthesis apparatus, and FIG. 2b is a cross-sectional view of the synthesis torch, where 1 is the synthesis torch, 2 is a flame gas supply port, 3 is a doped silica glass particle supply port, 4 is a flame stream, 5 is a doped silica glass particle flow, 6 is a doped silica glass, 7 is a pedestal,
G is a doped silica glass fine particle.

第2図より明かなように、合成トーチ1の中心
にはドープトシリカガラス微粒子供給口3、その
まわりに火炎用ガス供給口2を備えており、ドー
プトシリカガラス微粒子流5はこのドープトシリ
カガラス微粒子供給口3より噴射され、火炎用ガ
ス供給口2よりの火炎流4により焼結、透明化さ
れ、受台上7に丸棒状ドープトシリカガラス6を
形成する。
As is clear from FIG. 2, the synthesis torch 1 has a doped silica glass particle supply port 3 in the center and a flame gas supply port 2 around it, and the doped silica glass particle flow 5 is The particles are injected from the silica glass fine particle supply port 3 and sintered and made transparent by the flame flow 4 from the flame gas supply port 2 to form a round bar-shaped doped silica glass 6 on the pedestal 7.

しかしながら、ドーパント(たとえばGeO2)添
加量の均一なドープトシリカガラス微粒子Gを合
成トーチ1内の1つの供給口3から吹き出し、ド
ープトシリカガラス体6を形成するため、丸棒状
ドープトシリカガラス体6中の半径方向のドーパ
ント(たとえばGeO2)濃度分布(屈折率分布に対
応)は、第3図に示すように均一であつた。この
ため、該丸棒状ドープトシリカガラス体6を光フ
アイバ母材のコア材として使用し、線引きして得
られた、光フアイバの伝送帯域は50MHzKm以下
であるという欠点があつた。
However, in order to form the doped silica glass body 6 by blowing out the doped silica glass fine particles G having a uniform amount of dopant (for example, GeO 2 ) added from one supply port 3 in the synthesis torch 1, the round bar-shaped doped silica glass The radial dopant (eg GeO 2 ) concentration distribution (corresponding to the refractive index distribution) in the body 6 was uniform as shown in FIG. Therefore, the optical fiber obtained by using the round bar-shaped doped silica glass body 6 as the core material of the optical fiber base material and drawing it has a drawback that the transmission band is 50 MHzKm or less.

本発明はこのような欠点を除去すること、詳し
くは改良スートプロセス法において、製造される
ドープトシリカガラスの半径方向のドーパントの
濃度分布を所望の分布に制御しえる方法を提供す
ることを目的とする。
The purpose of the present invention is to eliminate such drawbacks, and more specifically, to provide a method for controlling the dopant concentration distribution in the radial direction of the produced doped silica glass to a desired distribution in an improved soot process method. shall be.

したがつて、本発明によるドープトシリカガラ
スの製造方法は水晶粉またはシリカガラス微粒子
粉を500〜1000℃の温度において、SiCl4;H2Oと
反応してSiO2と固溶体を形成しうるドーパント
を生成可能なガス状添加剤;及び水蒸気;を含む
ドープトシリカガラス形成ガスに曝して、SiO2
−ドーパント固溶体を形成せしめてドープトシリ
カガラス微粒子を生成させ、その後、透明ガラス
化するに際し、ドーパント固溶添加量の異なる前
記ドープトシリカガラス微粒子をそれぞれ別異の
供給口より噴出させ、ドーパント濃度分布を制御
して焼結、透明化することを特徴とするものであ
る。
Therefore, the method for producing doped silica glass according to the present invention involves adding a dopant that can react with SiCl 4 ;H 2 O to form a solid solution with SiO 2 at a temperature of 500 to 1000°C from quartz powder or silica glass fine particle powder. a gaseous additive capable of producing SiO 2 ; and water vapor;
- To form a dopant solid solution to generate doped silica glass fine particles, and then to produce transparent glass, the doped silica glass fine particles with different amounts of dopant solid solution added are ejected from different supply ports, and the dopant concentration is It is characterized by controlling the distribution and sintering and making it transparent.

本発明によれば、得られるドープトシリカガラ
ス体に半径方向にドープト濃度分布を形成しえる
ので、これを使用して製造される光フアイバの伝
送帯域および伝送損失の点において、著しく改良
される。
According to the present invention, it is possible to form a dope concentration distribution in the radial direction in the doped silica glass body obtained, so that the transmission band and transmission loss of optical fibers manufactured using the glass body are significantly improved. .

本発明を更に詳しく説明する。 The present invention will be explained in more detail.

第4a図は、本発明によるドープトシリカガラ
スの製造方法を実施するための装置の一例の概略
図であり、第4b図は合成トーチの断面図であ
る。図中、41は合成トーチ、42は高濃度ドー
プトシリカガラス微粒子供給口、43,43′は
低濃度ドープトシリカガラス微粒子供給口、44
は火炎用ガス供給口、45,46はドープトシリ
カガラス微粒子流、47は火炎流、48はドープ
トシリカガラス体、49は受台である。
FIG. 4a is a schematic diagram of an example of an apparatus for implementing the method for manufacturing doped silica glass according to the present invention, and FIG. 4b is a sectional view of a synthesis torch. In the figure, 41 is a synthesis torch, 42 is a high concentration doped silica glass particle supply port, 43 and 43' are low concentration doped silica glass particle supply ports, and 44
45 and 46 are doped silica glass particle streams; 47 is a flame stream; 48 is a doped silica glass body; and 49 is a pedestal.

第4図より明かなように、合成トーチ41は高
濃度ドープトシリカガラス微粒子供給口42を中
心に備え、その両隣りに低濃度ドープトシリカガ
ラス微粒子供給口43,43′を有している。こ
れらの供給口42及び43,43′の数及び位置
はこれに限定されるものではなく、所望のド−パ
ント濃度分布(屈折率分布)等を考慮し機能的に
定めることができる。
As is clear from FIG. 4, the synthesis torch 41 has a high concentration doped silica glass particle supply port 42 at the center, and has low concentration doped silica glass particle supply ports 43 and 43' on both sides thereof. . The number and position of these supply ports 42, 43, 43' are not limited to these, and can be determined functionally in consideration of the desired dopant concentration distribution (refractive index distribution), etc.

火炎用ガス供給口44はこれらの供給口42及
び43,43′を囲むように設けられており、良
好にガラス微粒子を焼結、透明化できるようにな
つている。
The flame gas supply port 44 is provided so as to surround these supply ports 42, 43, and 43', so that the glass particles can be sintered and made transparent.

高濃度ドープトシリカガラス微粒子供給口42
よりの高濃度ドープトシリカガラス微粒子流46
及び低濃度ドープトシリカガラス微粒子供給口4
3,43′よりの低濃度ドープトシリカガラス微
粒子流45は火炎用ガス供給口44よりの火炎流
47内及び受台49上のドープトシリカガラス体
48表面で互いに混合、拡散し合いながら、ドー
プトシリカガラス体48を形成する。この結果、
製造されるドープトシリカガラス体48中には半
径方向にドーパント濃度分布が形成される。この
際、火炎温度が高いと透明なドープトシリカガラ
ス体が、また火炎温度が低いと、多孔質なドープ
トシリカガラス体が得られる。
High concentration doped silica glass fine particle supply port 42
Highly doped silica glass particle stream 46
and low concentration doped silica glass particle supply port 4
The low-concentration doped silica glass fine particle flow 45 from 3, 43' mixes and diffuses with each other in the flame flow 47 from the flame gas supply port 44 and on the surface of the doped silica glass body 48 on the pedestal 49. A doped silica glass body 48 is formed. As a result,
A dopant concentration distribution is formed in the radial direction in the doped silica glass body 48 produced. At this time, when the flame temperature is high, a transparent doped silica glass body is obtained, and when the flame temperature is low, a porous doped silica glass body is obtained.

ここで、SiO2−ドーパント固溶体のドープト
シリカガラス微粒子を形成するためのドープトシ
リカガラス形成ガスはH2Oと反応してSiO2と固溶
体を形成しうるドーパントを生成しうるガス状添
加物を含むものであるが、この具体例としては、
GeCl4、POCl3、PCl8、TiCl4、BBr3、BCl8等の
一種以上をあげることができる。
Here, the doped silica glass forming gas for forming doped silica glass fine particles of SiO 2 -dopant solid solution is a gaseous additive that can react with H 2 O to produce a dopant that can form a solid solution with SiO 2 . As a specific example,
Examples include one or more of GeCl 4 , POCl 3 , PCl 8 , TiCl 4 , BBr 3 , BCl 8 and the like.

また水晶粉またはシリカガラス微粒子をドープ
トシリカ形成ガスに曝す濃度は、500〜1000℃で
あるが、500℃未満であると、水晶粉またはシリ
カガラス微粒子に、SiO2と固溶したGeO2等の酸
化物は得られず、結晶酸化物(たとえば結晶
GeO2)が生成される。この結晶酸化物(たとえば
GeO2)は高温、溶融に際して蒸発しやすく、この
場合にはGeO2ドープトシリカガラスは得られな
い。また曝らす温度が1000℃を越えた場合、
GeO2等のドーパントを含むガラス層が形成され
ない。
In addition, the concentration at which quartz powder or silica glass particles are exposed to the doped silica forming gas is 500 to 1000°C, but if the temperature is less than 500°C, oxidation of GeO 2 etc. dissolved in solid solution with SiO 2 occurs in the quartz powder or silica glass particles. crystalline oxides (e.g. crystals)
GeO 2 ) is generated. This crystalline oxide (e.g.
GeO 2 ) easily evaporates when melted at high temperatures, and in this case GeO 2 doped silica glass cannot be obtained. Also, if the exposed temperature exceeds 1000℃,
A glass layer containing dopants such as GeO 2 is not formed.

次に実施例を説明する。 Next, an example will be described.

実施例 第4図の装置を用いて下記のようにドープトシ
リカガラスを製造した。
Example Doped silica glass was manufactured as follows using the apparatus shown in FIG.

高濃度ドープトシリカガラス微粒子供給口42
より、GeO2を10wt%固溶添加したドープトシリ
カガラス微粒子を10g/分、低濃度ドープトシリ
カガラス微粒子供給口43,43′より、GeO2
含まない単なるシリカガラス微粒子を20g/分及
び火炎用ガス供給口44より、O2を10/分、
H2を10/分流してドープトシリカガラスを製
造した。この結果、透明、丸棒状ドープトシリカ
ガラスが30g/分の割合で製造でき、得られたド
ープトシリカガラスのGeO2濃度分布(屈折率分
布に対応)は第5図に示す如くであつた。第5図
中、n0は空気、n1は中心部、n2は外周部のそれぞ
れの屈折率を示す。この場合、n1は1.473(GeO2
濃度で10wt%)、n2は1.458であり、屈折率分布は
下記の式(1)で近似的に示される曲線であつた。
High concentration doped silica glass fine particle supply port 42
Accordingly, doped silica glass fine particles containing 10 wt% of GeO 2 as a solid solution were fed at 10 g/min, simple silica glass fine particles not containing GeO 2 were fed at 20 g/min through the low concentration doped silica glass fine particle supply ports 43 and 43', and From the flame gas supply port 44, supply O 2 at 10/min.
Doped silica glass was produced by flowing H 2 at 10/min. As a result, transparent, round rod-shaped doped silica glass could be produced at a rate of 30 g/min, and the GeO 2 concentration distribution (corresponding to the refractive index distribution) of the doped silica glass obtained was as shown in Figure 5. . In FIG. 5, n 0 represents the refractive index of air, n 1 represents the refractive index of the central portion, and n 2 represents the refractive index of the outer peripheral portion. In this case, n 1 is 1.473 (GeO 2
(concentration: 10 wt%), n2 was 1.458, and the refractive index distribution was a curve approximately expressed by the following equation (1).

n(r)=n/2{1−erf(r/2A)} ……(1) ただし、n(r)は半径方向距離rにおける屈
折率、erf( )は誤差関数、Aは定数である。
第5図の屈折率分布で、屈折率n2で均一な部分
は、光フアイバとして使用した場合のクラツド層
であり、光フアイバの伝送損失を低減化する作用
がある。
n(r)=n 1 /2 {1-erf(r/2A)} ...(1) where n(r) is the refractive index at the radial distance r, erf( ) is the error function, and A is a constant. be.
In the refractive index distribution in FIG. 5, the uniform portion with a refractive index n 2 is a cladding layer when used as an optical fiber, and has the effect of reducing transmission loss of the optical fiber.

また合成トーチ41とドープトシリカガラス体
48表面との間隔とを変えて、ドープトシリカガ
ラス微粒子流35および36の混合、拡散度を調
整すると、第6図の曲線A(合成トーチ41とガ
ラス体48表面との間隔が10mmの場合)、および
曲線B(合成トーチ41とガラス体48表面との
間隔が50mmの場合)に示す屈折率分布が得られ
た。
Further, by changing the distance between the synthesis torch 41 and the surface of the doped silica glass body 48 to adjust the mixing and diffusivity of the doped silica glass fine particle streams 35 and 36, the curve A in FIG. The refractive index distributions shown in curve B (when the distance between the synthetic torch 41 and the surface of the glass body 48 was 10 mm) and curve B (when the distance between the synthetic torch 41 and the surface of the glass body 48 was 50 mm) were obtained.

曲線Aで示す屈折率分布は、2乗曲線に近く、
この屈折率分布を有するドープトシリカガラス体
を光フアイバ母材のコア材として使用して光フア
イバを線引きした結果、得られた光フアイバの伝
送帯域は500MHz・Km(波長1.3μm)、また伝送
損失は0.5dB/Km(波長1.3μm)であつた。
The refractive index distribution shown by curve A is close to a square curve,
As a result of drawing an optical fiber using the doped silica glass body with this refractive index distribution as the core material of the optical fiber base material, the transmission band of the obtained optical fiber was 500 MHz Km (wavelength 1.3 μm), and the transmission The loss was 0.5 dB/Km (wavelength 1.3 μm).

本実施例では、ガラス微粒子の焼結、透明ガラ
ス化帯域として火炎を用いたが、高温電気炉、プ
ラズマ炎、等を用いることも可能である。
In this example, a flame was used for sintering the glass particles and for transparent vitrification, but it is also possible to use a high-temperature electric furnace, plasma flame, etc.

以上説明したように、本発明によれば、改良ス
ートプロセスにおいて得られる丸棒状ドープトシ
リカガラス体の半径方向にGeO2濃度分布(屈折
率分布)を形成しえ、さらにその形状を制御でき
るから該丸棒状ドープトシリカガラス体を使用し
て作製される光フアイバの伝送帯域および伝送損
失低減を向上できる利点がある。また該丸棒状ド
ープトシリカガラス体をボリユームレンズ(また
はロツドレンズ)として用いれば歪のない像を結
べる利点がある。
As explained above, according to the present invention, it is possible to form a GeO 2 concentration distribution (refractive index distribution) in the radial direction of the round rod-shaped doped silica glass body obtained in the improved soot process, and furthermore, the shape can be controlled. There is an advantage that the transmission band and transmission loss reduction of an optical fiber manufactured using the round bar-shaped doped silica glass body can be improved. Further, if the round bar-shaped doped silica glass body is used as a volume lens (or rod lens), there is an advantage that an image without distortion can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、スートプロセス法によるGeO2ドー
プトシリカガラスの製造工程を示すブロツク図、
第2図は、改良スートプロセス法による典型的な
焼結、透明化装置の概略図、第3図は第2図の装
置によつて得られるドープトシリカガラスの半径
方向屈折率分布、第4図は本発明の方法を実施す
るための装置の一例を示す概略図、第5図、第6
図は本発明の方法によつて得られたドープトシリ
カガラスの半径方向屈折率分布である。 1,41……合成トーチ、2,44……火炎ガ
ス用供給口、3……ドープトシリカガラス微粒子
供給口、42……高濃度ドープトシリカガラス微
粒子供給口、43,43′……低濃度ドープトシ
リカガラス微粒子供給口、6,48……ドープト
シリカガラス体。
Figure 1 is a block diagram showing the manufacturing process of GeO 2 doped silica glass using the soot process method.
FIG. 2 is a schematic diagram of a typical sintering and clarifying apparatus using the modified soot process method; FIG. 3 is the radial refractive index distribution of doped silica glass obtained by the apparatus of FIG. 2; The figures are schematic diagrams showing an example of an apparatus for carrying out the method of the present invention, FIGS. 5 and 6.
The figure shows the radial refractive index distribution of doped silica glass obtained by the method of the present invention. 1, 41... Synthetic torch, 2, 44... Flame gas supply port, 3... Doped silica glass fine particle supply port, 42... High concentration doped silica glass particle supply port, 43, 43'... Low Concentration doped silica glass fine particle supply port, 6, 48... Doped silica glass body.

Claims (1)

【特許請求の範囲】[Claims] 1 水晶粉またはシリカガラス微粒子粉を500〜
1000℃の温度において、SiCl4;H2Oと反応して
SiO2と固溶体を形成しうるドーパントを生成可
能なガス状添加剤;及び水蒸気;を含むドープト
シリカガラス形成ガスに曝して、SiO2−ドーパ
ント固溶体を形成せしめてドープトシリカガラス
微粒子を生成させ、その後、透明ガラス化するに
際し、ドーパント固溶添加量の異なる前記ドープ
トシリカガラス微粒子をそれぞれ別異の供給口よ
り噴出させ、ドーパント濃度分布を制御して、焼
結、透明化することを特徴とするドープトシリカ
ガラスの製造方法。
1 Crystal powder or silica glass fine particle powder 500~
At a temperature of 1000℃, SiCl 4 ; reacts with H 2 O.
Doped silica glass particles are formed by exposure to a doped silica glass forming gas containing a gaseous additive capable of producing a dopant capable of forming a solid solution with SiO 2 and water vapor to form a SiO 2 -dopant solid solution. Then, when making the glass transparent, the doped silica glass fine particles having different amounts of dopant added in solid solution are ejected from different supply ports, and the dopant concentration distribution is controlled to sinter and make the glass transparent. A method for producing doped silica glass.
JP15496080A 1980-09-11 1980-11-04 Preparation of doped silica glass Granted JPS5782131A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP15496080A JPS5782131A (en) 1980-11-04 1980-11-04 Preparation of doped silica glass
GB8126332A GB2083806B (en) 1980-09-11 1981-08-28 Fabrication methods of doped silica glass and optical fibre preform by using the doped silica glass
CA000384809A CA1188895A (en) 1980-09-11 1981-08-28 Fabrication methods of doped silica glass and optical fiber preform by using the doped silica glass
US06/300,296 US4414012A (en) 1980-09-11 1981-09-08 Fabrication methods of doped silica glass and optical fiber preform by using the doped silica glass
FR8117174A FR2489808B1 (en) 1980-09-11 1981-09-10
IT8123880A IT1139603B (en) 1980-09-11 1981-09-10 Doped silica glass prodn. used for optical fibre preforms
NL8104196A NL190841C (en) 1980-09-11 1981-09-10 A method of manufacturing optical fiber preforms from doped quartz glass.
KR1019810003418A KR860001248B1 (en) 1980-09-11 1981-09-11 Fabrication methods of doped silica glass and optical fibre preform byusing the doped silica glass
DE19813136429 DE3136429C2 (en) 1980-09-16 1981-09-14 Process for producing doped SiO↓2↓ glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15496080A JPS5782131A (en) 1980-11-04 1980-11-04 Preparation of doped silica glass

Publications (2)

Publication Number Publication Date
JPS5782131A JPS5782131A (en) 1982-05-22
JPS6230144B2 true JPS6230144B2 (en) 1987-06-30

Family

ID=15595660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15496080A Granted JPS5782131A (en) 1980-09-11 1980-11-04 Preparation of doped silica glass

Country Status (1)

Country Link
JP (1) JPS5782131A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110027U (en) * 1982-01-19 1983-07-27 日本電信電話株式会社 Burner for optical fiber manufacturing
DE3240355C1 (en) * 1982-11-02 1983-11-17 Heraeus Quarzschmelze Gmbh, 6450 Hanau Process for the production of an elongated glass body with an inhomogeneous refractive index distribution

Also Published As

Publication number Publication date
JPS5782131A (en) 1982-05-22

Similar Documents

Publication Publication Date Title
US4414012A (en) Fabrication methods of doped silica glass and optical fiber preform by using the doped silica glass
JPS6038345B2 (en) Manufacturing method of glass material for optical transmission
JPH0478568B2 (en)
JPS6230144B2 (en)
JPS6024057B2 (en) Glass body manufacturing method
JPS6143290B2 (en)
KR101343683B1 (en) Process for producing optical fiber base and apparatus therefor
JPS6253450B2 (en)
JP2881930B2 (en) Manufacturing method of quartz glass for optical transmission
JPH0240003B2 (en) TANITSUMOODO * HIKARIFUAIBAYOBOZAINOSEIZOHOHO
JPH0244031A (en) Production of nonlinear optical glass
JP3078590B2 (en) Manufacturing method of synthetic quartz glass
JPS6289B2 (en)
JPH0324415B2 (en)
JPS5924097B2 (en) Glass body manufacturing method
JP3449488B2 (en) Manufacturing method of preform for optical fiber
JPH0583497B2 (en)
JPS5925739B2 (en) Method of manufacturing optical transmission glass
JPS6253449B2 (en)
JPS6116740B2 (en)
KR860001248B1 (en) Fabrication methods of doped silica glass and optical fibre preform byusing the doped silica glass
JPS6230145B2 (en)
JPS58125623A (en) Production of parent material for optical fiber
JPH0784331B2 (en) Method for manufacturing glass base material for optical fiber
JPS5934661B2 (en) Method for manufacturing doped silica glass