JPS5925739B2 - Method of manufacturing optical transmission glass - Google Patents

Method of manufacturing optical transmission glass

Info

Publication number
JPS5925739B2
JPS5925739B2 JP9642076A JP9642076A JPS5925739B2 JP S5925739 B2 JPS5925739 B2 JP S5925739B2 JP 9642076 A JP9642076 A JP 9642076A JP 9642076 A JP9642076 A JP 9642076A JP S5925739 B2 JPS5925739 B2 JP S5925739B2
Authority
JP
Japan
Prior art keywords
glass
optical transmission
heater
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9642076A
Other languages
Japanese (ja)
Other versions
JPS5321936A (en
Inventor
達夫 伊沢
政雄 星川
国生 藤原
耕三 吉村
四郎 黒崎
豪太郎 田中
修三 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP9642076A priority Critical patent/JPS5925739B2/en
Publication of JPS5321936A publication Critical patent/JPS5321936A/en
Publication of JPS5925739B2 publication Critical patent/JPS5925739B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/26Multiple ports for glass precursor
    • C03B2207/28Multiple ports for glass precursor for different glass precursors, reactants or modifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/46Comprising performance enhancing means, e.g. electrostatic charge or built-in heater
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は光伝送用ガラスの製造方法の中、特に半径方法
の屈折率分布を制御する新しい手段を提供する方法に関
し、酸化反応によつて生成したガラス微粒子を回転移動
する基板上に軸方向にこれを透明ガラス化して光伝送用
ガラスを製造する方法において、積層しているガラス微
粒子の表面温度を反応用加熱ヒータとは別に設けた冷却
装置によつて所定の温度分布となし、半径方向に所望の
屈折率分布を有するガラス微粒子体を形成することを特
徴とする方法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing optical transmission glass, and in particular to a method for providing a new means for controlling the refractive index distribution in the radial method. In a method of manufacturing optical transmission glass by converting transparent glass into transparent glass in the axial direction on a substrate, the surface temperature of the laminated glass particles is controlled to a predetermined temperature by a cooling device installed separately from the reaction heater. This method is characterized by forming glass fine particles having a desired refractive index distribution in the radial direction.

先ず、ガラス微粒子を軸方向に積層する従来の方法を第
1図によつて説明する。
First, a conventional method of laminating glass particles in the axial direction will be explained with reference to FIG.

基板1を回転しながら所定の速度で移動させる。The substrate 1 is moved at a predetermined speed while rotating.

積層速度に移動速度を合わせる。そしてこの上に純粋シ
リカ又は他の酸化物を含有するシリカの粉末状ガラスを
、半径方向にドープ剤としての酸化物の種類及び含有量
を所定の設定のものになるように積層してゆく。
Match the moving speed to the stacking speed. Then, powdered silica glass containing pure silica or other oxides is laminated thereon in the radial direction so that the type and content of the oxide as a dopant is set to a predetermined value.

G1、G2、G3・・・・・・ GNは所定のドープ量
を有するシリカを示している。
G1, G2, G3... GN indicates silica having a predetermined doping amount.

2はこれらのシリカ。2 is these silicas.

ガラスが積層して出来るガラス粉末体である。第1図b
においては、ガラス粉末体2は、高温加熱領域(電気抵
抗炉のようなヒーター9によつて加熱される)の中を通
過する時に焼結して透明化してゆく。Gl、G2、G3
・・・・・・ GN・・・・・・のようなシリカ。
It is a glass powder body made by laminating glass. Figure 1b
In this case, the glass powder body 2 is sintered and becomes transparent as it passes through a high temperature heating region (heated by a heater 9 such as an electric resistance furnace). Gl, G2, G3
... Silica like GN...

ガラス(ノン、ドープ又はドープ、シリカ)を作るには
、高温反応してガラスとなりうる混合ガス、例えばSi
又は他の元素のハロゲン化物、水素化物、有機化合物と
そして酸素のガス混合物をGl,G2・・・・・・に応
じて高温領域に組成をかえて送り込むと高温反応により
シリカ又は他の酸化物を含有するシリカのガラスがGl
,G2,G3・・・・・・に応じて出来る。それらガラ
スが基板1上に積層しガラス粉末体2となる。
To make glass (non-doped or doped, silica), a mixture of gases that can react at high temperatures to form glass, such as Si
Alternatively, when a gas mixture of halides, hydrides, organic compounds, and oxygen of other elements is fed into a high temperature region with different compositions depending on Gl, G2..., silica or other oxides are formed by high temperature reaction. Silica glass containing Gl
, G2, G3, etc. These glasses are laminated on a substrate 1 to form a glass powder body 2.

例えば第1図A,bにおいて、不純物の混入を生じなく
、かつ高温に耐えるような(例えば石英ガラス)材質か
らなるノズル3から高温で酸化反応してシリカ又はドー
プト.シリカ微粒子になる混合ガスNl,N2,N3・
・・・・・NN・・・・・・を吹き出させる。
For example, in FIGS. 1A and 1B, silica or doped silica is produced through an oxidation reaction at a high temperature from a nozzle 3 made of a material that does not contain impurities and can withstand high temperatures (for example, quartz glass). Mixed gas Nl, N2, N3 that becomes silica fine particles
...Blow out NN...

この原料ガスは電気抵抗炉のようなヒーター4によつて
高温加熱され微粒子Gl,G2・・・・・・GN・・・
・・・となる。5は原料ガスの予備加熱を示す。
This raw material gas is heated to a high temperature by a heater 4 such as an electric resistance furnace, and fine particles Gl, G2...GN...
...becomes... 5 indicates preheating of the raw material gas.

第1図のガラス粉末体は更に焼結し、ガラス塊り8とな
す。第1図bのガラス塊8は次にさらに高温、例えば2
000℃の炉内に入れて溶融延伸して(必要に応じてく
り返してもよい)10ツドからフアイバ一を作ることが
出来る。なおここでノズル内での原料ガス孔Niは適当
な間かく及び相対配置にして、それぞれから出てくるガ
ス混合体は適当に拡散させ、それから生じるガラス微粒
子も半径方向に連続的に組成を変えることが出来る。
The glass powder body shown in FIG. 1 is further sintered to form a glass lump 8. The glass gob 8 of FIG. 1b is then heated to a higher temperature, e.g.
A fiber can be made from 10 pieces by melting and drawing the fibers in a furnace at 000°C (this may be repeated as necessary). Note that the raw material gas holes Ni in the nozzle are appropriately spaced and arranged relative to each other, so that the gas mixture coming out from each is appropriately diffused, and the glass particles produced from them also change their composition continuously in the radial direction. I can do it.

従つて半径方向に特定の屈折率分布を有するガラス粉末
体を作ることが出来る。
Therefore, a glass powder body having a specific refractive index distribution in the radial direction can be produced.

この従来の方法ではGeO2やP2O5のようなSlO
2に比べて蒸発し易い酸化物を分布をつけて多くドープ
することが難しく。
This conventional method uses SlO such as GeO2 or P2O5.
Compared to No. 2, it is difficult to dope a large amount of oxide that evaporates easily in a well-distributed manner.

また、生成物の堆積収率は一般に低いものであつた。本
発明はこの点の改善を行う方法を提供したものであり、
第2図の実施例によつて詳述する。
Also, the product deposition yield was generally low. The present invention provides a method for improving this point,
This will be explained in detail using the embodiment shown in FIG.

第2図において、ノズル23の中を通過するガラス形成
原料ガス及び酸化ガスはそれぞれ別な孔導を通つてゆき
、ノズルの出口以後で混合し、ガラス微粒子Gl,G2
,G3・・・・・・GN・・・・・・を形成させる。G
l,G2,G3・・・・・・GNの原料に対するガラス
形成原料ガス及び又は酸化ガスの温度をT3,,T32
ラT33゜゛゜0″。
In FIG. 2, the glass-forming raw material gas and the oxidizing gas passing through the nozzle 23 pass through separate hole guides and are mixed after the nozzle exit.
, G3...GN... are formed. G
l, G2, G3...The temperature of the glass forming raw material gas and/or oxidizing gas for the GN raw material is T3,, T32
La T33゜゛゜0″.

T3N゜゜゜゜”゜とするOこのG1?G2tG3・・
・・・・GN・・・・・・は基板上に積層してゆきガラ
ス粉末体22となる。この時、反応用加熱ヒータとは別
に設けた冷却装置26によつてガラス粉末体22の表面
温度を調整する。この為に外側は例えば電気抵抗炉のよ
うなヒーター24によつて加熱し、他方ノズル26より
冷却用ガス26を流すことにより、ガラス粉末体の表面
温度を調整する。
T3N゜゜゜゜”゜O this G1?G2tG3...
. . . GN . . . is laminated on the substrate to form a glass powder body 22. At this time, the surface temperature of the glass powder body 22 is adjusted by a cooling device 26 provided separately from the reaction heater. For this purpose, the outside surface is heated by a heater 24 such as an electric resistance furnace, and the surface temperature of the glass powder body is adjusted by flowing a cooling gas 26 from a nozzle 26.

ここでT1の温度をガラス粉末体22の表面温度T2l
より高くすればガラス微粒子の流れは上昇気流として2
2上に収率よく積層する。
Here, the temperature of T1 is the surface temperature of the glass powder body 22, T2l.
If the height is higher, the flow of glass particles will become 2
2 with good yield.

(ガラス微粒子はマツフル27の内壁につかない)また
、T3Jの温度よりT2lの温度を低くすれば収率は向
上する。更にガラス微粒子の流れを上昇気流として収率
よく積層するにはT3j<T1にすることが好ましい。
(Glass particles do not adhere to the inner wall of the Matsufuru 27.) Furthermore, if the temperature of T2l is lower than the temperature of T3J, the yield will be improved. Furthermore, it is preferable that T3j<T1 in order to stack the glass particles with good yield by making the flow of glass particles into an upward air current.

T4Kの温度は冷却用ガスの温度なのでUK〈T2lで
あることは勿論である。一般にフアイバ一に於いては中
央部の屈折率を高くする。
Since the temperature of T4K is the temperature of the cooling gas, it goes without saying that UK<T2l. Generally, the refractive index of the central portion of a fiber is increased.

(パラポリツク型屈折率分布又はステツプ型屈折率分布
)このシリカにドーパントをドープしたガラスにおいて
は、例えばGeO2やP2O5のような蒸発し易い酸化
物等に於いては、中央に於いて濃度を高くすればよい。
その為には、Gl,G2,G3・・・・・・GN・・・
・・・の組成において中央部のGeO2のドープ量を増
すとともに積層表面の温度T2lをT2l〈T22〈T
23〈・・・・・・〈T2N〈・・・・・・のようにす
るために冷却ガス量を変えることが好ましい。これらの
制御はドープ剤の種類と量に応じて選択する必要がある
(Parapolis-type refractive index distribution or step-type refractive index distribution) In this glass in which silica is doped with a dopant, the concentration of easily evaporated oxides such as GeO2 and P2O5 can be increased in the center. Bye.
For that purpose, Gl, G2, G3...GN...
In the composition of .
23〈...〈T2N〈... It is preferable to change the amount of cooling gas. These controls must be selected depending on the type and amount of dopant.

なお27は原料ガス及び生成された微粒子がもれない耐
火物からなるマツフルを示している。
Note that 27 indicates a matsufuru made of a refractory material that does not leak raw material gas and generated fine particles.

またT3jはそれぞれヒーター25によつて加熱された
時のGjに対応する原料ガスの温度であつてもよいし、
ノズル23内のヒーターによつて加熱される温度であつ
てもよい。実施例を以下に示す。
Further, T3j may be the temperature of the raw material gas corresponding to Gj when heated by the heater 25, or
The temperature may be heated by a heater inside the nozzle 23. Examples are shown below.

第2図に於いて中心より一列に横にならべた石英パイプ
(2龍φX3龍φ)の孔導Nl,N2,N3,N4より
なるノズル23にそれぞれ02ガスが200CC/Mm
,8OOCC/IIU!1,1000CC/!m!L,
l4OOCC/Mm,Sicl4ガスが20CC/Mu
l,48CC/Mm,l5OCC/Mm,24OCC/
Mm,Gecl4ガスが20CC/Mm,l2OCC/
Mul,5OCC/Mul,4OCC/Mul(300
C)の混合ガスを基板乃至ガラス粉末体22の表面に吹
きつける。
In Fig. 2, 200 CC/Mm of 02 gas is supplied to each nozzle 23 consisting of holes Nl, N2, N3, and N4 of quartz pipes (2 dragons φ x 3 dragons φ) arranged horizontally in a line from the center.
,8OOCC/IIU! 1,1000CC/! m! L,
l4OOCC/Mm, Sicl4 gas is 20CC/Mu
l, 48CC/Mm, l5OCC/Mm, 24OCC/
Mm, Gecl4 gas is 20CC/Mm, l2OCC/
Mul, 5OCC/Mul, 4OCC/Mul (300
The mixed gas of C) is blown onto the surface of the substrate or the glass powder body 22.

これらは予備加熱ヒーター25で1500℃及び加熱ヒ
ーター24で1500℃によつて加熱されガラス微粒子
の流れが形成された。そして冷却ガスとして液化酸素の
蒸気を用いて表面温度を1200℃に保持した。このと
き10mm/Hrのガラス粉末層22が積層した。基板
乃至ガラス粉末層22は10mm/Hrで移動させる。
50Hr試転しロツドとなし14500C30分で焼結
して透明にした後切削し257ftmφのロツドを作り
、これを高周波誘導加熱炉内で200『Cの高温にし、
溶融紡糸して200μmφのフアイバ一を作つた。
These were heated to 1500° C. by the preheating heater 25 and 1500° C. by the heating heater 24 to form a flow of glass particles. The surface temperature was maintained at 1200° C. using liquefied oxygen vapor as a cooling gas. At this time, a glass powder layer 22 of 10 mm/Hr was laminated. The substrate or the glass powder layer 22 is moved at a rate of 10 mm/Hr.
After 50 hours trial run, the rod was sintered at 14500C for 30 minutes to make it transparent, then cut to make a 257ftmφ rod, which was then heated to a high temperature of 200°C in a high frequency induction heating furnace.
A fiber with a diameter of 200 μm was produced by melt spinning.

これに光を伝送したところよく伝わり、λ0.63μm
で10dB/Kmlλ−1.05μmで10dB/Km
の低損失で歪の小さいフアイバ一が出来た。
When light was transmitted through this, it was transmitted well with a wavelength of λ0.63μm.
10dB/Kml at 10dB/Km at λ-1.05μm
A fiber with low loss and low distortion was created.

比較として、上記実験において、冷却ガスを用いない場
合には、基板の移動速度(ガラス粉末層の成長速度)及
びGeO2のドープ量とも半分以下であつた。
For comparison, in the above experiment, when no cooling gas was used, both the substrate movement speed (growth speed of the glass powder layer) and the GeO2 doping amount were less than half.

本発明の方法によつて、GeO2やP2O5のようなS
lO2に比べて蒸発し易い酸化物を半径方向に所望の分
布をつけてより多くドープすることができ、また生成物
の堆積収率を高めることができる。
By the method of the present invention, S such as GeO2 and P2O5
It is possible to dope a larger amount of an oxide that evaporates more easily than lO2 with a desired distribution in the radial direction, and it is also possible to increase the deposition yield of the product.

【図面の簡単な説明】 第1図は従来の方法、第2図は本発明による製造方法の
説明図を示す。 図において、1は基板、2はガラス粉末体、3はノズル
、4はヒーター、5は予備加熱用ヒーター、8は焼結さ
れたガラス塊、9は焼結加熱用ヒーター、22はガラス
粉末層、23はノズル、24は加熱ヒーター、25は予
備加熱用ヒーター、26は冷却用ガス、27はマツフル
をそれぞれ示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a conventional method, and FIG. 2 shows an explanatory diagram of a manufacturing method according to the present invention. In the figure, 1 is a substrate, 2 is a glass powder body, 3 is a nozzle, 4 is a heater, 5 is a heater for preheating, 8 is a sintered glass lump, 9 is a heater for sintering heating, 22 is a glass powder layer , 23 is a nozzle, 24 is a heating heater, 25 is a preheating heater, 26 is a cooling gas, and 27 is a matzuru.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化反応によつて生成したガラス微粒子を回転移動
する基板上に軸方向に積層し、これを透明ガラス化して
光伝送用ガラスを製造する方法において、積層している
ガラス微粒子の表面温度を反応用加熱ヒータとは別に設
けた冷却装置によつて所定の温度分布となし、半径方向
に所望の屈折率分布を有するガラス微粒子体を形成する
ことを特徴とする光伝送用ガラスの製造方法。
1. In a method of manufacturing optical transmission glass by laminating glass particles generated by an oxidation reaction on a rotating substrate in the axial direction and making the glass transparent, the surface temperature of the laminated glass particles is controlled by a reaction. 1. A method of producing a glass for optical transmission, characterized in that a cooling device provided separately from a heating heater is used to achieve a predetermined temperature distribution, and glass fine particles having a desired refractive index distribution in the radial direction are formed.
JP9642076A 1976-08-11 1976-08-11 Method of manufacturing optical transmission glass Expired JPS5925739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9642076A JPS5925739B2 (en) 1976-08-11 1976-08-11 Method of manufacturing optical transmission glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9642076A JPS5925739B2 (en) 1976-08-11 1976-08-11 Method of manufacturing optical transmission glass

Publications (2)

Publication Number Publication Date
JPS5321936A JPS5321936A (en) 1978-02-28
JPS5925739B2 true JPS5925739B2 (en) 1984-06-20

Family

ID=14164475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9642076A Expired JPS5925739B2 (en) 1976-08-11 1976-08-11 Method of manufacturing optical transmission glass

Country Status (1)

Country Link
JP (1) JPS5925739B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510459A (en) * 1978-07-08 1980-01-24 Nippon Telegr & Teleph Corp <Ntt> Production of fiber base material for light communication and burner for production
JPS5654241A (en) * 1979-10-12 1981-05-14 Hitachi Ltd Preparation of optical fiber matrix

Also Published As

Publication number Publication date
JPS5321936A (en) 1978-02-28

Similar Documents

Publication Publication Date Title
JPS6021929B2 (en) Method for manufacturing optical glass structures
JP2017007941A (en) Production method of glass preform
KR100286271B1 (en) Manufacturing method of optical waveguide preform
JPS5925739B2 (en) Method of manufacturing optical transmission glass
JPH038737A (en) Production of preform for optical fiber
JPS6131324A (en) Production of base material for optical fiber
KR910010208A (en) Process for preparing preforms treated with metal oxides
JP3078590B2 (en) Manufacturing method of synthetic quartz glass
JPH0818843B2 (en) Method for manufacturing preform for optical fiber
JP3635906B2 (en) Optical fiber preform manufacturing method
JPS6259063B2 (en)
JPS5924097B2 (en) Glass body manufacturing method
JPS6374932A (en) Production of preform for optical fiber
Schultz Vapor phase materials and processes for glass optical waveguides
JPS6230144B2 (en)
JPS63222042A (en) Optical fiber preform and production thereof
JPH0733467A (en) Production of porous glass preform for optical fiber
JPS60103049A (en) Structure of optical glass
JPS596260B2 (en) Method for manufacturing graded index type optical fiber base material
JPS59137333A (en) Manufacture of base material for optical fiber
JPH0561210B2 (en)
JPH04349147A (en) Radiation-resistant optical fiber and its production
JPS5935847B2 (en) Glass fiber for optical transmission - manufacturing method of base material
JPS6253449B2 (en)
JPS62292648A (en) Production of optical fiber base material