JPH0920531A - High-strength quartz glass foam - Google Patents

High-strength quartz glass foam

Info

Publication number
JPH0920531A
JPH0920531A JP18667995A JP18667995A JPH0920531A JP H0920531 A JPH0920531 A JP H0920531A JP 18667995 A JP18667995 A JP 18667995A JP 18667995 A JP18667995 A JP 18667995A JP H0920531 A JPH0920531 A JP H0920531A
Authority
JP
Japan
Prior art keywords
layer
density
quartz glass
foam
glass foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18667995A
Other languages
Japanese (ja)
Inventor
Fujio Iwatani
富士雄 岩谷
Hiroshi Kimura
博至 木村
Shinji Hashiya
信治 橋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP18667995A priority Critical patent/JPH0920531A/en
Publication of JPH0920531A publication Critical patent/JPH0920531A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/08Other methods of shaping glass by foaming
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • C03C11/007Foam glass, e.g. obtained by incorporating a blowing agent and heating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE: To obtain a lightweight foam, excellent in heat insulating properties and low expansibility, having a high mechanical strength and excellent in shape stability at high temperatures by laminating layers of different densities and providing a quartz glass, having a specific whole apparent specific gravity and comprising closed cells. CONSTITUTION: This high-strength quartz glass foam has a multilayered structure having laminated two or more kinds of layers of different densities and 0.2-1.7g/cm<3> whole apparent density in the quartz glass foam containing cells mainly comprising closed cells. The multilayered structure preferably has a layer structure having a thicker layer of a layer having a lower density than the average apparent density than that of a layer having a high density and the density of the layer having the highest density is higher than that of a layer having the lowest density by at least 0.3g/cm<3> . The thickness of the layer having the highest density is <=2mm, preferably <=1mm. Thereby, the actions of the layer having the highest density are limited to those as a boundary layer for reinforcing the layer having the low density without deteriorating the reduction in weight.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、石英ガラス発泡体、更
に詳しくは密度の異なる2種類以上の層が複数積層した
高強度石英ガラス発泡体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz glass foam, and more particularly to a high strength quartz glass foam in which two or more layers having different densities are laminated.

【0002】[0002]

【従来技術】従来、石英ガラス発泡体は、軽量で断熱性
に優れ、しかも低膨張性であるところから炉の保温断熱
構造材や軽量反射鏡の基体等に幅広く利用されてきた。
前記石英ガラス発泡体は、石英粉又はガラス粉にカーボ
ン粉やSi34等の発泡剤を添加混合し、発泡させる方
法、或は多孔質シリカ母材とアンモニアとを反応させ、
それを高温下で加熱発泡させる方法(特公平6−249
99号公報)等で製造されてきた。ところが、前記製造
方法等で製造された石英ガラス発泡体は、軽量で断熱性
に優れているが、元来ガラス質の多孔質構造体であると
ころから、局部的な力や、大きな曲げ負荷で簡単に破損
したり、或はセルが潰れて発泡体が崩壊し構造材料とし
て機械的強度が不十分であった。また前記石英ガラス発
泡体を炉の構造材として使用すると、例えば1200℃
以上の高温で軟化変形し、形状安定性にも欠ける欠点が
あった。
2. Description of the Related Art Conventionally, a quartz glass foam has been widely used as a heat insulating and heat insulating structural material of a furnace, a base of a light reflecting mirror, etc. because of its light weight, excellent heat insulating property and low expansion property.
The quartz glass foam is obtained by adding and mixing quartz powder or glass powder with a blowing agent such as carbon powder or Si 3 N 4, or by foaming, or by reacting a porous silica matrix with ammonia.
Method of heating and foaming it at high temperature (Japanese Patent Publication No. 6-249
No. 99 publication) and the like. However, the quartz glass foam produced by the above-mentioned production method or the like is lightweight and excellent in heat insulating property, but since it is a glassy porous structure from the beginning, a local force or a large bending load is applied. It was easily broken or the cells were crushed and the foam collapsed, resulting in insufficient mechanical strength as a structural material. When the quartz glass foam is used as a structural material of a furnace, for example, 1200 ° C.
However, it has the drawbacks of being softened and deformed at high temperatures and lacking in shape stability.

【0003】[0003]

【発明が解決しようとする課題】こうした現状に鑑み、
本発明者等は鋭意研究を続けた結果、独立気泡からな
り、密度の異なる2種類以上の層が複数積層した多層構
造とした上に、平均見掛け密度を0.2〜1.7g/c
3とすることで、軽量で断熱性、低膨張性に優れると
ともに、機械的強度が高く、高温における形状安定性の
優れた石英ガラス発泡体が得られることを見出し、本発
明を完成したものである。
In view of the current situation,
As a result of earnest studies, the inventors of the present invention have a multilayer structure in which two or more layers having different densities and having different densities are laminated, and the average apparent density is 0.2 to 1.7 g / c.
It was found that the use of m 3 makes it possible to obtain a quartz glass foam that is lightweight, has excellent heat insulating properties and low expansion properties, has high mechanical strength, and has excellent shape stability at high temperatures, and completed the present invention. Is.

【0004】すなわち、本発明は、軽量で、断熱性が高
く、低膨張性であるとともに機械的強度が高く、しかも
高温における形状安定性が優れた石英ガラス発泡体を提
供することを目的とする。
That is, an object of the present invention is to provide a quartz glass foam which is lightweight, has a high heat insulating property, a low expansion property, a high mechanical strength, and an excellent shape stability at high temperatures. .

【0005】また、本発明は、密度の異なる2種類以上
の層が複数積層した多層構造の石英ガラス発泡体を提供
することを目的とする。
Another object of the present invention is to provide a quartz glass foam having a multilayer structure in which a plurality of layers of two or more kinds having different densities are laminated.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明は、気泡が主として独立気泡からなる石英ガラス発泡
体において、密度の異なる2種類以上の層が複数積層し
た多層構造で、全体の平均見掛け密度が0.2〜1.7
g/cm3であることを特徴とする高強度石英ガラス発
泡体に係る。
Means for Solving the Problems The present invention, which achieves the above object, has a multilayer structure in which two or more types of layers having different densities are laminated in a quartz glass foam whose cells are mainly closed cells, and the average of the whole. Apparent density is 0.2 to 1.7
It relates to a high-strength quartz glass foam characterized in that it is g / cm 3 .

【0007】上記のとおり本発明の石英ガラス発泡体
は、気泡が独立気泡からなり立体的な強度が高い上に、
密度の異なる2種類以上の層が複数積層した多層構造と
なっており、密度の高い層が低い層を補強し機械強度を
高くしている。さらに、全体の平均見掛け密度が0.2
〜1.7g/cm3の範囲にあり軽量な石英ガラス発泡
体の特性を保持している。前記多層構造としては、平均
見掛け密度より密度が低い層が密度の高い層より厚い層
構造を有し、しかも密度が最も高い層の密度が最も低い
層の密度より少なくとも0.3g/cm3高くなってい
るのが好ましい。前記層構造を有することにより本発明
の石英ガラス発泡体は、層に垂直の方向及びそれと平行
方向の曲げ強度、圧縮強度などの機械的強度が高く、か
つ高温における形状安定性を高く保持できる。前記層構
造が維持されないと、軽量化と機械的強度の向上のバラ
ンスができず、石英ガラス発泡体の有する特性を維持で
きない。特に密度の最も高い層の厚みが2mm以下、好
ましくは1mm以下であることにより、前記層が密度の
低い層を補強するものの境界層としての作用にとどま
り、軽量化が損なわれることがない。
As described above, the quartz glass foam of the present invention has high three-dimensional strength because the cells are closed cells and
It has a multilayer structure in which two or more types of layers having different densities are laminated, and the high density layer reinforces the low layer to increase the mechanical strength. In addition, the average bulk density is 0.2
Within the range of up to 1.7 g / cm 3 , the characteristics of the lightweight quartz glass foam are retained. The multilayer structure has a layer structure in which a layer having a density lower than the average apparent density is thicker than a layer having a high density, and the layer having the highest density is at least 0.3 g / cm 3 higher than the density of the layer having the lowest density. Is preferred. By having the layered structure, the quartz glass foam of the present invention has high mechanical strength such as bending strength and compressive strength in a direction perpendicular to the layer and a direction parallel to the layer, and can maintain high shape stability at high temperature. If the layer structure is not maintained, the balance between weight reduction and improvement in mechanical strength cannot be balanced, and the properties of the quartz glass foam cannot be maintained. In particular, when the thickness of the layer having the highest density is 2 mm or less, preferably 1 mm or less, the layer only reinforces the layer having a low density, but only acts as a boundary layer, and the weight reduction is not impaired.

【0008】本発明の石英ガラス発泡体は、以下の製造
方法で製造される。すなわち(i)珪素ハロゲン化物を
酸素、水素とともに加水分解用バーナーに供給し、酸水
素火炎で加水分解してすす状シリカ微粒子を生成し、そ
れをターゲット上に堆積させ多孔質シリカ母材を製造す
るに当り、酸水素火炎バーナーを周期的にターゲット上
を移動させるか、原料の供給量を変動させるか、或は前
記両者を変動させて密度の異なる層を複数有する多孔質
シリカ母材を形成し、それをアンモニアガス雰囲気中で
800〜1300℃で処理して発泡体前駆体としたの
ち、1350〜1800℃で30〜120分間加熱発泡
する方法、及び(ii)多孔質シリカ粉体を例えばアン
モニアガス処理しするか、或はカーボン粉、窒化珪素等
の発泡剤を混入した前記粉体を高温で発泡処理して得ら
れた発泡体を複数層積み重ね、それを1600〜180
0℃で融着一体化する方法。前記(i)の製造方法で発
泡温度が1350℃未満では、十分な発泡が行われない
ばかりでなく、独立気泡内に活性なアンモニアガスが熱
分解されずに残留し、また1800℃を超えると発泡が
進行し過ぎて連通気泡の発泡体が形成され不都合であ
る。好ましい発泡度は、見掛け密度0.25〜1.7g
/cm3の範囲である。前記範囲の見掛け密度を有する
発泡体は、粗な層の密度が0.1〜1.4g/cm3
密な層の密度が0.5〜2.2g/cm3となる。
The quartz glass foam of the present invention is manufactured by the following manufacturing method. That is, (i) a silicon halide is supplied to a burner for hydrolysis together with oxygen and hydrogen and hydrolyzed by an oxyhydrogen flame to generate soot-like silica fine particles, which are deposited on a target to produce a porous silica base material. In doing so, the oxyhydrogen flame burner is periodically moved over the target, the feed amount of the raw material is changed, or both are changed to form a porous silica base material having a plurality of layers with different densities. Then, it is treated at 800 to 1300 ° C. in an ammonia gas atmosphere to form a foam precursor, and then heat-foamed at 1350 to 1800 ° C. for 30 to 120 minutes, and (ii) a porous silica powder, for example. A plurality of layers of foams obtained by treating with ammonia gas or by foaming the powders mixed with a foaming agent such as carbon powder or silicon nitride at high temperature are stacked, 00-180
A method of fusion and integration at 0 ° C. When the foaming temperature is lower than 1350 ° C. in the manufacturing method of (i), not only sufficient foaming is not performed, but also active ammonia gas remains in the closed cells without being thermally decomposed, and when it exceeds 1800 ° C. This is inconvenient because the foaming proceeds too much to form a foam having open cells. The preferred foaming degree is an apparent density of 0.25 to 1.7 g.
/ Cm 3 . The foam having an apparent density in the above range has a coarse layer density of 0.1 to 1.4 g / cm 3 ,
The density of the dense layer is 0.5 to 2.2 g / cm 3 .

【0009】[0009]

【実施例】次に具体例に基づいて本発明を詳細に説明す
るが、本発明はそれにより限定されるものではない。
EXAMPLES The present invention will now be described in detail based on specific examples, but the present invention is not limited thereto.

【0010】実施例1 酸水素火炎バーナーに酸素0.4Nm3/h、水素1.
8Nm3/h及び酸素0.2Nm3/hをキャリアガスと
する気体四塩化珪素1500g/hを供給しすす状シリ
カ微粒子を生成し、それを高純度の平面円盤状で厚さ3
0mm、直径400mmφのアルミナターゲットに吹き
付け、堆積させた。前記ターゲットは、65rpmで回
転しており、バーナーが前記ターゲットに平行に300
mm/minの速度で往復運動している。原料の気体四
塩化珪素は1500g/hを5分、1000g/hを8
分の間隔で供給され、厚さ150mm、直径350mm
φの円盤状多孔質シリカ母材が形成された。得られた円
盤状多孔質シリカ母材に、アンモニアガス0.01Nm
3/hを同伴する窒素ガスを0.1Nm3/h流しなが
ら、電気炉にて1200℃で4.5時間加熱保持し発泡
前駆体を形成した。次いで前記発泡前駆体を電気炉に入
れ1750℃で30分間加熱発泡し、厚さ280mm、
直径370mmφの平均見掛け密度0.39g/cm3
の石英ガラス発泡体を製造した。前記発泡体を厚さ方向
に2等分し、その切り口を観察したところ、どの切り口
にも空洞の発生がなく、平行な層状模様がみられた。ま
た、密度の高い発泡層を切り出して調べたところ、おお
よその厚みが5〜6mm、密度が0.65g/cm3
あった。一方、密度の粗の発泡層を切り出したところ、
そのおおよその厚みは7〜8mm、密度は0.20g/
cm3であった。
Example 1 An oxygen-hydrogen flame burner was charged with oxygen 0.4 Nm 3 / h, hydrogen 1.
8 nm 3 / h and oxygen 0.2 Nm 3 / h was generated by supplying sooty silica particles gaseous silicon tetrachloride 1500 g / h for a carrier gas, it thicknesses in high purity planar disc-like of 3
It was sprayed and deposited on an alumina target having a diameter of 0 mm and a diameter of 400 mmφ. The target is rotating at 65 rpm and the burner is parallel to the target for 300
It reciprocates at a speed of mm / min. The raw material gas silicon tetrachloride is 1500 g / h for 5 minutes and 1000 g / h for 8 minutes.
Supplied in minutes, thickness 150 mm, diameter 350 mm
A discoidal porous silica matrix of φ was formed. 0.01 Nm of ammonia gas was added to the obtained disk-shaped porous silica matrix.
A foaming precursor was formed by heating and holding at 1200 ° C. for 4.5 hours in an electric furnace while flowing a nitrogen gas accompanied with 3 / h in an amount of 0.1 Nm 3 / h. Next, the foaming precursor is placed in an electric furnace and heated and foamed at 1750 ° C. for 30 minutes to have a thickness of 280 mm,
Average apparent density of 370 mmφ 0.39 g / cm 3
Of quartz glass foam were manufactured. The foam was divided into two equal parts in the thickness direction and the cut edges were observed. As a result, no cavities were generated at any of the cut edges and a parallel layered pattern was observed. Moreover, when the foamed layer having a high density was cut out and examined, the approximate thickness was 5 to 6 mm and the density was 0.65 g / cm 3 . On the other hand, when the coarse foam layer of density was cut out,
Its approximate thickness is 7-8 mm and its density is 0.20 g /
cm 3 .

【0011】上記発泡体を層に平行な方向に長さ150
mm、幅50mm、垂直方向の高さ50mmの角柱をサ
ンプルとし、スパン140mmで曲げ試験を行った。ま
た、高温曲げ試験を、層に平行な方向に長さ210m
m、幅30mm、垂直方向の高さ30mmの角柱で、ス
パン200mm、1280℃、20時間の加熱下で行っ
た。それらの結果を、表1に示す。
The foam has a length of 150 in the direction parallel to the layers.
A bending test was performed with a span of 140 mm using a prism having a size of 50 mm, a width of 50 mm and a vertical height of 50 mm as a sample. In addition, a high temperature bending test was conducted with a length of 210 m in the direction parallel to the layers.
m, width 30 mm, vertical height 30 mm, prism, span 200 mm, heating at 1280 ° C. for 20 hours. The results are shown in Table 1.

【0012】実施例2 酸水素火炎バーナーに酸素0.4Nm3/h、水素1.
8Nm3/h及び酸素0.2Nm3/hをキャリアガスと
する気体四塩化珪素1500g/hを供給してすす状シ
リカ微粒子を生成し、それを無作為に堆積させた。それ
を集めて石英ガラス容器(内径400×深さ300)の
中に入れ、窒素ガス0.5Nm3/hをキャリアガスと
してアンモニアガスを0.2Nm3/h流しながら、電
気炉で850℃で4.5時間加熱し発泡体前駆体を形成
した。次いで前記発泡体前駆体を内径370mmのカー
ボン型中で100g/cm2の圧力でプレスしたのち同
型内で1850℃に30分間加熱保持し発泡した。得ら
れた石英ガラス発泡体は厚さ約10mm、直径370m
mで、見掛け密度0.35g/cm3のほぼ均一な発泡
体であった。その発泡体の外観は、高温で発泡したため
融けて収縮した光沢のある滑らかの表面層を有してい
た。
Example 2 A oxyhydrogen flame burner was used with oxygen 0.4 Nm 3 / h, hydrogen 1.
Soot-like silica fine particles were produced by supplying 1500 g / h of gaseous silicon tetrachloride with 8 Nm 3 / h and oxygen of 0.2 Nm 3 / h as a carrier gas, and the soot-like silica fine particles were randomly deposited. Collect them and put them in a quartz glass container (inner diameter 400 × depth 300), and use ammonia gas at 0.5 Nm 3 / h as carrier gas, while flowing ammonia gas at 0.2 Nm 3 / h, at 850 ° C. in an electric furnace. It was heated for 4.5 hours to form a foam precursor. Next, the foam precursor was pressed in a carbon mold having an inner diameter of 370 mm at a pressure of 100 g / cm 2 , and then heated and held at 1850 ° C. for 30 minutes in the same mold to foam. The obtained quartz glass foam has a thickness of about 10 mm and a diameter of 370 m.
It was a substantially uniform foam having an apparent density of 0.35 g / cm 3 at m. The appearance of the foam had a glossy and smooth surface layer that melted and contracted due to foaming at high temperature.

【0013】上記発泡体を16個準備し、それを積み重
ね1800℃の温度で加熱一体化したところ、全体の平
均見掛け密度は0.4g/cm3で、外径370mm、
厚さ150mmの円盤状石英ガラス発泡体が得られた。
上記発泡体を実施例1と同様に2等分し観察したとこ
ろ、どの切り口にも、平行な層状模様があり、その境界
層は、積層前の発泡体の表面光沢層が融着し微細な気泡
が密集した高密度薄膜層であった。また前記境界層を切
り取り調べたところ、おおよそ厚みが1mm、密度が
1.1g/cm3であった。一方、密度の粗な発泡層
は、おおよそ厚みが8〜9mm、密度が0.25g/c
3であった。
Sixteen of the above foams were prepared and stacked and heat-integrated at a temperature of 1800 ° C., the average apparent density of the whole was 0.4 g / cm 3 , and the outer diameter was 370 mm.
A disk-shaped quartz glass foam having a thickness of 150 mm was obtained.
When the above foam was divided into two equal parts and observed in the same manner as in Example 1, there was a parallel layered pattern at every cut, and the boundary layer was a fine layer due to the surface gloss layer of the foam before lamination being fused. It was a high-density thin film layer in which air bubbles were dense. When the boundary layer was cut out and examined, the thickness was approximately 1 mm and the density was 1.1 g / cm 3 . On the other hand, the coarse foam layer has a thickness of approximately 8 to 9 mm and a density of 0.25 g / c.
m 3 .

【0014】上記石英ガラス発泡体について実施例1と
同様に曲げ試験及び高温曲げ試験を行った。その結果を
表1に示す。
A bending test and a high temperature bending test were conducted on the above-mentioned quartz glass foam in the same manner as in Example 1. Table 1 shows the results.

【0015】比較例1 酸水素火炎バーナーに酸素0.4Nm3/h、水素1.
8Nm3/h及び酸素0.2Nm3/hをキャリアガスと
する気体四塩化珪素1500g/hを供給して生成した
すす状シリカ微粒子を集めて石英ガラス容器(内径40
0×深さ300)の中に入れ、窒素ガス0.5Nm3
hをキャリアガスとしてアンモニアガスを0.2Nm3
/h流しながら、電気炉で850℃で4.5時間加熱し
発泡体前駆体を形成した。次いで前記発泡体前駆体を内
径370mmのカーボン型中で100g/cm2の圧力
でプレスしたのち同型内で1750℃に30分間加熱保
持し発泡した。得られた石英ガラス発泡体は厚さ300
mm、直径370mmの見掛け密度0.4g/cm3
発泡体であった。この発泡体について実施例2と同様に
2等分し観察したところ、層構造がなく、10〜20m
mの空洞が多数みられた。さらに、曲げ破壊試験及び高
温曲げ試験について実施例2と同様に行った。その結果
を表1に示す。
Comparative Example 1 Oxygen hydrogen flame burner was used with oxygen 0.4 Nm 3 / h, hydrogen 1.
Soot-like silica fine particles produced by supplying 1500 g / h of gaseous silicon tetrachloride having a carrier gas of 8 Nm 3 / h and oxygen of 0.2 Nm 3 / h were collected and a quartz glass container (inner diameter 40
0x depth 300) and put in nitrogen gas 0.5 Nm 3 /
Ammonia gas is 0.2 Nm 3 with h as carrier gas.
/ H flow for 4.5 hours at 850 ° C. in an electric furnace to form a foam precursor. Next, the foam precursor was pressed in a carbon mold having an inner diameter of 370 mm at a pressure of 100 g / cm 2 , and then heated and held at 1750 ° C. for 30 minutes in the same mold to foam. The obtained quartz glass foam has a thickness of 300
It was a foam having an apparent density of 0.4 g / cm 3 and a diameter of 370 mm. When this foam was divided into two equal parts and observed in the same manner as in Example 2, there was no layer structure, and 10 to 20 m
Many cavities of m were seen. Further, the bending fracture test and the high temperature bending test were performed in the same manner as in Example 2. Table 1 shows the results.

【0016】[0016]

【表1】 [Table 1]

【0017】上記表1から明らかなように本発明の発泡
体は、比較例1の発泡体に比べて曲げ強度が約1.5〜
2倍向上している。さらに高温における撓み量が比較例
1の発泡体の約1/2と高温形状安定性が優れているこ
とがわかる。
As is clear from Table 1 above, the foam of the present invention has a flexural strength of about 1.5 to 10 as compared with the foam of Comparative Example 1.
It's doubled. Further, it can be seen that the amount of flexure at high temperature is about 1/2 of that of the foam of Comparative Example 1, which is excellent in high-temperature shape stability.

【0018】〈石英ガラス発泡体の機械的特性評価〉実
施例1の製造において、バーナーへの気体四塩化珪素の
供給量及びターゲットの移動周期を変えて試験番号1〜
7の石英ガラス発泡体を製造した。前記発泡体の平均見
掛け密度、層密度及び層厚を測定したところ表2に示す
とおりであった。前記実施例の各試験例の破壊強度と、
比較例1の製造方法で得られた発泡体であって前記各試
験例の見掛け密度と同一の発泡体(以下基準発泡体とい
う)の強度比(以下強度比という)を層厚比に対応して
求め、それを平均見掛け密度とともに図1に示す。
<Evaluation of Mechanical Properties of Quartz Glass Foam> In the manufacture of Example 1, test numbers 1 to 1 were changed by changing the supply amount of gaseous silicon tetrachloride to the burner and the moving cycle of the target.
A quartz glass foam of 7 was produced. The average apparent density, layer density and layer thickness of the foam were measured and the results are shown in Table 2. Fracture strength of each test example of the example,
The strength ratio (hereinafter referred to as the strength ratio) of the foam obtained by the manufacturing method of Comparative Example 1 and having the same apparent density as each of the above-mentioned test examples (hereinafter referred to as the reference foam) corresponds to the layer thickness ratio. The average apparent density and the average apparent density are shown in FIG.

【0019】[0019]

【表2】 [Table 2]

【0020】さらに、実施例1と同様な方法で石英ガラ
ス発泡体を製造するに当り、層厚を一定にした試験片8
〜13を作成し、その平均見掛け密度及び層密度を測定
した。その結果を表3に示す。前記測定結果と強度比及
び軽量化率を図2に示す。なお、軽量化率は、各試験例
8〜13において最も密度の大きい層の密度に対する平
均見掛け密度で表わした。
Further, in manufacturing the quartz glass foam by the same method as in Example 1, a test piece 8 having a constant layer thickness was used.
13 were prepared and the average apparent density and layer density were measured. Table 3 shows the results. FIG. 2 shows the measurement result, strength ratio, and weight reduction ratio. The weight reduction rate was represented by the average apparent density with respect to the density of the layer having the highest density in each of Test Examples 8 to 13.

【0021】[0021]

【表3】 [Table 3]

【0022】上記表3及び図3から明らかなように本発
明の石英ガラス発泡体は、層厚比が1以上であると強度
比が1.5以上となり、機械的強度が優れている。ま
た、密度差が0.3kg/cm3以上であると軽量化率
が60%以下と軽量であるにもかかわらず、強度比が
1.1以上と高い強度を示す。
As is clear from Table 3 and FIG. 3, the quartz glass foam of the present invention has a strength ratio of 1.5 or more when the layer thickness ratio is 1 or more, and is excellent in mechanical strength. Further, if the density difference is 0.3 kg / cm 3 or more, the strength ratio is 1.1 or more, which is high, even though the weight reduction rate is 60% or less and the weight is light.

【0023】[0023]

【発明の効果】本発明の石英ガラス発泡体は、軽量であ
るが、密度の高い層が補強層となって密度の低い層を保
持し、曲げ強度などの機械的強度を高くするとともに、
高温における形状安定性を良好にするため各種構造材、
特に炉の構造材として有用である。
The quartz glass foam of the present invention is lightweight, but the high-density layer serves as a reinforcing layer to retain the low-density layer and enhances mechanical strength such as bending strength.
Various structural materials to improve shape stability at high temperature,
It is particularly useful as a structural material for furnaces.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、2点曲げ破壊試験に基づく石英ガラス
発泡体の層厚比に対する強度比及び平均見掛け密度の関
係を示すグラフである。曲線1は、平均見掛け密度を示
し、曲線2は、強度比を示す。
FIG. 1 is a graph showing a relationship between a strength ratio and an average apparent density with respect to a layer thickness ratio of a silica glass foam based on a two-point bending fracture test. Curve 1 shows the average apparent density and curve 2 shows the intensity ratio.

【図2】図2は、2点曲げ破壊試験に基づく石英ガラス
発泡体の層の密度差に対する強度比及び平均見掛け密度
の関係を示すグラフである。曲線3は軽量化率を示し、
曲線4は強度比を示す。
FIG. 2 is a graph showing the relationship between the strength ratio and the average apparent density with respect to the difference in layer density of the quartz glass foam based on the two-point bending fracture test. Curve 3 shows the weight reduction rate,
Curve 4 shows the intensity ratio.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】気泡が主として独立気泡からなる石英ガラ
ス発泡体において、密度の異なる2種類以上の層が複数
積層した多層構造で、全体の平均見掛け密度が0.2〜
1.7g/cm3であることを特徴とする高強度石英ガ
ラス発泡体。
1. A quartz glass foam having mainly closed cells, which has a multi-layer structure in which two or more layers having different densities are laminated, and the average apparent density of the whole is 0.2 to
High-strength quartz glass foam characterized in that it is 1.7 g / cm 3 .
【請求項2】平均見掛け密度より低い密度を有する層厚
が、高い密度を有する層厚より厚いことを特徴とする請
求項1記載の高強度石英ガラス発泡体。
2. The high-strength quartz glass foam according to claim 1, wherein the layer thickness having a density lower than the average apparent density is thicker than the layer thickness having a high density.
【請求項3】最も密度の高い層が最も密度の低い層より
少なくとも0.3g/cm3高い密度を有することを特
徴とする請求項1記載の高強度石英ガラス発泡体。
3. The high strength fused silica foam of claim 1, wherein the densest layer has a density that is at least 0.3 g / cm 3 higher than the least dense layer.
【請求項4】最も高い密度のを有する層厚が2mm以下
であることを特徴とする請求項1記載の高強度石英ガラ
ス発泡体。
4. The high-strength quartz glass foam according to claim 1, wherein the layer thickness having the highest density is 2 mm or less.
JP18667995A 1995-06-30 1995-06-30 High-strength quartz glass foam Pending JPH0920531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18667995A JPH0920531A (en) 1995-06-30 1995-06-30 High-strength quartz glass foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18667995A JPH0920531A (en) 1995-06-30 1995-06-30 High-strength quartz glass foam

Publications (1)

Publication Number Publication Date
JPH0920531A true JPH0920531A (en) 1997-01-21

Family

ID=16192757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18667995A Pending JPH0920531A (en) 1995-06-30 1995-06-30 High-strength quartz glass foam

Country Status (1)

Country Link
JP (1) JPH0920531A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069194A1 (en) * 2006-12-05 2008-06-12 Shin-Etsu Quartz Products Co., Ltd. Synthetic opaque quartz glass and process for production thereof
JP2009063065A (en) * 2007-09-06 2009-03-26 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2011007315A (en) * 2009-06-29 2011-01-13 Kyocera Corp Jointing structure and method for manufacturing jointing structure, and photo electric conversion device and method for manufacturing photo electric conversion device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008069194A1 (en) * 2006-12-05 2008-06-12 Shin-Etsu Quartz Products Co., Ltd. Synthetic opaque quartz glass and process for production thereof
JP5314429B2 (en) * 2006-12-05 2013-10-16 信越石英株式会社 Synthetic opaque quartz glass and method for producing the same
US10843954B2 (en) 2006-12-05 2020-11-24 Shin-Etsu Quartz Products Co., Ltd. Synthetic opaque quartz glass and method for producing the same
JP2009063065A (en) * 2007-09-06 2009-03-26 Hitachi Appliances Inc Vacuum heat insulating material and refrigerator using the same
JP2011007315A (en) * 2009-06-29 2011-01-13 Kyocera Corp Jointing structure and method for manufacturing jointing structure, and photo electric conversion device and method for manufacturing photo electric conversion device

Similar Documents

Publication Publication Date Title
Mackenzie Sol-gel research—achievements since 1981 and prospects for the future
US10843954B2 (en) Synthetic opaque quartz glass and method for producing the same
CN1012641B (en) Method for fabricating articles which include high silica glass bodies and articles formed thereby
KR960705742A (en) Quartz glass molded body and its manufacturing method
JP4038137B2 (en) Dispersion containing silicon-titanium-mixed oxide powder, method for producing the same, molded product produced thereby, method for producing the same, glass molded article, method for producing the same, and use thereof
JPH07300324A (en) Production of heat-resistant synthetic quartz glass
US5229336A (en) Method of producing oxynitride glass
JPH0920531A (en) High-strength quartz glass foam
JP2000504668A (en) Opaque quartz glass product and manufacturing method
JPS62105936A (en) Production of quartz glass
JP3839537B2 (en) Production method of opaque quartz glass containing fine bubbles
JP3770412B2 (en) Manufacturing method of high strength quartz glass foam
JP2875686B2 (en) High purity silica glass foam and method for producing the same
US4083708A (en) Forming a glass on a substrate
JPS6346015B2 (en)
JPS58500284A (en) Porous shaped body made of sintered glassy and/or crystalline material and method for producing such a porous shaped body
KR850006384A (en) Method of manufacturing preform for optical fiber
JP4035793B2 (en) Method for producing opaque quartz glass ring having transparent portion
JPS62207743A (en) Foam glass
JP4035794B2 (en) Method for producing opaque quartz glass ring
JPH0491226A (en) Production of silicon nitride coated fiber
JPH1029836A (en) Production of quartz glass expanded body
JPH0915408A (en) Quartz glass reflection mirror blank and its production
JPH0218291B2 (en)
Jana et al. Silicon carbide-based lightweight mirror blanks for space optics applications

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040123

A131 Notification of reasons for refusal

Effective date: 20041020

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20041210

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20050502

Free format text: JAPANESE INTERMEDIATE CODE: A02