JPS58203221A - Pneumatic bearing mechanism - Google Patents

Pneumatic bearing mechanism

Info

Publication number
JPS58203221A
JPS58203221A JP8646682A JP8646682A JPS58203221A JP S58203221 A JPS58203221 A JP S58203221A JP 8646682 A JP8646682 A JP 8646682A JP 8646682 A JP8646682 A JP 8646682A JP S58203221 A JPS58203221 A JP S58203221A
Authority
JP
Japan
Prior art keywords
air
rotary shaft
bearing
pressure
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8646682A
Other languages
Japanese (ja)
Other versions
JPH0517408B2 (en
Inventor
Masami Masuda
正美 桝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8646682A priority Critical patent/JPS58203221A/en
Publication of JPS58203221A publication Critical patent/JPS58203221A/en
Publication of JPH0517408B2 publication Critical patent/JPH0517408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0681Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load
    • F16C32/0685Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load for radial load only

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Turning (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To provide precise alignment by forming restrictor orifices in a rotary shaft and supplying controlled high pressure air from the interior of the rotary shaft toward opposite orifices. CONSTITUTION:When compressed airs Psa and Psb are independently fed in air supply passageways 5a and 5b, axial position of a rotary shaft 1 may be determined by the balance between air pressures which are supplied between a rotary shaft 1 and a bearing 2. Consequently, by controlling pressures Psa and Psb of said compressed airs, alignment of the rotary shaft 1 may be achieved in accordance with the differential pressure between ejected airs from orifices 3a and 3e, 3b and 3f, 3c and 3g, and 3d and 3h opposite to each other, respectively. When the rotary shaft 1 is turned in aid conditions, a pneumatic bearing can make self and orbital revolution with arbitrary linear and angular eccentricity of its axis.

Description

【発明の詳細な説明】 この発明は、加工機や測定器において、チャッキング等
による偏心を吸収できるように精密調心でき、かつ自公
転可能な空気軸受機構を提供するにある。
DETAILED DESCRIPTION OF THE INVENTION The object of the present invention is to provide an air bearing mechanism that can be precisely aligned to absorb eccentricity caused by chucking or the like and can rotate around its axis in a processing machine or a measuring instrument.

加工機や測定器の回転軸に、被加工物または被測定物を
精度の高い同心度、例えばミクロンまたはサブミクロン
オーダでチャッキングすることは極めて離しい。従来、
真円度針等の測定器ではマイクロメータヘッドを用いて
、被測定物が載ったテーブルを、回転軸心に対して相対
的に微小位置決めできる構成にするなどして同心度を高
めていた。
It is extremely difficult to chuck a workpiece or an object to be measured on a rotating shaft of a processing machine or a measuring instrument with high concentricity, for example, on the order of microns or submicrons. Conventionally,
Measuring instruments such as roundness needles use micrometer heads to improve concentricity by configuring the table on which the object to be measured can be minutely positioned relative to the rotational axis.

しかし、この種のテーブルでは位置決め精度を高めるた
めに、テーブルプd@面の摩擦を小さくしているが、こ
のことが逆に動的に不安定にさせ、振動を生じ易いなど
測定器としての機能を十分に発揮しない。また加工機に
おけるこの種の微小位置決め方式の調心機構では、微小
な高周波振動を生じ易いなどの欠点かあり、実用に供し
得なかった。
However, in order to improve the positioning accuracy of this type of table, the friction of the table d@ surface is reduced, but this results in dynamic instability and vibrations, making it difficult to use as a measuring instrument. Does not perform its functions adequately. Furthermore, the alignment mechanism of this type of micro-positioning system in processing machines has drawbacks such as the tendency to generate minute high-frequency vibrations, and cannot be put to practical use.

この発明の目的は、上記従来技術の欠点をなくし、高精
度でしかも剛性の高い微調心機能をもつ自公転可能な空
気軸受機構を提供するにある。
An object of the present invention is to eliminate the drawbacks of the above-mentioned prior art and to provide an air bearing mechanism capable of rotating around its axis and having a fine centering function with high precision and high rigidity.

この発明イマ、固定された軸受側に高圧空気供給用の絞
りを設ける代りに、回転軸側に絞りを設け、回転軸内部
から対向した絞りへ圧力を制御した高圧空気を供給する
空気軸受構造としたものである。
This invention now has an air bearing structure in which instead of providing a restriction for supplying high-pressure air on the fixed bearing side, a restriction is provided on the rotating shaft side and high-pressure air with controlled pressure is supplied from inside the rotating shaft to the opposing restriction. This is what I did.

以下、この発明の一実施例を第1図および第2図につい
て説明する。まず構成を説明する。なお、各図中、同一
または同等のものには同一の符号を付ける。第1図は、
回転軸に直角な断面図を示し、第2図は、第1図の縦断
面図(但し、回転軸は裁断してない)を示す。回転軸l
は、中空円筒状軸受2の穴に僅かな間隙をもって嵌合し
ている。軸受2の回転軸方向のほぼ中央にあたる回転軸
lの位置の外周面には、円周方向に等間隔に複数個(こ
の実施例では8個)の絞り3L  3b+・・・・・・
3g。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. First, the configuration will be explained. In each figure, the same or equivalent parts are given the same reference numerals. Figure 1 shows
A sectional view perpendicular to the rotation axis is shown, and FIG. 2 is a longitudinal sectional view of FIG. 1 (however, the rotation axis is not cut). Rotating axis l
is fitted into the hole of the hollow cylindrical bearing 2 with a slight gap. On the outer circumferential surface of the bearing 2 at the position of the rotation axis l, which is approximately at the center in the rotation axis direction, a plurality of (eight in this embodiment) apertures 3L 3b+ are arranged at equal intervals in the circumferential direction.
3g.

3hが配設してあり、対向する絞り3a、 3bと3e
と3fおよび3c、 3dと3gと3h間には、絞りの
孔径を僅かに変えて、流量抵抗を変えである。また絞り
3a、  3b、 3e、 3fは空気供給孔5aから
導孔4a、 4bl 4e、 4fを介して連通してい
る。また絞り3c、 3d、 3L ahは地の空気供
給孔5bから導孔4c+ 4cl、 4L 4hを介し
て連通している。
3h is arranged, and opposing apertures 3a, 3b and 3e
, 3f and 3c, 3d, 3g, and 3h, the diameter of the aperture was slightly changed to change the flow resistance. Further, the throttles 3a, 3b, 3e, and 3f communicate with the air supply hole 5a via guide holes 4a, 4bl, 4e, and 4f. Further, the apertures 3c, 3d, and 3Lah communicate with the ground air supply hole 5b via guide holes 4c+4cl and 4L4h.

つぎに作用を説明する。上記の構成において、空気供給
孔5a、 5bに対して、それぞれ独立に圧縮空気(該
圧縮空気の圧力をPsa、Psbとする)を供給すると
、回転軸1と軸受2との間の間隙に供給すれた空気圧力
のバランスによって、回転軸1の軸心位置か決まる。こ
こで上記圧縮空気の圧力Psa、 Psbを制御すれば
、対向する絞り3a、 3bと3e、 3fおよび3c
、 3dと3g、 3hからの空気噴出圧力差に応じて
、回転軸1の軸心を制御することができる。この状態で
回転軸1を回転させれば、任意の偏心量および偏心角度
に偏心した自公転可能な空気軸受となる。
Next, the effect will be explained. In the above configuration, when compressed air (the pressures of the compressed air are Psa and Psb) is supplied independently to the air supply holes 5a and 5b, the air is supplied to the gap between the rotating shaft 1 and the bearing 2. The axial center position of the rotating shaft 1 is determined by the air pressure balance. Here, if the pressures Psa and Psb of the compressed air are controlled, the opposing throttles 3a, 3b and 3e, 3f and 3c
, 3d, 3g, and 3h, the axial center of the rotating shaft 1 can be controlled according to the air jet pressure difference from 3d, 3g, and 3h. If the rotating shaft 1 is rotated in this state, it becomes an air bearing that can rotate around its axis and is eccentric to an arbitrary eccentric amount and eccentric angle.

つぎに他の実施例を説明する。第3図は、回転軸に直角
な断面図を示し、第4図は、第1図の縦断面図(但し、
回転軸は裁断してない)を示す。
Next, another embodiment will be described. FIG. 3 shows a sectional view perpendicular to the rotation axis, and FIG. 4 shows a longitudinal sectional view of FIG.
The rotating shaft is not cut).

回転軸11の円周方向に等間隔に配設した複数個(この
実施例では8個)の絞りiaa、 13b、・・・・・
・13hのうち、互に900の位置に配置した絞り13
eと13gには、それぞれ独立に制御した空気を供給す
ることができるように、回転軸方向に穿った空気供給孔
15b、15c:に導孔14e、 14gを介して連通
しており、その他の絞り13a、 13b、 13C,
13d、 13fおよび13hは、共通な空気供給孔1
5aから所定圧力の圧縮空気が導孔14a、 14b、
 14c、 14d、 14fおよび14hを介して供
給される。
A plurality of (eight in this embodiment) apertures iaa, 13b, etc. are arranged at equal intervals in the circumferential direction of the rotating shaft 11.
・Apertures 13 placed at 900 positions within 13h
The air supply holes 15b and 15c, which are bored in the direction of the rotation axis, are connected to the air supply holes 15b and 15c through the guide holes 14e and 14g, so that air can be supplied to the air supply holes 15b and 13g, which are controlled independently. Apertures 13a, 13b, 13C,
13d, 13f and 13h are common air supply holes 1
Compressed air at a predetermined pressure is supplied from 5a to the guide holes 14a, 14b,
14c, 14d, 14f and 14h.

このような構成にすることにより、空気供給孔15a、
15Cへの空気圧力を制御することにより、回転軸11
を偏心させることができ、上記第1の実施例と同様な機
能の空気軸受となる。
With such a configuration, the air supply holes 15a,
By controlling the air pressure to 15C, the rotating shaft 11
can be made eccentric, resulting in an air bearing with a function similar to that of the first embodiment.

なお、上記各実施例では、絞りの数を8個としたか、何
らこれに限ることなく、4個以上の偶数個であれば、同
様の作用を呈する。
In each of the above embodiments, the number of apertures is eight, but the number is not limited to eight, but any even number of four or more will provide the same effect.

第5図は、この発明を適用した実施例を示す。FIG. 5 shows an embodiment to which the present invention is applied.

該第5図は、この発明を加工機用または測定器用の主軸
に適用した実施例である。回転軸21の両端に大径部を
設け、該大径部の内側面と軸受22の両側面間で微小間
隙を構成し、この微小間隙に絞り30a、30bを介し
て、空気供給孔29より圧力P8゜の圧縮空気を送り込
み、スラスト空気軸受を構成している。また回転軸21
の一端面には、チャック43がほぼ同軸で固定してあり
、回転軸21の他端面は、これも同軸で弾性カップリン
グ41を介し給気ブロック34に軸受支持された駆動軸
33に連結しである。
FIG. 5 shows an embodiment in which the present invention is applied to a main shaft for a processing machine or a measuring instrument. A large diameter portion is provided at both ends of the rotating shaft 21, and a minute gap is formed between the inner surface of the large diameter portion and both sides of the bearing 22. Compressed air at a pressure of P8° is fed into the bearing to form a thrust air bearing. Also, the rotating shaft 21
A chuck 43 is fixed substantially coaxially to one end surface, and the other end surface of the rotary shaft 21 is connected to a drive shaft 33 which is also coaxial and is supported by a bearing on the air supply block 34 via an elastic coupling 41. It is.

該給気ブロック34からは、密閉室35a、35b、空
気供給孔39a、39b、導管40a、 40.b、空
気供給孔28a。
From the air supply block 34, sealed chambers 35a, 35b, air supply holes 39a, 39b, conduits 40a, 40. b, air supply hole 28a;

28bおよび27a、27bを介して回転軸21の外面
の円周上に等間隔に配設した絞り26a、26b等に制
御した圧縮空気を供給する。ここで給気プロ・ツク34
に供給される圧縮空気の圧力Psa、Psbを制御し、
駆動軸33を■ベルト42によって回転させれば、任意
の偏心量および偏心角度に偏心した自公転する空気軸受
が得られる。
Controlled compressed air is supplied to throttles 26a, 26b, etc. arranged at equal intervals on the circumference of the outer surface of the rotating shaft 21 via 28b, 27a, and 27b. Here, air supply pro tsuk 34
control the pressures Psa and Psb of the compressed air supplied to the
If the drive shaft 33 is rotated by the belt 42, an air bearing that rotates around its axis and is eccentric to an arbitrary amount and angle of eccentricity can be obtained.

第6図は、この発明を適用した別の実施例を示す。この
実施例が第5図に示した実施例と異なる点は、該実施例
(第5図)では、給気ブロック34がベース20に固定
していたのに対し、この実施例では給気ブロック34に
代るフロートリング45がフリーの状態にあることであ
り、回転軸21が回転しても、給気系の配管だけでフロ
ートリング45の回転を止めることかできる点である。
FIG. 6 shows another embodiment to which the present invention is applied. The difference between this embodiment and the embodiment shown in FIG. 5 is that in this embodiment (FIG. 5), the air supply block 34 was fixed to the base 20, whereas in this embodiment, the air supply block 34 was fixed to the base 20. 34 is in a free state, and even if the rotating shaft 21 rotates, the rotation of the float ring 45 can be stopped only by the piping of the air supply system.

そのためにフロートリング45は、回転軸21に同心に
固定した回転リング44との間に、直径方向と回転軸方
向とも働く僅かの間隙を持ち、この間に絞り48.50
a、50bを介して圧縮空気を供給し、空気軸受を構成
している。さらに圧力制御された空気が、フロートリン
グ45から密閉室52a、52b、空気供給孔28a、
28bおよび27a、27bを介して、回転軸21の円
周方向に等間隔に配置した絞り25a、26b等に供給
され、上記実施例と同様の作用を呈する。
For this purpose, the float ring 45 has a small gap between it and the rotating ring 44 fixed concentrically to the rotating shaft 21, which acts both in the diametrical direction and in the rotating shaft direction.
Compressed air is supplied through a and 50b to form an air bearing. Further, pressure-controlled air is supplied from the float ring 45 to the sealed chambers 52a, 52b, the air supply hole 28a,
It is supplied to the throttles 25a, 26b, etc. arranged at equal intervals in the circumferential direction of the rotating shaft 21 via 28b, 27a, and 27b, and exhibits the same effect as in the above embodiment.

なお、第5図および第6図に示した実施例においては、
圧縮空気の供給配管−を2系統としたが、上記第3図に
示したような配管系が必要な場合には、3系統にしても
何ら差支えない。また圧縮空気の供給配管系を4系統と
し、回転軸21の軸心に直角方向の断面において、互い
に対向する絞り群の圧力差をfIIIi卸しても同様の
作用が得られる。
In addition, in the embodiment shown in FIGS. 5 and 6,
Although two compressed air supply piping systems are used, if a piping system as shown in FIG. 3 is required, there is no problem in using three systems. Furthermore, the same effect can be obtained by using four compressed air supply piping systems and reducing the pressure difference fIIIi between the aperture groups facing each other in a cross section perpendicular to the axis of the rotating shaft 21.

また回転軸1,11.21に配設した絞りは、回転軸に
直角な一断面内に配置したが、回転軸に直角な複数の断
面内に配置しても同様の作用を呈する。
Further, although the apertures disposed on the rotating shafts 1, 11, and 21 are arranged in one cross section perpendicular to the rotating shaft, the same effect can be obtained even if they are arranged in a plurality of cross sections perpendicular to the rotating shaft.

以上説明したように、この発明は上記のように構成にし
たことにより、加工機や測定器において、チャッキング
等による偏心を吸収できるように精密調心でき、かつ自
公転可能な菟気軸受機構が得られるという効果がある。
As explained above, by having the above-described structure, the present invention provides a circular bearing mechanism that can be precisely aligned to absorb eccentricity caused by chucking, etc. in processing machines and measuring instruments, and can also rotate around its axis. This has the effect that it can be obtained.

以上の実施例においては、絞りとして小径穴のオリアイ
ス絞りを用いた例について述べたが、このオリフィス絞
りの代りに、回転軸21の軸受22との境界に僅かの逃
げ(リセス)を設け、圧縮空気をこの個所で絞るように
じても、同様の効果が得られる。
In the above embodiment, an example was described in which an orifice orifice with a small diameter hole was used as the orifice, but instead of this orifice orifice, a slight recess was provided at the boundary between the rotating shaft 21 and the bearing 22 to reduce compression. A similar effect can be obtained by squeezing the air at this point.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例の回転軸に直角な断面図
、第2図は、第1図の縦断面図、第3図は、他の実施例
の回転軸に直角な断面図、第4図は、第3図の縦断面図
、第5図は、この発明を適用した実施例の縦断面図、第
6図は、この発明を適用した別の実施例の縦断面図を示
す。 符号の説明 1.11.21・・・回転軸  2.12.22・・・
軸受3a 〜3h、 13a 〜13h、 26a、 
26b、 3oa、 30b、 48. soa。 50b・・・絞り 4a 〜4h、 14a 〜14h−・・導孔5a、 
5b、 15a 〜15c、 27a、 27 b、 
28a、 28b、 29.38a。 38b、 :39a、 39b・・空気供給孔20・・
・ベース 32 a 、 32 b、 47 a、 47b、 5
1a、 51b−排気溝33・・・駆動軸     3
4・・・給気プロ、ツク35a 、 35b、 52a
、 52b−・・密閉室36a〜36C・・・オイルン
ール 37a、3711・・転り軸受 40a、 40b・−
・導管41・・・弾性カップリング 42・・・Vベルト     43・・・チャ・ツク4
4・・・回転リング   45・・・フロートリング化
+l1ll+ 1心理↓出←姑h…。 第3図 士4図
Fig. 1 is a sectional view perpendicular to the rotation axis of one embodiment of the present invention, Fig. 2 is a longitudinal sectional view of Fig. 1, and Fig. 3 is a sectional view perpendicular to the rotation axis of another embodiment. , FIG. 4 is a longitudinal sectional view of FIG. 3, FIG. 5 is a longitudinal sectional view of an embodiment to which this invention is applied, and FIG. 6 is a longitudinal sectional view of another embodiment to which this invention is applied. show. Explanation of symbols 1.11.21... Rotating axis 2.12.22...
Bearings 3a to 3h, 13a to 13h, 26a,
26b, 3oa, 30b, 48. soa. 50b...Apertures 4a to 4h, 14a to 14h--Guiding holes 5a,
5b, 15a to 15c, 27a, 27b,
28a, 28b, 29.38a. 38b, :39a, 39b...Air supply hole 20...
・Base 32a, 32b, 47a, 47b, 5
1a, 51b-exhaust groove 33...drive shaft 3
4...Air supply professional, Tsuku 35a, 35b, 52a
, 52b-... Sealed chambers 36a to 36C... Oil rule 37a, 3711... Rolling bearing 40a, 40b...
・Conduit 41...Elastic coupling 42...V belt 43...Chatsuku 4
4... Rotating ring 45... Floating ring + l1ll + 1 psychology ↓ out ← mother-in-law h... Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)空気軸受において、中空円筒状軸受と、該軸受内
に僅かな間隙を保って嵌合し、かつ周方向に複数個の絞
りを配設した回転軸と、対向する絞り群からの空気噴出
圧力に差異を生じさせる空気圧力制御手段とからなるこ
とを特徴とする空気軸受機構。
(1) In an air bearing, a hollow cylindrical bearing, a rotating shaft fitted with a small gap in the bearing and having a plurality of throttles arranged in the circumferential direction, and air flowing from the opposing throttle group An air bearing mechanism characterized by comprising an air pressure control means that causes a difference in ejection pressure.
(2)上記空気圧力制御手段として、対向する絞り群の
両者の孔径、孔長または孔数を変えることにより空気供
給圧力を変え、これによって回転軸心の位置を変位させ
るようにしたことを特徴とする特許請求の範囲第1項記
載の空気軸受機構。
(2) The air pressure control means is characterized in that the air supply pressure is changed by changing the hole diameter, hole length, or number of holes in both opposing aperture groups, thereby displacing the position of the rotation axis. An air bearing mechanism according to claim 1.
(3)上記空気圧力制御手段として、回転軸に直角な断
面上の周面に互いに直角をなす2つの絞り群に圧力を制
御した圧縮空気を送り、残りの絞りには同一圧力の圧縮
空気を供給するようにしたことを特徴とする特許請求の
範囲第1項記載の空気軸受機構。
(3) As the air pressure control means, compressed air with controlled pressure is sent to two groups of throttles that are perpendicular to each other on the circumferential surface on a cross section perpendicular to the rotation axis, and compressed air of the same pressure is sent to the remaining throttles. The air bearing mechanism according to claim 1, characterized in that the air bearing mechanism is adapted to supply air bearings.
JP8646682A 1982-05-24 1982-05-24 Pneumatic bearing mechanism Granted JPS58203221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8646682A JPS58203221A (en) 1982-05-24 1982-05-24 Pneumatic bearing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8646682A JPS58203221A (en) 1982-05-24 1982-05-24 Pneumatic bearing mechanism

Publications (2)

Publication Number Publication Date
JPS58203221A true JPS58203221A (en) 1983-11-26
JPH0517408B2 JPH0517408B2 (en) 1993-03-09

Family

ID=13887729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8646682A Granted JPS58203221A (en) 1982-05-24 1982-05-24 Pneumatic bearing mechanism

Country Status (1)

Country Link
JP (1) JPS58203221A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144152U (en) * 1986-03-06 1987-09-11
JP2015043381A (en) * 2013-08-26 2015-03-05 三星ダイヤモンド工業株式会社 Processing apparatus
JP2015046475A (en) * 2013-08-28 2015-03-12 三星ダイヤモンド工業株式会社 Processing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121548U (en) * 1976-03-12 1977-09-16
JPS52131548U (en) * 1976-03-31 1977-10-06
JPS55119220A (en) * 1979-03-01 1980-09-12 Sulzer Ag Static liquid pressure bearing for radial piston machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121548U (en) * 1976-03-12 1977-09-16
JPS52131548U (en) * 1976-03-31 1977-10-06
JPS55119220A (en) * 1979-03-01 1980-09-12 Sulzer Ag Static liquid pressure bearing for radial piston machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144152U (en) * 1986-03-06 1987-09-11
JP2015043381A (en) * 2013-08-26 2015-03-05 三星ダイヤモンド工業株式会社 Processing apparatus
JP2015046475A (en) * 2013-08-28 2015-03-12 三星ダイヤモンド工業株式会社 Processing device

Also Published As

Publication number Publication date
JPH0517408B2 (en) 1993-03-09

Similar Documents

Publication Publication Date Title
US5281032A (en) Self-compensating hydrostatic bearings for supporting shafts and spindles and the like for rotary and translational motion and methods therefor
JP4019423B2 (en) Numerically controlled orbital machining equipment
EP2100697A1 (en) Spindle device with rotor jetting driving fluid
US20010039861A1 (en) Skiving head and process for skiving cylinders and cylinder tubes
EP0888501A1 (en) Combined hydrostatic/hydrodynamic bearing
US5433655A (en) Balance adjustment method of end mill
JP3361959B2 (en) Machine tool with eccentric spindle
US3430318A (en) Machine tools and instruments
US9849518B2 (en) Autobalancing system for boring tool and boring tool incorporating same
JPS58203221A (en) Pneumatic bearing mechanism
JP3789650B2 (en) Processing machine and spindle device thereof
US3200671A (en) Precision quill-type machine tool spindle
US3461752A (en) Precision boring grooving and recessing head
US6375542B1 (en) Hydrostatic spindle unit with automatic self centering of the workpiece
JP4064786B2 (en) Main shaft support structure, machine tool
US2706872A (en) Grinding machine
US3622247A (en) Boring method
US3677098A (en) Gyroscope uncaging device
US3992122A (en) High velocity, low-friction boring tool
JP3039738B2 (en) Hydrostatic bearing
JP2005342878A (en) Grinding wheel spindle using air bearing
JPH0295528A (en) Work support method and support device
US3882640A (en) Portable precision hole finishing device
JP3138995B2 (en) Hydrostatic air bearing
GB2235259A (en) Spindle assembly with externally pressurised gas bearing