JP3789650B2 - Processing machine and spindle device thereof - Google Patents

Processing machine and spindle device thereof Download PDF

Info

Publication number
JP3789650B2
JP3789650B2 JP19694998A JP19694998A JP3789650B2 JP 3789650 B2 JP3789650 B2 JP 3789650B2 JP 19694998 A JP19694998 A JP 19694998A JP 19694998 A JP19694998 A JP 19694998A JP 3789650 B2 JP3789650 B2 JP 3789650B2
Authority
JP
Japan
Prior art keywords
bearing
spindle
magnetic
hydrostatic
magnetic bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19694998A
Other languages
Japanese (ja)
Other versions
JP2000024805A (en
Inventor
伸幸 鈴木
孝美 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP19694998A priority Critical patent/JP3789650B2/en
Publication of JP2000024805A publication Critical patent/JP2000024805A/en
Application granted granted Critical
Publication of JP3789650B2 publication Critical patent/JP3789650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0402Bearings not otherwise provided for using magnetic or electric supporting means combined with other supporting means, e.g. hybrid bearings with both magnetic and fluid supporting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Turning (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、研削盤等の高速の機械加工を行う加工機械に関し、静圧気体軸受と磁気軸受とが複合化された静圧磁気複合軸受を用いたことを特徴とする。
【0002】
【従来の技術と発明が解決しようとする課題】
従来より、円筒研削盤などの加工機械において、スピンドルを電磁石の磁力により支持する磁気軸受スピンドル装置を備えたものが提案されている。磁気軸受は、大きな軸受ギャップを持つため回転によるトルクロスが極めて小さく、また積分制御により大きな静剛性を付与できる特徴がある。
しかし、磁気軸受スピンドル装置は、制御の難しさ等から、動剛性および高回転精度において、いま一つ満足できる性能を得ることが難しい。また、磁気軸受スピンドル装置は、加工中にスピンドルの曲げ固有振動数の影響を受け易く、そのため非常に複雑な制御系を構成する必要がある。
【0003】
一方、非接触の軸受として、磁気軸受のほかに静圧気体軸受がある。静圧気体軸受は、回転精度が極めて高く優れた動的安定性を持っているが、圧縮性を有するために、静剛性および負荷容量が小さく、加工機械用としては、ほとんど適用例がない。
【0004】
そこで、最近、高速加工機械のスピンドル装置として、静圧気体軸受と磁気軸受とを併用したものが提案され、実用化が検討されている。
しかし、この提案例のものは、独立した磁気軸受と静圧気体軸受とを軸方向に並べて配置しているため、スピンドルが長くなり、曲げ固有振動数が低くなるという問題点がある。また、磁気軸受を単独で適用するスピンドル装置の場合と全く同じ構成の制御系の構成を採用しているために、静圧気体軸受の動的安定性を損ね、むしろ外乱発生源として作用するという問題点もある。
また、このスピンドル装置で高回転精度を得るためには、磁気軸受用変位センサが高精度であることが要求されるが、通常、磁気軸受に使用される変位センサは渦電流センサなどの磁気センサが用いられ、分解能は1μm程度である。一方、高精度変位センサとしては静電容量型変位センサがあるが、高価で利用は難しい。
したがって、静圧気体軸受,磁気軸受の特長を生かしつつ、欠点を補い合うという目的は十分に達成されていないのが現状である。
【0005】
この発明の目的は、スピンドルの支持につき、優れた動剛性および静剛性が得られ、かつ高回転精度が得られ、高速の加工を精度良く行える加工機械を提供することである。
この発明の他の目的は、スピンドルを長くすることなく静圧気体軸受と磁気軸受とによる支持を可能とし、スピンドルのより一層の高速回転を可能とすることである。
この発明のさらに他の目的は、高精度な変位検出を可能にすると共に、静圧気体軸受と磁気軸受の相互干渉の防止を容易とすることである。
この発明のさらに他の目的は、制御系の工夫により、静圧気体軸受の優れた動的安定性を損ねることなく、磁気軸受の特長である静剛性の向上を可能とすることである。
この発明のさらに他の目的は、加工機械に用いられるスピンドル装置において、スピンドルの支持につき、優れた動剛性および静剛性が得られ、かつ高回転精度が得られ、高速の加工を精度良く行えるようにすることである。
【0006】
【課題を解決するための手段】
この発明の加工機械は、工具を回転させるスピンドル装置と、ワークを保持するワーク保持手段と、これらスピンドル装置の工具とワーク保持手段に保持されたワークとを相対的に移動させる送り手段とを備えた加工機械であって、前記スピンドル装置を次の構成としたものである。すなわち、このスピンドル装置は、工具を先端に取付けたスピンドルを、静圧気体軸受と磁気軸受とが、互いに兼用部分が生じるように複合化された静圧磁気複合軸受を介して、スピンドル装置本体に回転自在に設置し、前記スピンドルを回転駆動する駆動源を設けたものとする。
この構成によると、ワーク保持手段に保持されたワークが、スピンドル装置のスピンドル先端に設けられた工具により加工され、前記送り手段により、ワークと工具の間の切り込みや送り等の相対移動が行われる。この場合に、スピンドルを支持する軸受として、静圧気体軸受と磁気軸受とが複合化された静圧磁気複合軸受を用いたため、静圧気体軸受の優れた動剛性および回転精度と磁気軸受の優れた静剛性という両者の特長を生かした支持が行える。このため、工具を低速回転させる場合や、高速回転させる場合も、精度良く加工することができる。また、静圧気体軸受と磁気軸受とは、互いに複合化されて静圧磁気複合軸受とされているため、独立した静圧気体軸受と磁気軸受とを単に並べて配置する場合に比べて、構成がコンパクトになる。
【0007】
この発明の加工機械において、前記スピンドルは、ラジアル軸受とアキシャル軸受とを介してスピンドル装置本体に設置し、前記ラジアル軸受を前記静圧磁気複合軸受とする。 このように、スピンドルを支持するラジアル軸受を静圧磁気複合軸受とすることにより、静圧による支持と磁気による支持とに、スピンドルに別の長さ部分を必要とせず、スピンドル長さを短くできる。これにより、曲げ固有振動数が高められ、より高速回転が可能となる。また、軸方向に対する磁気軸受の支持中心点と静圧気体軸受の支持中心点とを略一致させることができ、両軸受の制御が容易になる。
【0008】
前記ラジアル軸受となる静圧磁気複合軸受は、磁気軸受のステータに静圧気体軸受の絞りを設けたものとする。具体的には、このラジアル軸受となる静圧磁気複合軸受は、磁気軸受のステータが、コアとコイルとコア覆い材とでリング状に形成されて、前記コアにおける放射状に並んだヨーク部に、このヨーク部の内径側の先端面に開口して静圧気体軸受の絞りが設けられ、前記コア覆い材とヨーク部の先端面とで円筒面状の内径面が構成されたものとする。このように、磁気軸受のステータに静圧気体軸受の絞りを設けることにより、部品点数が削減されると共に、前記のスピンドル長の短縮、および静圧気体軸受および磁気軸受の支持中心点の一致化が容易に実現できる。
【0009】
この発明の加工機械において、前記スピンドルの変位を求める変位測定手段として、前記静圧気体軸受の軸受面の圧力を測定する圧力センサを設け、この圧力センサの測定値から前記スピンドルの変位を求めて前記磁気軸受の磁力制御を行う磁気軸受制御手段を設けても良い。
このように静圧気体軸受面の圧力を測定し、これをスピンドル変位に換算して磁気軸受の制御に利用することにより、他の方式のセンサで問題となるスピンドルセンサターゲット面の磁気特性むらによるセンサの誤動作がなく、高精度なセンシングが可能となる。例えば、分解能がサブミクロン以下の高精度な変位検出が可能になると同時に、センサに小型のものが使用できて、センサを軸受内部に収納することができ、コンパクトな軸受構成が可能となる。また、静圧気体軸受の圧力をスピンドル変位に換算することで、静圧気体軸受の軸受中心を磁気軸受中心に設定できることから、両軸受の相互干渉を防ぐことが容易となる。したがって一層の加工精度の向上が図れる。
【0010】
この発明の加工機械において、スピンドルの変位を測定する変位測定手段を設け、この変位測定手段の測定値に前記磁気軸受をフィードバック制御する磁気軸受制御手段を設け、この磁気軸受制御手段は、積分動作または比例積分動作のみで制御するものであって、所定以上の高周波に対して制御を行わないものとしても良い。
このように、積分動作または比例積分動作のみを行い、所定以上の高周波に対して制御を行わないものとすることで、静圧気体軸受の優れた動的安定性を損ねることなく、磁気軸受は低周波数域のみの軸受作用力に限定でき、特長である静剛性の向上が可能となる。すなわち、動剛性(高周波領域)を静圧気体軸受で、静剛性(低周波領域)を磁気軸受でそれぞれ分担して受け持つことになり、両軸受の特長が共に生かされ、かつ互いに干渉するのを回避できる。
【0011】
この発明の加工機械は、スピンドルの先端に設けられた工具が砥石であり、前記ワーク保持手段が、ワークを回転させる機能を有するものであり、円筒研削を行う研削盤となるものであっても良い。
研削盤は、ワークの加工精度が高度に要求され、また工具である砥石を高速で回転させることが必要な加工機械であり、このような研削盤に、スピンドルの静圧磁気複合軸受による支持を適用することで、この静圧磁気複合軸受による高精度な支持が効果的に発揮され、高精度の加工が行える。また、静圧磁気複合軸受を用いるため、独立した静圧気体軸受と磁気軸受とを併用する場合に比べて軸受部がコンパクト化され、これに伴いスピンドル装置が軽量化されるため、スピンドル装置の移動が高速に行える。このため、多量のワークを高速に加工する場合に、ワーク交換に伴う無駄時間が短縮でき、量産性の向上が図れる。
【0012】
この発明のスピンドル装置は、この発明の上記いずれかの構成の加工機械に備えられるスピンドル装置であって、工具を先端に取付けたスピンドルを、静圧気体軸受と磁気軸受とが複合化された静圧磁気複合軸受を介して、スピンドル装置本体に回転自在に設置し、前記スピンドルを回転駆動する駆動源を設けたものである。
【0013】
【発明の実施の形態】
この発明の一実施形態を図1ないし図4と共に説明する。この加工機械は、ワークWの内面を研削する研削盤であって、工具Tを回転させるスピンドル装置1と、ワークWを保持するワーク保持手段2と、これらスピンドル装置1の工具Tとワーク保持手段2に保持されたワークWとを相対的に移動させる送り手段3とを備える。ワークWは、リング状のものであり、例えば、転がり軸受や滑り軸受における軌道輪となるものである。
【0014】
スピンドル装置1は、砥石からなる工具Tの取付けられたスピンドル4を回転自在に支持すると共に内蔵のモータで回転駆動するものであり、砥石台である工具台5上に固定設置されている。工具台5は、基台6上に案内手段7を介して、スピンドル4の軸方向(Z軸方向)に進退自在に設置され、進退駆動手段8により進退駆動される。案内手段7は、滑り案内等で接触支持を行うものであっても、また磁力または静圧により非接触で支持する直動軸受であっても良い。進退駆動手段8は、ボールねじを介してモータにより送りを与える接触型の送り手段であっても、また磁力等により工具台5に非接触で送りを与えるものであっても良い。
【0015】
ワーク保持手段2は、ワークWを把持するチャック9を移動台10に回転自在に設置したものであり、チャック9は、移動台10に設置されたモータ11によりベルト等の伝達機構12を介して回転駆動される。チャック9の回転中心は、スピンドル4と平行とされる。移動台10は、基台6上に案内手段12を介して、工具台進退方向(Z軸方向)と直交する方向(X軸方向)に進退自在に設置され、進退駆動手段13により進退駆動される。案内手段12は、基台6に設けられた滑り案内のレール等からなり、進退駆動手段13はモータおよびボールねじ等からなる。
この移動台10の移動により、ワークWに対する工具Tの切り込み方向の相対移動が行われ、工具台5の移動によりワークWに対する工具Tの送り方向の移動が行われる。これら工具台5の案内手段7および進退駆動手段8と、移動台10の案内手段12および進退駆動手段13とにより、前記の送り手段3が構成される。
【0016】
スピンドル装置1は、ビルトインモータ形式のスピンドル装置であって、図2に示すように、スピンドル装置本体となる円筒状のハウジング22内に、回転駆動源となるモータ25を設け、モータ25の前後に配置された一対のラジアル型の軸受23,23と、後端のアキシャル型の軸受30とを介してスピンドル4を回転自在に支持したものである。これらラジアル軸受23およびアキシャル軸受30は、いずれも静圧磁気複合軸受とされている。モータ25は、スピンドル4に一体に設けられたモータ部ロータ26と、ハウジング22に設置されたステータ27とで構成される。
ハウジング22の前後端にはフランジ22a,22bが形成され、これらフランジ22a,22bの内周面は潤滑性に優れた材料からなる保護用滑り軸受面とされている。これにより、静圧磁気複合軸受23に異常が生じてスピンドル4がタッチダウンした場合でも、スピンドル4の焼付きが防止される。
【0017】
ラジアル型の各静圧磁気複合軸受23,23は、次のように磁気軸受28と静圧気体軸受29とを、構成部品に兼用部分が生じるように一体化させたものである。静圧気体軸受29には静圧空気軸受が用いられている。磁気軸受28は、スピンドル4の外周に設けられた磁性体の軸受ロータ31と、ハウジング22に設置された軸受ステータ32とで構成される。軸受ロータ31は、スピンドル4自体の一部であっても良い。軸受ステータ32は、コア33とコイル34とコア覆い材38とでリング状に形成されている。
コア33は、図3に示すようにリング状部分から複数のヨーク部33aを内径側へ互いに放射状に突出させたものであり、各ヨーク部33aに前記コイル34が巻かれている。隣合うヨーク部33a,33a間の隙間は、樹脂モールド、または非磁性金属材料もしくはセラミックス材料からなる溶射による充填、または非磁性金属材料もしくはセラックス材料からなる隔壁、などからなるコア覆い材38によって充填される。コア覆い材18の内径面は、ヨーク部13aの先端面と共に同一円筒面に仕上げ加工されている。これらコア覆い材18とヨーク部33aとで軸受ステータ32の円筒面状の内径面を構成している。
【0018】
軸受ステータコア33のリング状部の内部には、全周にわたる給気通路36が形成され、この給気通路36から各々分岐して、軸受隙間に給気する絞り35が各ヨーク部33aの電磁力発生面である先端内径面に開口して設けられている。給気通路36は、周方向の1か所または複数箇所に設けた給気口37から、圧力流体である圧縮空気の供給源(図示せず)に配管等で接続されており、供給された圧縮空気は、軸受ステータ32の内径面とスピンドル4との間に形成される軸受隙間dに噴出される。
これら絞り35と、軸受隙間形成部材を兼用する軸受ステータコア33およびコア覆い材38とで、ラジアル静圧気体軸受29が構成される。また、軸受ステータコア33は、絞り35および給気通路36の形成部材を兼用する。
絞り35は、オリフィス絞りや、その他の各種の形式の絞りが採用できるが、この例では自成絞りとしてあり、コア33に設けられた給気孔35aと軸受隙間dとで構成される。給気孔35aは、内径が段付きに形成されて、コア33の内面からなる静圧気体軸受面に開口する部分が微細孔となっている。絞り35はスピンドル4の円周方向の少なくとも3か所に配置することが好ましい。なお絞り35の給気孔35aは、コア33を避けてコア覆い材38等に形成しても良い。
【0019】
このラジアル型の静圧磁気複合軸受23は、このように静圧気体軸受29と磁気軸受28とを組み合わせたものであるため、静圧気体軸受29の優れた動剛性および回転精度と磁気軸受28の優れた静剛性という両者の特長を生かした軸受とできる。
しかも、静圧気体軸受29と磁気軸受28とは、構成部品が兼用されているため、独立した静圧気体軸受と磁気軸受とを軸方向に並べて配置する場合に比べて、構成がコンパクトになり、スピンドル4の長さを短縮できる。これにより、曲げ固有振動数が高められ、より高速回転が可能となる。特に、この実施形態では、磁気軸受28の軸受ステータコア33およびコア覆い材38が静圧気体軸受29の軸受隙間形成部材を兼用し、かつ前記軸受ステータコア33が絞り35および給気通路36の形成部材を兼用するため、構成部品が高度に兼用化され、構成のコンパクト化の効果が高い。
【0020】
前記静圧磁気複合軸受23の制御系を説明する。図3に示すように、軸受ステータ32には、コア覆い材38を半径方向に貫通して軸受隙間dに開口する圧力検出用通気孔46が、絞り35の近くの周方向4か所に等間隔に設けられ、これに連通するセンサ装着孔45に圧力センサ47A〜47Dが設けられている。これら圧力センサ47A〜47Dは、互いに直径方向に対向する2つのセンサが1組となって、スピンドル4のラジアル変位を検出する差圧式のエアマイクロセンサとされている。すなわち、互いに直径方向に対向する圧力センサ47A,47Bが1つの組を、圧力センサ47C,47Dが他の1つの組をなし、一方の圧力センサ47A,47Bの組の間では、対応する通気孔46が開口する静圧気体軸受面での圧力差を測定し、これをスピンドル4のY軸方向の変位に換算する。また、他方の圧力センサ47C,47Dの組の間でも、対応する通気孔46が開口する静圧気体軸受面での圧力差を測定し、これをスピンドル4のX軸方向の変位に換算する。
【0021】
コントローラ48aおよびアンプ49などで構成される磁気軸受制御手段48は、Y軸方向およびX軸方向のフィードバック制御系を有しており、Y軸方向のフィードバック制御系では、上記圧力センサ47A,47Bにより検出されるスピンドル4のY軸方向への変位に基づき、磁気軸受28のY軸方向のフィードバック制御が行われる。すなわち、スピンドル4の変位に応じて、アンプ49を経て圧力センサ47A,47Bに対応する位置のコイル34またはその近隣の幾つかのコイル34に供給する電流を加減し、スピンドル4がY軸方向に偏らないように制御する。すなわち、スピンドル4が目標位置に一致するように制御する。これと同様に、磁気軸受制御手段48のX軸方向のフィードバック制御系は、他の圧力センサ47C,47Dの測定値により、所定のコイル34の電流制御を行う。
このように、磁気軸受28の変位センサとして、軸受隙間dの静圧を検出する圧力センサ47A〜47Dを用いたエアマイクロセンサ方式を採用するため、磁気軸受28の制御系のゼロ点(目標値)と静圧気体軸受29の支持中心点(圧力平衡点)を容易に一致させることができ、複雑なセンサ調整が不要となる。また、他の方式のセンサで問題となるロータセンサターゲット面の磁気特性むらや真円度誤差は無関係となる。
【0022】
磁気軸受制御手段48によるフィードバック制御は、積分動作または比例積分動作のみとされ、高周波における補償は行われない。また、圧力センサ47A,47Bのドリフト等により磁気軸受制御系のゼロ点と静圧気体軸受29の支持中心点がずれる場合は、積分制御において僅かな不感帯を設けてもよい。このように不感帯を設けることにより、温度ドリフト等による磁気軸受28の誤動作を抑制することができる。すなわち、動剛性(高周波領域)を静圧気体軸受29で、静剛性(低周波領域)を磁気軸受28でそれぞれ分担して受け持つ役割分担が確実に行えて、両軸受28,29の特長が共に生かされ、互いに干渉することを回避できる。また、このように、磁気軸受28は積分動作または比例積分動作という低周波制御系となるため、比較的応答性の遅い圧力センサ47A〜47Dを変位センサとして用いることができる。
磁気軸受28の性能は、磁気軸受制御手段48の設定によって設定することができるが、一般に磁気軸受の場合、高周波域に有効に減衰力を発生させ、スピンドルを安定して浮上させることが難しいといった問題がある。そこで、この発明では、磁気軸受28は、その特長である低周波域での軸受剛性を高める役目だけに利用するようにしている。
【0023】
磁気軸受28のコイル34に電流を供給するアンプ29には、電流−電磁力を線型化させるための線型化回路、例えば電流2乗フィードバック回路を有するものが用いられる。これにより、バイアス電流を流すことなく線形化でき、磁気軸受特有の負の剛性も発生しない。すなわち、磁気軸受28で負の剛性が発生するのを回避でき、その負の剛性により静圧気体軸受29の安定性が損なわれるのを防止できる。また、スピンドル4が回転したときにそのバイアス電流によって発生するスピンドル4内の鉄損を無くすことができ、高速回転が可能となる。
磁気軸受制御手段48には、スピンドル4の回転数に同期したバンドエリミネートフィルタ52を挿入しても良い。これにより、スピンドル4の回転時のロータアンバランスによる振れに対して、磁気軸受28の電磁石からの電磁力は作用しなくなる。前述したように、磁気軸受制御手段48を積分動作で構成した場合には高周波域での磁気軸受28の作用力はスピンドル4に対して、不安定力として働く。スピンドル4の回転時にはスピンドル4の振れは回転同期成分が主成分となる。これを選択的に除去することで、スピンドル4を安定して回転させることが可能となる。
また、磁気軸受制御手段48は、低速回転時に磁気軸受28の制御ゲインを下げておき、スピンドル4が所定の回転数以上となったときに、前記制御ゲインを所定の値に変化させるようにすることが好ましい。このように、ゲインを下げた状態で磁気軸受28を作動させるようにすることにより、磁気軸受28を作動した瞬間のスピンドル4への外乱を抑制することができる。
【0024】
図2におけるアキシャル軸受30は、図4に示すように磁性体からなるスピンドル4の鍔状のスラスト支持部である軸受ロータ4aを軸方向両側から2つの静圧磁気複合アキシャル軸受部62,63で挟んで構成される。各静圧磁気複合アキシャル軸受62,63は、電磁石のコア64,65内にコイル66,67を収納し、このコア64,65内に絞り68を設けたものであって、スピンドル4の外周にリング状に設けられる。絞り68は自成絞りであり、コア64,65の軸受面に開口する先端が微細孔となった給気孔68aと、軸受隙間d1,d2とで構成される。前記のコア64,65とコイル66,67とで、アキシャル磁気軸受69の軸受ステータ72が構成され、コア64,65と絞り68とでアキシャル静圧気体軸受70が構成される。
【0025】
コア64,65とロータ4a間にこの圧力流体を噴出させることにより、コア64,65とロータ4a間に圧力が発生する。また、自成絞り68を設けたことによって、コア64,65とロータ4a間の隙間d1,d2の変動によって、圧力および隙間の間隔が自動的に変化し、自動調芯機能を有する静圧気体軸受を形成できる。これにより、ロータ4aを安定浮上させることができる。
【0026】
このアキシャル型の静圧磁気複合軸受30には、外部にコア64,65とロータ4a間の距離を測定する変位センサ71を設け、その変位センサ71の測定値に応じてコイル66,67に流す電流をフィードバック制御する磁気軸受制御手段73を設ける。磁気軸受制御手段73は、例えばアンプ74を介して電流制御する。これにより、静圧気体軸受と磁気軸受とを兼用した軸受構成が可能となる。この磁気軸受制御手段73は、ラジアル型の静圧磁気複合軸受23における前記の磁気軸受制御手段28と同様な機能のものを用いることができる。
【0027】
なお、変位センサ71を設ける代わりに、静圧気体軸受面の圧力を測定し、この圧力によって静圧気体軸受70における軸受隙間d、すなわち電磁石のコア64,65とロータ4a間の隙間d(d1,d2)の大きさを換算して求めてもよい。この隙間dの大きさの検出結果により、磁気軸受制御手段73でコイル66,67の電流を制御する。
また、アキシャル型の静圧磁気複合軸受30は、軸受ロータ4aを軸方向両側から2つの静圧磁気複合アキシャル軸受部62,63で挟む構成とする代わりに、軸受ロータ4aの片面側にのみ設け、磁力による吸引力と静圧とをつり合わせて非接触支持するものとしても良い。
【0028】
なお、この発明の加工機械およびそのスピンドル装置において、必ずしも全ての軸受を静圧磁気複合軸受で構成する必要はない。例えば図2の構成において、アキシャル型の軸受30を磁気軸受としても良い。また、全てを静圧気体軸受とする場合に比べて、アキシャル方向のみの静剛性を高める必要ある場合は、アキシャル軸受部のみを静圧磁気複合軸受で構成し、ラジアル方向の軸受支持を静圧気体軸受で構成すればよい。また、ラジアル方向のみの静剛性を高める必要のある場合は、スピンドル負荷側の端部に静圧磁気複合ラジアル軸受を配置し、他の軸受支持部を静圧気体軸受で構成してもよい。
【0029】
【発明の効果】
この発明の加工機械は、工具を回転させるスピンドル装置と、ワークを保持するワーク保持手段と、これらスピンドル装置の工具とワーク保持手段に保持されたワークとを相対的に移動させる送り手段とを備えた加工機械であって、前記スピンドル装置は、工具を先端に取付けたスピンドルを、静圧気体軸受と磁気軸受とが、互いに兼用部分が生じるように複合化された静圧磁気複合軸受を介して、スピンドル装置本体に回転自在に設置し、前記スピンドルを回転駆動する駆動源を設けたものであるため、スピンドルの支持につき、優れた動剛性および静剛性が得られ、かつ高回転精度が得られ、高速の加工を精度良く行えるという効果がある。
前記スピンドル、ラジアル軸受とアキシャル軸受とを介してスピンドル装置本体に設置し、前記ラジアル軸受を前記静圧磁気複合軸受とするため、スピンドルを長くすることなく静圧気体軸受と磁気軸受とによる支持を可能とし、スピンドルのより一層の高速回転を可能とすることができる。
前記ラジアル軸受となる静圧磁気複合軸受、磁気軸受のステータに静圧気体軸受の絞りを設けたものとするため、部品点数が削減されると共に、前記のスピンドル長の短縮、および静圧気体軸受および磁気軸受の支持中心点の一致化が容易に実現できる。
前記スピンドルの変位を求める変位測定手段として、前記静圧気体軸受の軸受面の圧力を測定する圧力センサを設け、この圧力センサの測定値から前記スピンドルの変位を求めて前記磁気軸受の磁力制御を行う磁気軸受制御手段を設けた場合は、スピンドルの高精度な変位検出が可能になり、静圧気体軸受と磁気軸受の相互干渉の防止を容易に防止できる。
また、前記スピンドルの変位を測定する変位測定手段を設け、この変位測定手段の測定値に前記磁気軸受をフィードバック制御する磁気軸受制御手段を設け、この磁気軸受制御手段は、積分動作または比例積分動作のみで制御するものであって、所定以上の高周波に対して制御を行わないものとした場合は、静圧気体軸受の優れた動的安定性を損ねることなく、磁気軸受は低周波数域のみの軸受作用力に限定でき、特長である静剛性の向上が可能となる。
この発明の加工機械が円筒研削盤であり、前記スピンドルの先端に設けられた工具が砥石であり、前記ワーク保持手段が、ワークを回転させる機能を有するものである場合は、高度な加工精度を要求される円筒研削盤において、満足する加工精度を得ることができる。
この発明のスピンドル装置は、この発明の加工機械に用いられるものであって、工具を先端に取付けたスピンドルを、静圧気体軸受と磁気軸受とが、互いに兼用部分が生じるように複合化された静圧磁気複合軸受を介して、スピンドル装置本体に回転自在に設置し、前記スピンドルを回転駆動する駆動源を設けたものであるため、スピンドルの支持につき、優れた動剛性および静剛性が得られ、かつ高回転精度が得られ、高速の加工を精度良く行うことができる。
【図面の簡単な説明】
【図1】この発明の一実施形態にかかる加工機械の斜視図である。
【図2】そのスピンドル装置の縦断面図である。
【図3】同スピンドル装置の横断面図とそのラジアル静圧磁気複合軸受の制御系のブロック図とを組み合わせて示す構成説明図である。
【図4】同スピンドル装置のアキシャル静圧磁気複合軸受の拡大縦断面図とその制御系のブロック図とを組み合わせて示す構成説明図である。
【符号の説明】
1…スピンドル装置 35…絞り
2…ワーク保持手段 47A〜47D…圧力センサ
3…送り手段 48…磁気軸受制御手段
4…スピンドル 64,65…ステータコア
5…工具台 66…コイル
9…チャック 68…絞り
10…移動台 69…磁気軸受
22…ハウジング 70…静圧気体軸受
23…ラジアル型の静圧磁気複合軸受 71…変位センサ
28…ラジアル磁気軸受 72…軸受ステータ
29…ラジアル静圧気体軸受 73…磁気軸受制御手段
30…アキシャル型の静圧磁気複合軸受 d…軸受隙間
32…軸受ステータ T…工具
33…ステータコア W…ワーク
34…コイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a processing machine that performs high-speed machining such as a grinding machine, and is characterized by using a hydrostatic magnetic compound bearing in which a hydrostatic gas bearing and a magnetic bearing are combined.
[0002]
[Prior art and problems to be solved by the invention]
2. Description of the Related Art Conventionally, a processing machine such as a cylindrical grinder has been proposed that includes a magnetic bearing spindle device that supports a spindle by the magnetic force of an electromagnet. Magnetic bearings have a large bearing gap, so that torque cross due to rotation is extremely small, and large static rigidity can be imparted by integral control.
However, it is difficult for the magnetic bearing spindle device to obtain satisfactory performance in terms of dynamic rigidity and high rotational accuracy due to difficulty in control and the like. In addition, the magnetic bearing spindle device is susceptible to the bending natural frequency of the spindle during processing, and therefore, it is necessary to construct a very complicated control system.
[0003]
On the other hand, as a non-contact bearing, there is a static pressure gas bearing in addition to a magnetic bearing. Static pressure gas bearings have extremely high rotational accuracy and excellent dynamic stability. However, since they have compressibility, static rigidity and load capacity are small, and there are almost no application examples for processing machines.
[0004]
Therefore, recently, a spindle device of a high-speed machining machine that uses both a static pressure gas bearing and a magnetic bearing has been proposed, and its practical application has been studied.
However, this proposed example has a problem that the spindle becomes long and the bending natural frequency becomes low because the independent magnetic bearing and the static pressure gas bearing are arranged side by side in the axial direction. In addition, since the control system configuration is exactly the same as that of the spindle device to which the magnetic bearing is applied alone, the dynamic stability of the static pressure gas bearing is impaired, rather it acts as a source of disturbance. There are also problems.
In order to obtain high rotational accuracy with this spindle device, it is required that the displacement sensor for magnetic bearings has high accuracy. Usually, the displacement sensors used for magnetic bearings are magnetic sensors such as eddy current sensors. Is used, and the resolution is about 1 μm. On the other hand, there is a capacitive displacement sensor as a high-precision displacement sensor, but it is expensive and difficult to use.
Therefore, at present, the objective of making up for the drawbacks while taking advantage of the features of the static pressure gas bearing and the magnetic bearing has not been sufficiently achieved.
[0005]
An object of the present invention is to provide a machining machine that can provide excellent dynamic rigidity and static rigidity, high rotational accuracy, and high-speed machining with high accuracy for supporting a spindle.
Another object of the present invention is to enable support by a static pressure gas bearing and a magnetic bearing without increasing the length of the spindle, thereby enabling further high-speed rotation of the spindle.
Still another object of the present invention is to enable highly accurate displacement detection and to easily prevent mutual interference between a static pressure gas bearing and a magnetic bearing.
Still another object of the present invention is to improve the static rigidity, which is a feature of the magnetic bearing, without deteriorating the excellent dynamic stability of the static pressure gas bearing by devising the control system.
Still another object of the present invention is to provide an excellent dynamic rigidity and static rigidity for spindle support in a spindle device used in a processing machine so that high rotational accuracy can be obtained and high-speed machining can be performed with high accuracy. Is to do.
[0006]
[Means for Solving the Problems]
The processing machine according to the present invention includes a spindle device that rotates a tool, a workpiece holding unit that holds a workpiece, and a feed unit that relatively moves the tool of the spindle device and the workpiece held by the workpiece holding unit. The above spindle device has the following configuration. In other words, this spindle device has a spindle attached to the spindle device body through a hydrostatic magnetic compound bearing in which a static pressure gas bearing and a magnetic bearing are combined so that a dual-purpose part is generated. It is assumed that a drive source that rotates and drives the spindle is provided.
According to this configuration, the workpiece held by the workpiece holding means is processed by the tool provided at the spindle tip of the spindle device, and relative movement such as cutting and feeding between the workpiece and the tool is performed by the feeding means. . In this case, since the hydrostatic magnetic compound bearing in which the hydrostatic gas bearing and the magnetic bearing are combined is used as the bearing for supporting the spindle, the hydrodynamic gas bearing has excellent dynamic rigidity and rotational accuracy, and the magnetic bearing is excellent. Support that takes advantage of both characteristics of static rigidity. For this reason, when the tool is rotated at a low speed or when the tool is rotated at a high speed, it can be processed with high accuracy. In addition, since the static pressure gas bearing and the magnetic bearing are combined with each other to form a static pressure magnetic compound bearing, the configuration is compared to the case where the independent static pressure gas bearing and the magnetic bearing are simply arranged side by side. It becomes compact.
[0007]
In the processing machine according to the present invention, the spindle is installed in a spindle device main body via a radial bearing and an axial bearing, and the radial bearing is combined with the hydrostatic magnetic compound bearing. Do . Thus, by using a hydrostatic magnetic bearing as the radial bearing that supports the spindle, the spindle length can be shortened without requiring a separate length portion for the support by the static pressure and the support by the magnetism. . As a result, the natural bending frequency is increased, and higher-speed rotation is possible. In addition, the support center point of the magnetic bearing and the support center point of the static pressure gas bearing with respect to the axial direction can be made substantially coincident, and control of both bearings becomes easy.
[0008]
The hydrostatic magnetic composite bearing used as the radial bearing is a magnetic bearing stator provided with a hydrostatic gas bearing throttle. And Specifically, in the hydrostatic magnetic composite bearing to be the radial bearing, the stator of the magnetic bearing is formed in a ring shape with a core, a coil, and a core covering material, and the yoke portion arranged radially in the core includes: It is assumed that an opening is provided in the inner diameter side of the yoke portion to provide a throttle for a static pressure gas bearing, and that the cylindrical cover inner diameter surface is constituted by the core covering material and the tip surface of the yoke portion. Thus, by providing the static pressure gas bearing restriction on the stator of the magnetic bearing, the number of parts is reduced, the spindle length is shortened, and the support center points of the static pressure gas bearing and the magnetic bearing are matched. Can be easily realized.
[0009]
In the processing machine according to the present invention, as a displacement measuring means for determining the displacement of the spindle, a pressure sensor for measuring the pressure of the bearing surface of the static pressure gas bearing is provided, and the displacement of the spindle is determined from the measured value of the pressure sensor. You may provide the magnetic bearing control means which controls the magnetic force of the said magnetic bearing.
By measuring the pressure of the hydrostatic gas bearing surface in this way and converting it into spindle displacement and using it for control of the magnetic bearing, the magnetic characteristic unevenness of the spindle sensor target surface, which is a problem with other types of sensors, is caused. There is no malfunction of the sensor, and highly accurate sensing is possible. For example, highly accurate displacement detection with a resolution of submicron or less can be performed, and at the same time, a small sensor can be used, and the sensor can be housed inside the bearing, thereby enabling a compact bearing configuration. Further, by converting the pressure of the static pressure gas bearing into the spindle displacement, the bearing center of the static pressure gas bearing can be set to the magnetic bearing center, so that mutual interference between both bearings can be easily prevented. Therefore, the processing accuracy can be further improved.
[0010]
In the processing machine according to the present invention, a displacement measuring means for measuring the displacement of the spindle is provided, and a magnetic bearing control means for feedback-controlling the magnetic bearing is provided to the measured value of the displacement measuring means. Alternatively, the control is performed only by the proportional integration operation, and the control may not be performed for a high frequency exceeding a predetermined value.
In this way, the magnetic bearing can be operated without impairing the excellent dynamic stability of the static pressure gas bearing by performing only the integral operation or the proportional integral operation and not controlling the high frequency above a predetermined level. It can be limited to the bearing acting force only in the low frequency range, and the static rigidity, which is a feature, can be improved. In other words, the dynamic rigidity (high frequency region) is shared by the static pressure gas bearing, and the static rigidity (low frequency region) is shared by the magnetic bearing, so that the features of both bearings can be utilized together and interfere with each other. Can be avoided.
[0011]
In the processing machine according to the present invention, the tool provided at the tip of the spindle is a grindstone, and the workpiece holding means has a function of rotating the workpiece, and may be a grinder that performs cylindrical grinding. good.
A grinding machine is a processing machine that requires a high degree of workpiece machining accuracy and that requires a high-speed rotation of a grindstone, which is a tool, and the spindle is supported by a hydrostatic magnetic compound bearing. By applying this, high-precision support by the hydrostatic magnetic composite bearing is effectively exhibited, and high-precision machining can be performed. In addition, since a hydrostatic magnetic compound bearing is used, the bearing portion is made compact compared to the case where both an independent hydrostatic gas bearing and a magnetic bearing are used together. Can move at high speed. For this reason, when a large amount of workpieces are processed at high speed, the dead time associated with workpiece replacement can be shortened, and mass productivity can be improved.
[0012]
A spindle device according to the present invention is a spindle device provided in the processing machine having any one of the above-described configurations according to the present invention, wherein a spindle having a tool attached to the tip thereof is combined with a static pressure gas bearing and a magnetic bearing combined. A drive source for rotationally driving the spindle is provided through a piezomagnetic composite bearing, which is rotatably installed in the main body of the spindle device.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS. This processing machine is a grinding machine that grinds the inner surface of a workpiece W. The spindle device 1 rotates the tool T, the workpiece holding means 2 that holds the workpiece W, the tool T of the spindle device 1 and the workpiece holding means. 2 and a feed means 3 for relatively moving the workpiece W held by 2. The workpiece W is ring-shaped, and is, for example, a bearing ring in a rolling bearing or a sliding bearing.
[0014]
The spindle device 1 rotatably supports a spindle 4 to which a tool T made of a grindstone is attached and is driven to rotate by a built-in motor, and is fixedly installed on a tool table 5 that is a grindstone table. The tool base 5 is installed on the base 6 via the guide means 7 so as to be able to advance and retreat in the axial direction (Z-axis direction) of the spindle 4 and is driven forward and backward by the advance / retreat driving means 8. The guide means 7 may be a contact support by a sliding guide or the like, or may be a linear motion bearing that is supported in a non-contact manner by a magnetic force or a static pressure. The advancing / retreating drive means 8 may be a contact type feeding means that feeds by a motor via a ball screw, or may be a means that feeds the tool table 5 in a non-contact manner by a magnetic force or the like.
[0015]
The work holding means 2 is configured such that a chuck 9 for gripping a work W is rotatably installed on a moving table 10. The chuck 9 is driven by a motor 11 installed on the moving table 10 via a transmission mechanism 12 such as a belt. Driven by rotation. The center of rotation of the chuck 9 is parallel to the spindle 4. The moving table 10 is installed on the base 6 via the guide means 12 so as to be movable back and forth in the direction (X-axis direction) orthogonal to the tool table advance / retreat direction (Z-axis direction), and is driven forward / backward by the advance / retreat driving means 13. The The guide means 12 comprises a slide guide rail provided on the base 6, and the advance / retreat drive means 13 comprises a motor and a ball screw.
The movement of the moving table 10 moves the tool T relative to the workpiece W in the cutting direction, and the movement of the tool table 5 moves the tool T relative to the workpiece W in the feed direction. The guide means 7 and the advance / retreat driving means 8 of the tool table 5 and the guide means 12 and the advance / retreat drive means 13 of the moving table 10 constitute the feeding means 3.
[0016]
The spindle device 1 is a built-in motor type spindle device. As shown in FIG. 2, a motor 25 serving as a rotational drive source is provided in a cylindrical housing 22 serving as a spindle device body. The spindle 4 is rotatably supported through a pair of radial type bearings 23 and 23 and an axial type bearing 30 at the rear end. The radial bearing 23 and the axial bearing 30 are both hydrostatic magnetic composite bearings. The motor 25 includes a motor rotor 26 provided integrally with the spindle 4 and a stator 27 installed on the housing 22.
Flanges 22a and 22b are formed at the front and rear ends of the housing 22, and the inner peripheral surfaces of the flanges 22a and 22b are protective sliding bearing surfaces made of a material excellent in lubricity. Thereby, even when an abnormality occurs in the hydrostatic magnetic composite bearing 23 and the spindle 4 is touched down, seizure of the spindle 4 is prevented.
[0017]
Each of the radial-type hydrostatic magnetic compound bearings 23, 23 is obtained by integrating a magnetic bearing 28 and a hydrostatic gas bearing 29 as follows so that a shared portion is generated in the component parts. As the static pressure gas bearing 29, a static pressure air bearing is used. The magnetic bearing 28 includes a magnetic bearing rotor 31 provided on the outer periphery of the spindle 4 and a bearing stator 32 installed in the housing 22. The bearing rotor 31 may be a part of the spindle 4 itself. The bearing stator 32 is formed in a ring shape by a core 33, a coil 34, and a core covering member 38.
As shown in FIG. 3, the core 33 has a plurality of yoke portions 33a radially projecting from the ring-shaped portion toward the inner diameter side, and the coil 34 is wound around each yoke portion 33a. The gap between the adjacent yoke portions 33a, 33a is filled with a core covering material 38 made of resin mold or filled by thermal spraying made of nonmagnetic metal material or ceramic material, or a partition made of nonmagnetic metal material or ceramic material. Is done. The inner diameter surface of the core covering material 18 is finished into the same cylindrical surface together with the tip surface of the yoke portion 13a. The core covering member 18 and the yoke portion 33a constitute a cylindrical inner surface of the bearing stator 32.
[0018]
Inside the ring-shaped portion of the bearing stator core 33, an air supply passage 36 is formed over the entire circumference, and a throttle 35 that branches from the air supply passage 36 and supplies air to the bearing gap is provided by the electromagnetic force of each yoke portion 33a. An opening is provided in the inner diameter surface of the tip, which is the generation surface. The air supply passage 36 is connected by a pipe or the like to a supply source (not shown) of compressed air, which is a pressurized fluid, from an air supply port 37 provided at one or a plurality of locations in the circumferential direction. The compressed air is jetted into a bearing gap d formed between the inner diameter surface of the bearing stator 32 and the spindle 4.
A radial static pressure gas bearing 29 is configured by the throttle 35 and the bearing stator core 33 and the core covering member 38 that also serve as a bearing gap forming member. The bearing stator core 33 also serves as a member for forming the throttle 35 and the air supply passage 36.
As the throttle 35, an orifice throttle or other various types of throttles can be adopted. In this example, the throttle 35 is a self-contained throttle, and is composed of an air supply hole 35a provided in the core 33 and a bearing gap d. The air supply hole 35 a has a stepped inner diameter, and a portion that opens to the static pressure gas bearing surface formed by the inner surface of the core 33 is a fine hole. The diaphragm 35 is preferably arranged at least at three locations in the circumferential direction of the spindle 4. The air supply holes 35a of the throttle 35 may be formed in the core covering material 38 or the like avoiding the core 33.
[0019]
Since the radial type static pressure magnetic composite bearing 23 is a combination of the static pressure gas bearing 29 and the magnetic bearing 28 as described above, the excellent dynamic rigidity and rotational accuracy of the static pressure gas bearing 29 and the magnetic bearing 28 are obtained. It is possible to make a bearing that takes advantage of both features of excellent static rigidity.
Moreover, since the static pressure gas bearing 29 and the magnetic bearing 28 are also used as components, the configuration becomes compact compared to the case where the independent static pressure gas bearing and the magnetic bearing are arranged side by side in the axial direction. The length of the spindle 4 can be shortened. As a result, the natural bending frequency is increased, and higher-speed rotation is possible. In particular, in this embodiment, the bearing stator core 33 and the core covering member 38 of the magnetic bearing 28 also serve as a bearing gap forming member of the static pressure gas bearing 29, and the bearing stator core 33 is a forming member of the throttle 35 and the air supply passage 36. Therefore, the component parts are highly shared, and the effect of making the configuration compact is high.
[0020]
A control system of the hydrostatic magnetic composite bearing 23 will be described. As shown in FIG. 3, in the bearing stator 32, pressure detection vent holes 46 that penetrate the core covering member 38 in the radial direction and open into the bearing gap d are provided at four locations in the circumferential direction near the throttle 35. Pressure sensors 47 </ b> A to 47 </ b> D are provided in sensor mounting holes 45 that are provided at intervals and communicate with each other. These pressure sensors 47 </ b> A to 47 </ b> D are a differential pressure type air microsensor that detects a radial displacement of the spindle 4 by combining two sensors facing each other in the diameter direction. That is, the pressure sensors 47A and 47B opposed to each other in the diametrical direction form one set, the pressure sensors 47C and 47D form another set, and a corresponding vent hole is provided between one set of pressure sensors 47A and 47B. The pressure difference at the hydrostatic gas bearing surface where 46 opens is measured and converted into the displacement of the spindle 4 in the Y-axis direction. Further, the pressure difference at the static pressure gas bearing surface where the corresponding vent hole 46 is opened is measured between the pair of the other pressure sensors 47C and 47D, and this is converted into the displacement of the spindle 4 in the X-axis direction.
[0021]
The magnetic bearing control means 48 including a controller 48a and an amplifier 49 has a feedback control system in the Y-axis direction and the X-axis direction. In the feedback control system in the Y-axis direction, the pressure sensors 47A and 47B are used. Based on the detected displacement of the spindle 4 in the Y-axis direction, feedback control in the Y-axis direction of the magnetic bearing 28 is performed. That is, according to the displacement of the spindle 4, the current supplied to the coil 34 at the position corresponding to the pressure sensors 47A and 47B via the amplifier 49 or some of the neighboring coils 34 is adjusted, and the spindle 4 moves in the Y-axis direction. Control so as not to bias. That is, control is performed so that the spindle 4 matches the target position. Similarly, the feedback control system in the X-axis direction of the magnetic bearing control means 48 controls the current of the predetermined coil 34 based on the measured values of the other pressure sensors 47C and 47D.
Thus, since the air micro sensor system using the pressure sensors 47A to 47D for detecting the static pressure of the bearing gap d is adopted as the displacement sensor of the magnetic bearing 28, the zero point (target value) of the control system of the magnetic bearing 28 is adopted. ) And the support center point (pressure equilibrium point) of the static pressure gas bearing 29 can be easily matched, and complicated sensor adjustment is not required. In addition, magnetic characteristic unevenness and roundness error of the rotor sensor target surface, which are problems in other types of sensors, are irrelevant.
[0022]
Feedback control by the magnetic bearing control means 48 is only integral operation or proportional integral operation, and no compensation at high frequency is performed. Further, when the zero point of the magnetic bearing control system and the support center point of the static pressure gas bearing 29 are shifted due to the drift of the pressure sensors 47A and 47B, a slight dead zone may be provided in the integral control. By providing the dead zone in this way, malfunction of the magnetic bearing 28 due to temperature drift or the like can be suppressed. In other words, the dynamic rigidity (high frequency region) can be shared by the static pressure gas bearing 29 and the static rigidity (low frequency region) can be shared by the magnetic bearing 28. It is possible to avoid interference with each other. Further, as described above, since the magnetic bearing 28 becomes a low frequency control system of integral operation or proportional integral operation, the pressure sensors 47A to 47D having relatively slow response can be used as the displacement sensor.
The performance of the magnetic bearing 28 can be set by the setting of the magnetic bearing control means 48. In general, in the case of a magnetic bearing, it is difficult to generate a damping force effectively in a high frequency range and to stably float the spindle. There's a problem. Therefore, in the present invention, the magnetic bearing 28 is used only for the purpose of increasing the bearing rigidity in the low frequency range, which is a feature thereof.
[0023]
As the amplifier 29 that supplies current to the coil 34 of the magnetic bearing 28, a linearization circuit for linearizing the current-electromagnetic force, for example, one having a current square feedback circuit is used. As a result, linearization can be performed without flowing a bias current, and the negative rigidity peculiar to magnetic bearings does not occur. That is, it is possible to avoid the occurrence of negative rigidity in the magnetic bearing 28, and it is possible to prevent the stability of the static pressure gas bearing 29 from being impaired due to the negative rigidity. Further, iron loss in the spindle 4 caused by the bias current when the spindle 4 rotates can be eliminated, and high-speed rotation is possible.
A band elimination filter 52 synchronized with the rotational speed of the spindle 4 may be inserted into the magnetic bearing control means 48. Thereby, the electromagnetic force from the electromagnet of the magnetic bearing 28 does not act on the shake due to the rotor unbalance when the spindle 4 rotates. As described above, when the magnetic bearing control means 48 is constituted by an integral operation, the acting force of the magnetic bearing 28 in the high frequency region acts on the spindle 4 as an unstable force. When the spindle 4 rotates, the rotation of the spindle 4 has a rotation synchronization component as a main component. By selectively removing this, the spindle 4 can be stably rotated.
Further, the magnetic bearing control means 48 lowers the control gain of the magnetic bearing 28 during low-speed rotation, and changes the control gain to a predetermined value when the spindle 4 reaches a predetermined rotational speed or higher. It is preferable. Thus, by operating the magnetic bearing 28 with the gain lowered, disturbance to the spindle 4 at the moment when the magnetic bearing 28 is operated can be suppressed.
[0024]
As shown in FIG. 4, the axial bearing 30 in FIG. 2 has a bearing rotor 4a, which is a saddle-shaped thrust support portion of a spindle 4 made of a magnetic material, and is composed of two hydrostatic magnetic composite axial bearing portions 62 and 63 from both sides in the axial direction. It is composed of sandwiches. Each of the hydrostatic magnetic composite axial bearings 62, 63 has coils 66, 67 housed in electromagnet cores 64, 65 and a diaphragm 68 provided in the cores 64, 65. It is provided in a ring shape. The restrictor 68 is a self-contained restrictor, and is composed of an air supply hole 68a having a fine hole at the tip that opens on the bearing surfaces of the cores 64 and 65, and bearing gaps d1 and d2. The cores 64 and 65 and the coils 66 and 67 constitute the bearing stator 72 of the axial magnetic bearing 69, and the cores 64 and 65 and the restriction 68 constitute the axial static pressure gas bearing 70.
[0025]
By ejecting this pressure fluid between the cores 64 and 65 and the rotor 4a, pressure is generated between the cores 64 and 65 and the rotor 4a. Further, by providing the self-contained throttle 68, the pressure and the gap interval are automatically changed by the fluctuation of the gaps d1 and d2 between the cores 64 and 65 and the rotor 4a, and the static pressure gas having an automatic centering function. A bearing can be formed. Thereby, the rotor 4a can be stably levitated.
[0026]
This axial type hydrostatic magnetic composite bearing 30 is provided with a displacement sensor 71 for measuring the distance between the cores 64 and 65 and the rotor 4a outside, and flows in the coils 66 and 67 according to the measured value of the displacement sensor 71. Magnetic bearing control means 73 for feedback control of current is provided. The magnetic bearing control means 73 performs current control via an amplifier 74, for example. As a result, a bearing configuration using both a static pressure gas bearing and a magnetic bearing is possible. As the magnetic bearing control means 73, a magnetic bearing control means having the same function as the magnetic bearing control means 28 in the radial hydrostatic magnetic composite bearing 23 can be used.
[0027]
Instead of providing the displacement sensor 71, the pressure of the hydrostatic gas bearing surface is measured, and the bearing gap d in the hydrostatic gas bearing 70, that is, the gap d (d1 between the cores 64 and 65 of the electromagnet and the rotor 4a is measured by this pressure. , D2) may be obtained by conversion. The magnetic bearing control means 73 controls the currents of the coils 66 and 67 based on the detection result of the size of the gap d.
The axial type hydrostatic magnetic composite bearing 30 is provided only on one side of the bearing rotor 4a, instead of sandwiching the bearing rotor 4a between the two hydrostatic magnetic composite axial bearing portions 62 and 63 from both sides in the axial direction. Further, it may be supported in a non-contact manner by balancing the attractive force by magnetic force and the static pressure.
[0028]
In the processing machine and the spindle device thereof according to the present invention, it is not always necessary to configure all the bearings with hydrostatic magnetic compound bearings. For example, in the configuration of FIG. 2, the axial bearing 30 may be a magnetic bearing. Also, when it is necessary to increase the static stiffness only in the axial direction compared to the case where all are hydrostatic gas bearings, only the axial bearing portion is composed of a hydrostatic magnetic compound bearing, and the radial bearing support is static pressure. What is necessary is just to comprise with a gas bearing. Further, when it is necessary to increase the static rigidity only in the radial direction, a hydrostatic magnetic composite radial bearing may be arranged at the end on the spindle load side, and the other bearing support portion may be constituted by a static pressure gas bearing.
[0029]
【The invention's effect】
The processing machine according to the present invention includes a spindle device that rotates a tool, a workpiece holding unit that holds a workpiece, and a feed unit that relatively moves the tool of the spindle device and the workpiece held by the workpiece holding unit. The spindle device includes a spindle with a tool attached to the tip thereof, via a hydrostatic magnetic compound bearing in which a hydrostatic gas bearing and a magnetic bearing are combined so that a combined portion is generated. Since the spindle device body is rotatably installed and provided with a drive source for rotationally driving the spindle, excellent dynamic rigidity and static rigidity can be obtained for supporting the spindle, and high rotational accuracy can be obtained. There is an effect that high-speed processing can be performed with high accuracy.
Spindle Is And installed in the spindle device body via a radial bearing and an axial bearing, and the radial bearing and the hydrostatic magnetic compound bearing To do The support by the static pressure gas bearing and the magnetic bearing can be made without lengthening the spindle, and the spindle can be rotated at a higher speed.
Hydrostatic magnetic composite bearing used as the radial bearing Is The magnetic bearing stator is provided with a static pressure gas bearing restriction To do The number of parts can be reduced, the spindle length can be shortened, and the support center points of the static pressure gas bearing and the magnetic bearing can be easily matched.
As a displacement measuring means for determining the displacement of the spindle, a pressure sensor for measuring the pressure of the bearing surface of the hydrostatic gas bearing is provided, and the displacement of the spindle is determined from the measured value of the pressure sensor to control the magnetic force of the magnetic bearing. When the magnetic bearing control means to perform is provided, it becomes possible to detect the displacement of the spindle with high accuracy and to easily prevent the mutual interference between the static pressure gas bearing and the magnetic bearing.
Displacement measuring means for measuring the displacement of the spindle is provided, and magnetic bearing control means for feedback-controlling the magnetic bearing is provided for the measured value of the displacement measuring means. If the control is not performed for high frequencies above a predetermined level, the magnetic bearings can be used only in the low frequency range without losing the excellent dynamic stability of the hydrostatic gas bearings. It can be limited to the bearing acting force, and the static rigidity, which is a feature, can be improved.
When the processing machine of this invention is a cylindrical grinder, the tool provided at the tip of the spindle is a grindstone, and the workpiece holding means has a function of rotating the workpiece, a high degree of machining accuracy is achieved. Satisfactory machining accuracy can be obtained in the required cylindrical grinder.
The spindle device according to the present invention is used in the processing machine according to the present invention, and a spindle having a tool attached to the tip thereof is combined so that a static pressure gas bearing and a magnetic bearing are combined with each other. Since it is installed on the main body of the spindle device via a hydrostatic magnetic compound bearing and is provided with a drive source for rotationally driving the spindle, excellent dynamic rigidity and static rigidity can be obtained for supporting the spindle. In addition, high rotational accuracy can be obtained, and high-speed processing can be performed with high accuracy.
[Brief description of the drawings]
FIG. 1 is a perspective view of a processing machine according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of the spindle device.
FIG. 3 is a structural explanatory diagram showing a combination of a cross-sectional view of the spindle device and a block diagram of a control system of the radial hydrostatic magnetic composite bearing.
FIG. 4 is a structural explanatory view showing an enlarged longitudinal sectional view of an axial hydrostatic magnetic composite bearing of the spindle device in combination with a block diagram of its control system.
[Explanation of symbols]
1 ... Spindle device 35 ... Aperture
2 ... Work holding means 47A to 47D ... Pressure sensor
3 ... Feeding means 48 ... Magnetic bearing control means
4 ... Spindle 64, 65 ... Stator core
5 ... tool stand 66 ... coil
9 ... Chuck 68 ... Aperture
10 ... Moving table 69 ... Magnetic bearing
22 ... Housing 70 ... Static pressure gas bearing
23 ... Radial type hydrostatic magnetic compound bearing 71 ... Displacement sensor
28 ... Radial magnetic bearing 72 ... Bearing stator
29 ... Radial static pressure gas bearing 73 ... Magnetic bearing control means
30 ... Axial type hydrostatic magnetic compound bearing d ... Bearing clearance
32 ... Bearing stator T ... Tool
33 ... Stator core W ... Workpiece
34 ... Coil

Claims (5)

工具を回転させるスピンドル装置と、ワークを保持するワーク保持手段と、これらスピンドル装置の工具とワーク保持手段に保持されたワークとを相対的に移動させる送り手段とを備えた加工機械であって、前記スピンドル装置は、工具を先端に取付けたスピンドルを、静圧気体軸受と磁気軸受とが、互いに兼用部分が生じるように複合化された静圧磁気複合軸受を介して、スピンドル装置本体に回転自在に設置し、かつ前記スピンドルを回転駆動する駆動源を設けたものとし、前記スピンドルは、ラジアル軸受とアキシャル軸受とを介してスピンドル装置本体に設置し、前記ラジアル軸受を前記静圧磁気複合軸受とし、このラジアル軸受となる静圧磁気複合軸受は、磁気軸受のステータが、コアとコイルとコア覆い材とでリング状に形成されて、前記コアにおける放射状に並んだヨーク部に、このヨーク部の内径側の先端面に開口して静圧気体軸受の絞りが設けられ、前記コア覆い材とヨーク部の先端面とで円筒面状の内径面が構成されたものである加工機械。A processing machine comprising a spindle device for rotating a tool, a workpiece holding means for holding a workpiece, and a feed means for relatively moving the tool of the spindle device and the workpiece held by the workpiece holding means, The spindle device has a spindle with a tool attached to the tip thereof, and can freely rotate to the spindle device main body through a hydrostatic magnetic compound bearing in which a hydrostatic gas bearing and a magnetic bearing are combined so that a combined portion is generated. And a drive source for rotationally driving the spindle. The spindle is installed in the spindle device main body via a radial bearing and an axial bearing, and the radial bearing is the hydrostatic magnetic compound bearing. In the hydrostatic magnetic composite bearing used as the radial bearing, the stator of the magnetic bearing is formed in a ring shape with a core, a coil, and a core covering material. The yoke portion arranged radially in the core is provided with a throttle of a static pressure gas bearing that opens to the tip surface on the inner diameter side of the yoke portion, and a cylindrical surface is formed by the core covering material and the tip surface of the yoke portion. Machine with a cylindrical inner surface . 前記スピンドルの変位を求める変位測定手段として、前記静圧気体軸受の軸受面の圧力を測定する圧力センサを設け、この圧力センサの測定値から前記スピンドルの変位を求めて前記磁気軸受の磁力制御を行う磁気軸受制御手段を設けた請求項1に記載の加工機械。As a displacement measuring means for determining the displacement of the spindle, a pressure sensor for measuring the pressure of the bearing surface of the hydrostatic gas bearing is provided, and the displacement of the spindle is determined from the measured value of the pressure sensor to control the magnetic force of the magnetic bearing. The processing machine according to claim 1, further comprising a magnetic bearing control means for performing the operation. 前記スピンドルの変位を測定する変位測定手段を設け、この変位測定手段の測定値に前記磁気軸受をフィードバック制御する磁気軸受制御手段を設け、この磁気軸受制御手段は、積分動作または比例積分動作のみで制御するものであって、所定以上の高周波に対して制御を行わないものとした請求項1または請求項2に記載の加工機械。Displacement measuring means for measuring the displacement of the spindle is provided, and magnetic bearing control means for feedback-controlling the magnetic bearing is provided for the measured value of the displacement measuring means. The magnetic bearing control means can be used only for integral operation or proportional integral operation. The processing machine according to claim 1 , wherein the machine tool is controlled and is not controlled with respect to a predetermined high frequency. 前記スピンドルの先端に設けられた工具が砥石であり、前記ワーク保持手段が、ワークを回転させる機能を有するものであり、円筒研削を行う研削盤となる請求項1ないし請求項3のいずれかに記載の加工機械。A tool grindstone provided at the tip of the spindle, said workpiece holding means, has a function of rotating the workpiece, in any one of claims 3 to claims 1 a grinding machine for performing cylindrical grinding The processing machine described. 請求項1ないし請求項4のいずれかに記載の加工機械に用いられるスピンドル装置であって、工具を先端に取付けたスピンドルを、静圧気体軸受と磁気軸受とが複合化された静圧磁気複合軸受を介して、スピンドル装置本体に回転自在に設置し、前記スピンドルを回転駆動する駆動源を設けたスピンドル装置。5. A spindle apparatus used in a processing machine according to claim 1 , wherein a spindle having a tool attached to a tip thereof is a hydrostatic magnetic composite in which a hydrostatic gas bearing and a magnetic bearing are combined. A spindle apparatus provided with a drive source that is rotatably installed on a spindle apparatus body via a bearing and that drives the spindle to rotate.
JP19694998A 1998-07-13 1998-07-13 Processing machine and spindle device thereof Expired - Fee Related JP3789650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19694998A JP3789650B2 (en) 1998-07-13 1998-07-13 Processing machine and spindle device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19694998A JP3789650B2 (en) 1998-07-13 1998-07-13 Processing machine and spindle device thereof

Publications (2)

Publication Number Publication Date
JP2000024805A JP2000024805A (en) 2000-01-25
JP3789650B2 true JP3789650B2 (en) 2006-06-28

Family

ID=16366348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19694998A Expired - Fee Related JP3789650B2 (en) 1998-07-13 1998-07-13 Processing machine and spindle device thereof

Country Status (1)

Country Link
JP (1) JP3789650B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103394987A (en) * 2013-08-14 2013-11-20 李培培 Wood surface treatment grinding machine

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2874518B1 (en) * 2004-08-25 2006-12-22 Sames Technologies Soc Par Act ROTATING PROJECTOR OF COATING PRODUCT, INSTALLATION COMPRISING SUCH A PROJECTOR AND METHOD OF VERIFYING THE OPERATION OF SUCH A PROJECTOR
JP5184910B2 (en) 2008-02-13 2013-04-17 株式会社岡本工作機械製作所 Substrate surface grinding machine
JP5261696B2 (en) * 2008-04-11 2013-08-14 大久保精工株式会社 Spindle unit
JP5260237B2 (en) * 2008-11-14 2013-08-14 株式会社岡本工作機械製作所 Precision grinding equipment
JP5389574B2 (en) * 2009-09-03 2014-01-15 株式会社ディスコ Cutting equipment
JP2014148026A (en) * 2013-02-04 2014-08-21 Okamoto Machine Tool Works Ltd Workpiece vibration suppression device for cylindrical grinding apparatus
CN105675329B (en) * 2016-04-06 2018-10-26 青岛农业大学 A kind of static rigidity of lathe measuring device
CN107716997A (en) * 2017-11-16 2018-02-23 天津奇昌阀门制造有限公司 A kind of Novel multi-functional fire valve machining tool
CN111122157B (en) * 2019-11-26 2020-12-18 燕山大学 Magnetic-liquid double-suspension bearing experiment table
JP2021110639A (en) * 2020-01-10 2021-08-02 日本精工株式会社 Method for calculation, bearing device, and main shaft device of machine tool
CN112264837B (en) * 2020-09-16 2022-09-02 天津大学 Cradle type five-axis numerical control machine tool swing table static rigidity detection device and method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103394987A (en) * 2013-08-14 2013-11-20 李培培 Wood surface treatment grinding machine

Also Published As

Publication number Publication date
JP2000024805A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
JP3696398B2 (en) Hydrostatic magnetic compound bearing and spindle device
JP3789650B2 (en) Processing machine and spindle device thereof
US6508614B1 (en) Spindle device and machine tool utilizing the same
US7546787B2 (en) Machine tool with improved concentricity
JP5121047B2 (en) Spindle device using hydrodynamic bearing and radial hydrodynamic bearing
JP2549133B2 (en) Workpiece transport spindle assembly with magnetic bearings, and apparatus for providing such an assembly for extremely high precision machine tools
EP1506836A1 (en) Machining apparatus
US10201882B2 (en) Machine tool and machine tool unit
KR102518998B1 (en) Main spindle device and machine tool
JP2008100326A (en) Main spindle device
KR101076129B1 (en) hybrid thrust bearing
JPH1113760A (en) Hydrostatic magnetic composite bearing
JP2000263377A (en) Metal mold machining device
JP2004324895A (en) Static pressure magnetic combined bearing
JP3290087B2 (en) Positioning device using hydrostatic bearing
JPH1113761A (en) Hydrostatic magnetic composite bearing
JP3609614B2 (en) Hydrostatic magnetic compound bearing and spindle device
JP2002039176A (en) Static pressure/magnetic composite bearing spindle device
JP2001277059A (en) Turntable
KR100618032B1 (en) ball fatigue life tester
JP2531837Y2 (en) High-speed hydrostatic gas bearing device
CN110576369B (en) Grinding device
JPS6133362B2 (en)
JPH0517408B2 (en)
JPS6250242B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees