JPS58174227A - Method for controlling charging amount of ammonia in denitration apparatus - Google Patents

Method for controlling charging amount of ammonia in denitration apparatus

Info

Publication number
JPS58174227A
JPS58174227A JP57056047A JP5604782A JPS58174227A JP S58174227 A JPS58174227 A JP S58174227A JP 57056047 A JP57056047 A JP 57056047A JP 5604782 A JP5604782 A JP 5604782A JP S58174227 A JPS58174227 A JP S58174227A
Authority
JP
Japan
Prior art keywords
amount
ammonia
signal
denitrification
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57056047A
Other languages
Japanese (ja)
Other versions
JPH0411248B2 (en
Inventor
Yasuyoshi Kato
泰良 加藤
Kunihiko Konishi
邦彦 小西
Masao Ota
大田 雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP57056047A priority Critical patent/JPS58174227A/en
Publication of JPS58174227A publication Critical patent/JPS58174227A/en
Publication of JPH0411248B2 publication Critical patent/JPH0411248B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To keep the denitration performance satisfactorily even if the load is varied suddenly by adding a signal corresponding to the amount of NH3 adsorbed to the denitration catalyst to a control signal of the charging amount of NH3 calculated by the amount of NOX at an inlet and outlet of the denitration apparatus. CONSTITUTION:A waste gas J passes through a flue 2, and flows into the denitration apparatus 1 after charging an ammonia from a supplying source 4 and the denitrated waste gas is discharged through the flue 3. NOX concn. in the waste gas of the inlet side of the apparatus 1 is analyzed by an analyzer 7, the flow rate of the waste gas is detected by a detector 8 and the temp. is detected by a detector 9. On the other hand, NOX concn. in the waste gas of the outlet side is analyzed by an analyzer 10. The necessary amount of NH3 is calculated basing on the detected signals of NOX concn. and the gaseous flow rate of the inlet side. On the other hand, the insufficient amount of NH3 adsorption during the variation is calculated basing on the detected signals of the gaseous flow rate, the temp. of gas, and NOX concn. of the outlet side, and a control valve 5 of the ammonia is controlled by adding these signals.

Description

【発明の詳細な説明】 本発明は排ガス中の窒素酸化物をアンモニア接触還元法
を用いて脱硝する脱硝装置のアンモニア注入量制御方法
に係り、特に負荷変動の激しい燃焼装置に用いて好適な
脱硝装置のアンモニア注入量制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ammonia injection amount control method for a denitrification device that denitrates nitrogen oxides in exhaust gas using an ammonia catalytic reduction method. The present invention relates to a method for controlling the amount of ammonia injected into an apparatus.

排ガス中の窒素酸化物(以下、これをNOxと称す。)
の脱硝方法の一つであるアンモニア接触還元法は、乾式
であることおよび装置が簡単であること等により火力発
電用の大型ボイラなどに多く用いられている。
Nitrogen oxides in exhaust gas (hereinafter referred to as NOx)
The ammonia catalytic reduction method, which is one of the denitrification methods, is often used in large boilers for thermal power generation because it is a dry method and the equipment is simple.

この脱硝方法では、その脱硝性能がアンモニアの注入量
に大ぎく依存し【おり、装置を安定して運転するためK
はアンモニアの注入量の制御が重要なit題となってい
る。即ち、アンモニアの注入量が少ないと当然脱硝性能
は低下し、又、アンモニアの注入量が多過ぎるとアンモ
ニアが未反応のまま脱硝装置の触媒層から流出して排ガ
ス中の三酸化硫黄(SO,)と反応し、後流に設けられ
た空気予熱器に硫安として堆積し、又は白煙の原因とな
る。
In this denitrification method, the denitrification performance is highly dependent on the amount of ammonia injected, and in order to operate the equipment stably,
Controlling the amount of ammonia injected is an important issue. In other words, if the amount of ammonia injected is small, the denitrification performance will naturally decrease, and if the amount of ammonia injected is too large, the ammonia will flow out from the catalyst layer of the denitrification device unreacted, resulting in sulfur trioxide (SO, ) and deposits as ammonium sulfate in the air preheater installed downstream, or causes white smoke.

従来、アンモニア注入量の制御には種々の方法が提案さ
れているが、これらの方法な原理的に別けると次の2つ
の方法に爆着する。
Conventionally, various methods have been proposed for controlling the amount of ammonia injection, but these methods can be divided into the following two methods in principle.

(1)脱硝装置入口における排ガスの条件による制御 この方法は、脱硝反応が NH,+NO+1/40□→Nl+2/3H,0の反応
式から明らかなようにアンモニアと一酸化窒素とが等モ
ルで反応することから、排ガス流量や全NOx濃度など
から脱硝装置に流入するN O。
(1) Control based on exhaust gas conditions at the inlet of the denitrification equipment In this method, ammonia and nitrogen monoxide react in equal moles, as is clear from the reaction formula: NH, +NO + 1/40□→Nl + 2/3H,0. Therefore, NO flowing into the denitrification equipment from the exhaust gas flow rate and total NOx concentration.

量を算出してアンモニアの必要量を決定する方法である
This method determines the required amount of ammonia by calculating the amount.

(2)脱硝装置出口における排ガスの条件による制御 この方法は、原理的には脱硝装置の出口のNO。(2) Control based on exhaust gas conditions at the outlet of the denitrification equipment In principle, this method uses NO at the outlet of the denitration equipment.

濃度を測定し、これを直接又は脱硝率に変換してアンモ
ニア注入糸にフィードバックさせて注入量を制御しよう
とするものである。
The purpose is to control the injection amount by measuring the concentration and feeding it back to the ammonia injection thread either directly or by converting it into a denitrification rate.

上舵(IL(2)のいずれの方法も、脱硝装置の運転条
件が一定している場合には脱硝性能は安定に維持されて
いる。しかし、例えばボイラの負荷が上昇すると、処理
すべき排ガス量は約2倍、排ガス温度は約50℃、NO
,9度は2倍というように大幅に変化し、この変化は数
10分という短時間内に発生するものであり、このよう
に短時間に大幅な反応条件の変化が生じた場合、前記(
1)の方法では、触媒へのアンモニア吸着量が変化し、
この結果脱硝装置出口のNO,濃度が一時的に^くなる
現象が発生するという欠点があった。これを第1図(鳳
)、(b)に示す。図(、)は横軸に時間T、縦軸に負
荷の大きさLがとっである。又、図(b)は横軸に時間
、縦軸に脱硝装置出口のN0xIIIWIDがとっであ
る。図(a)、(b)の時間軸は揃えて記載されている
。第1図から、負荷の上昇変化が始まると直ちに脱硝装
置出口のNO,濃度が急く高くなり、その後徐々に一定
値戻る。したがって、この間脱硝率が低下すると(・5
欠点が発生する。
In both methods of upper rudder (IL (2)), the denitrification performance is maintained stably when the operating conditions of the denitrification equipment are constant. However, for example, when the load on the boiler increases, the exhaust gas to be treated The amount is about double, the exhaust gas temperature is about 50℃, NO
, 9 degrees changes significantly, doubling, and this change occurs within a short period of several tens of minutes.When a significant change in reaction conditions occurs in such a short period of time,
In method 1), the amount of ammonia adsorbed on the catalyst changes,
As a result, there was a drawback in that the NO concentration at the outlet of the denitration equipment temporarily decreased. This is shown in Figure 1 (Otori) and (b). In the figure (,), the horizontal axis represents time T, and the vertical axis represents load size L. In addition, in FIG. 3(b), the horizontal axis represents time, and the vertical axis represents N0xIIIWID at the outlet of the denitrification device. The time axes in Figures (a) and (b) are aligned. From FIG. 1, as soon as the load starts to increase, the NO concentration at the outlet of the denitrification device increases rapidly, and then gradually returns to a constant value. Therefore, if the denitrification rate decreases during this period (・5
Defects occur.

又、前記(2)の方法では、短時間で大幅な変化に対し
て脱硝性能を追従させるためには、前述のフィードバッ
クの量を大きく選定すればよいのであるが、そうすやと
発振現象が発生してアンモニア注入量が一定しないばか
りか、アンモニア注入量がオーバーシュートして大量の
未反応アンモニアが触媒層から流出してしまうという欠
点があった。
In addition, in the method (2) above, in order to make the denitrification performance follow large changes in a short time, it is sufficient to select a large amount of feedback, but this will cause the oscillation phenomenon. Not only is the ammonia injection amount not constant, but the ammonia injection amount overshoots and a large amount of unreacted ammonia flows out of the catalyst layer.

本発明の目的は、前記従来方法による欠点を除t、負荷
の変動に伴う急激な反応条件の変化に対する脱硝性能の
追従性が良好であり、かつ、触、媒層から流出する未反
応アンモニアの量を少なくすることができる脱硝装置の
アンモニア注入量の制御方法を提供するにある。
It is an object of the present invention to eliminate the drawbacks of the conventional methods, to provide good followability of denitrification performance to rapid changes in reaction conditions due to load fluctuations, and to eliminate unreacted ammonia flowing out from the catalyst and catalyst layers. An object of the present invention is to provide a method for controlling the amount of ammonia injected into a denitrification device, which can reduce the amount of ammonia injected.

この目的を達成するため、本発明は、脱硝装置の出口側
のNO,量をある値に設定しておき、脱硝装置入口側の
NO,量と前記設定値とで脱硝反応に要するアンモニア
注入量に応じた信号をつくり、この信号に脱硝装置の触
媒に吸着するアンモニアの補充すべき量又は減ずべき量
に応じた信号を加算し、この加算の結果得た信号により
アンモニア注入量の制御を行うよ5Klたことを特徴と
する。
In order to achieve this object, the present invention sets the amount of NO on the outlet side of the denitrification device to a certain value, and the amount of ammonia injection required for the denitrification reaction based on the amount of NO on the inlet side of the denitrification device and the set value. A signal corresponding to the amount of ammonia adsorbed on the catalyst of the denitration equipment is added to this signal, and a signal corresponding to the amount of ammonia that should be reduced is added to the signal, and the amount of ammonia injection is controlled using the signal obtained as a result of this addition. It is characterized by having completed 5Kl.

以下、本発明を図示の実施例に基づいて説明する。Hereinafter, the present invention will be explained based on illustrated embodiments.

ここで、実施例の構成の説明に先立ち、触媒へのアンモ
ニア吸着量について述べる。前述のように、脱硝反応は
アンモニア(NH,)と−酸化窒素(NO)との等モル
反応であるため、触媒量を反応がほぼ定置的に進行し得
る緻に選定しておき、脱硝装置に流入するN0Xtとこ
の脱硝装置に求められる性能とから算出されるアンモニ
アの必要量を注入する、方法が、未反応のアンモニアの
流出な最小限度に抑えるだめの方法であるといえる。
Here, prior to explaining the structure of the example, the amount of ammonia adsorbed on the catalyst will be described. As mentioned above, the denitrification reaction is an equimolar reaction between ammonia (NH, ) and -nitrogen oxide (NO), so the amount of catalyst is carefully selected so that the reaction can proceed almost stationarily, and the denitrification equipment It can be said that the method of injecting the required amount of ammonia calculated from the NOXt flowing into the reactor and the performance required of this denitrification equipment is the best way to minimize the outflow of unreacted ammonia.

そして、このような方法の欠点である応答速度の悪い点
を改善すれば本発明の目的を達成することができる。こ
のような観点から、急激な反応条件の変化における脱硝
率の一時的低下(第1図)が発生する原因な考察し、そ
の原因を除けば応答速度を改善することができるのであ
る。
The object of the present invention can be achieved by improving the poor response speed, which is a drawback of such a method. From this point of view, the cause of the temporary decrease in the denitrification rate (Fig. 1) caused by a sudden change in reaction conditions can be considered, and the response speed can be improved by eliminating the cause.

そこで、種々研究の結米紡記の原因は触媒へのアンモニ
ア吸着量に関係することが判明した。第2図は種々の温
度における触媒へのアンモニア吸着量(Q)と脱硝率に
関連する値(A)との関係を示したものである。ここで
、脱硝率に関連する値Aとは次のような数式で表わされ
る値である。
Therefore, various studies have revealed that the cause of rice grain formation is related to the amount of ammonia adsorbed on the catalyst. FIG. 2 shows the relationship between the amount of ammonia adsorbed on the catalyst (Q) and the value related to the denitrification rate (A) at various temperatures. Here, the value A related to the denitrification rate is a value expressed by the following formula.

ドI A =v In lx ただし、Fは排ガス流量、Vは触媒量、Xは脱鋼車であ
る。
I A = v In lx where F is the exhaust gas flow rate, V is the catalyst amount, and X is the steel-free vehicle.

第2図から明らかなように、同一温度においては両者は
比例関係にある。したがって、次式が成立する。
As is clear from FIG. 2, there is a proportional relationship between the two at the same temperature. Therefore, the following equation holds.

ただし、Kは定数、G (T)は温度Tの関数である。However, K is a constant and G (T) is a function of temperature T.

この(1)式は、排ガス量Fの増加や温度′rの低下の
場合、アンモニア吸着量Qを増加してやらなければ脱硝
性能は一定に維持できないことを示している。換言すれ
ば、負荷の変動に伴う反応条件の変化に脱硝性能を追従
させるためには、定常の性能を維持するためのアンモニ
ア注入量に上記の増加すべきアンモニア吸着量を追加し
てやればよいということになる。これは、アンモニア吸
着量が過剰である場合も同じであり、その場合はアひ ンモニア注入量を低減してやればよいことになる1゜以
下、増加についての場合のみ説明する。
Equation (1) shows that when the exhaust gas amount F increases or the temperature 'r decreases, the denitrification performance cannot be maintained constant unless the ammonia adsorption amount Q is increased. In other words, in order to make the denitrification performance follow changes in reaction conditions due to changes in load, it is sufficient to add the above amount of ammonia adsorption that should be increased to the amount of ammonia injected to maintain steady performance. become. This also applies when the amount of adsorbed ammonia is excessive, and in that case, only the case of an increase of 1° or less, in which case it is sufficient to reduce the amount of ahimmonia injected, will be explained.

今、アンモニア吸着量の不足分なΔQとすると、このΔ
Qは前記(1)式から次のように表される。
Now, if ΔQ is the insufficient amount of ammonia adsorption, then this Δ
Q is expressed as follows from the above equation (1).

ここで、X、は脱硝率の設定値、Xは実測された脱硝率
、C0は脱硝装置出口のNOx濃度の設定値、Cは実測
された脱硝装置出口のNO,濃度である。
Here, X is the set value of the denitrification rate, X is the actually measured denitrification rate, C0 is the set value of the NOx concentration at the outlet of the denitrification device, and C is the actually measured NO concentration at the outlet of the denitrification device.

この(2)、(3)式から、アンモニア吸着量の不足蓋
ΔQは、脱硝率の設定値X、と実測値X。
From these equations (2) and (3), the insufficient cap ΔQ of the ammonia adsorption amount is the set value X of the denitrification rate and the actual measured value X.

又は出口のNO,濃度の設定値C0と実測値Cとの比の
対数、排ガス流量および温度により算出することができ
る。
Alternatively, it can be calculated using the NO at the outlet, the logarithm of the ratio between the concentration setting value C0 and the actual measurement value C, the exhaust gas flow rate, and the temperature.

したがって、排ガスft、t、入口のNOx濃度に基づ
いてアンモニア注入量を制御する入口制御系に上記アン
モニア吸着不足量の追加系を組合せてやれば、反応条件
の急変があってもこれに充分追従してゆくことができる
アンモニア注入量制御を、゛。
Therefore, if the above-mentioned additional system for ammonia adsorption deficiency is combined with the inlet control system that controls the ammonia injection amount based on the exhaust gas ft, t, and the NOx concentration at the inlet, even if there is a sudden change in the reaction conditions, it will be able to sufficiently follow it. The amount of ammonia injection can be controlled.

竹い得るということになる。即ち、このようなアンモニ
ア注入量の制御は、反応に必要なアンモニア量と触媒性
能を一定に維持するために必要なアンモニア量とを別々
に制御する構成であるといえる。
This means that you can get bamboo. That is, such control of the ammonia injection amount can be said to be a configuration in which the amount of ammonia required for the reaction and the amount of ammonia required to maintain constant catalyst performance are separately controlled.

次に第3図に示す本発明の制御方法を実施するための制
御装置の一実施例について説明する。
Next, an embodiment of a control device for carrying out the control method of the present invention shown in FIG. 3 will be described.

図で1は脱硝反応を行5ための脱硝装置、2は脱硝装置
10入口側の煙道、3は出口側の煙道であり、煙道2に
は脱硝されていない排ガスが、煙道3には脱硝された排
ガスがそれぞれ矢印J方向に流れる。4は脱硝装置1の
入口側煙道2に注入されるべきアンモニアの供給源、5
はアンモニア供給源4からのアンモニア流量を制御する
制御弁、6はアンモニアの流量検出装置である。制御弁
5はこの制御装置からの出力信号により操作されてアン
モニア注入量を制御する。7は脱硝装置lの入口側の排
ガス内のNOx濃度を分析し、これに応じた信号すを出
力する入口NOx分析装置、8は同じく入口側の排ガス
の流量を検出し、これに応じた信号fを出力する排ガス
流量検出装置、9は同じく入口側の排ガスの温度を検出
し、これに応じた信号tを出力する温度検出装置、1o
は脱硝装置1の出口側の排ガス内のNO,濃度を分析し
、これに応じた信号Cを出力する出ロNO,分析装置で
ある。
In the figure, 1 is a denitrification device for carrying out the denitrification reaction 5, 2 is a flue on the inlet side of the denitrification device 10, and 3 is a flue on the outlet side. The denitrified exhaust gas flows in the direction of arrow J, respectively. 4 is an ammonia supply source to be injected into the inlet flue 2 of the denitrification device 1;
6 is a control valve that controls the flow rate of ammonia from the ammonia supply source 4, and 6 is an ammonia flow rate detection device. The control valve 5 is operated by an output signal from this control device to control the amount of ammonia injected. 7 is an inlet NOx analyzer that analyzes the NOx concentration in the exhaust gas on the inlet side of the denitrification equipment l and outputs a signal in accordance with this, and 8 also detects the flow rate of exhaust gas in the inlet side and outputs a signal in accordance with this. 9 is an exhaust gas flow rate detection device that outputs f, and 9 is a temperature detection device that also detects the temperature of the exhaust gas on the inlet side and outputs a signal t in accordance with this, 1o
1 is an output NO analyzer that analyzes the NO concentration in the exhaust gas on the outlet side of the denitrification device 1 and outputs a signal C corresponding to the NO concentration.

11は入口NOx分析装fil17の出力信号すと信号
C,とな入力して必要な演算を行う演算器である。
Reference numeral 11 denotes an arithmetic unit which inputs the output signal of the inlet NOx analyzer fil17 and the signal C, and performs necessary calculations.

ここで、信号C0は前記(3)式における脱硝装@1の
出II@Nor@度の設定値C0に応じた信号である。
Here, the signal C0 is a signal corresponding to the set value C0 of the output II@Nor@degree of the denitrification device@1 in the equation (3).

演算器11からは脱硝装置1の性能を維持するのに必要
な信号Xが出力される。12は排ガス流量検出装置8か
らの出力信号fと演算器11からの出力信号Xとを乗算
する乗算器であり、反応に必要なアンモニア量に応じた
信号a、が出力される。13はある定められた関数を有
する関数発生器であり、温度検出装[9からの信号tが
入力されると、これに対応した前記(3)式における値
G (1’ )に応じた信号g(t)を出力する。14
は出ロNO,分析装置10の出力信号Cと前記出口側N
0xllIi度の設定値C0に応じた信号C0とを入力
して必要な演算を行う演算器であり、この演算器14に
より前記(3)式の値13  が算出され、曹 この普に応じた信号14−か出力される。15はC・ 信号f、信号g (t)、信号j%−E−1信号kを入
C・ 力し、これらを乗算する乗算器である。ここで、信号に
は前記(3)式のに/Vに相当する籠に応じた信号であ
る。乗算器15からは触媒性能を一定に維持するために
必要なアンモニア吸着不足量4Qに応じた信号a、が出
力される。16は信号a。
The arithmetic unit 11 outputs a signal X necessary to maintain the performance of the denitrification device 1. A multiplier 12 multiplies the output signal f from the exhaust gas flow rate detection device 8 and the output signal X from the calculator 11, and outputs a signal a corresponding to the amount of ammonia required for the reaction. Reference numeral 13 denotes a function generator having a certain predetermined function, and when the signal t from the temperature detection device [9 is input, it generates a signal corresponding to the value G (1') in the equation (3) above. Output g(t). 14
is the output side NO, the output signal C of the analyzer 10 and the exit side N
This is an arithmetic unit that performs necessary calculations by inputting a signal C0 corresponding to a set value C0 of 0xllIi degrees, and this arithmetic unit 14 calculates the value 13 of the above formula (3), 14- is output. 15 is a multiplier which inputs the C signal f, the signal g(t), the signal j%-E-1 signal k, and multiplies them. Here, the signal is a signal corresponding to the cage corresponding to /V in the above equation (3). The multiplier 15 outputs a signal a corresponding to the ammonia adsorption deficiency 4Q necessary to maintain the catalyst performance constant. 16 is signal a.

と信号a、とを加算する加算器であり、加算器16から
は制御弁5を制御する制御信号路が出力される。17は
加算器16の制御信号ルを入力し、この信号ルに応じて
制御弁5の開閉制御を行う比例制御装置である。
The adder 16 is an adder that adds the signals a and a, and a control signal path for controlling the control valve 5 is output from the adder 16. 17 is a proportional control device which inputs the control signal of the adder 16 and controls the opening and closing of the control valve 5 in accordance with this signal.

次に、この制御装置の動作を述べる。まず、入口NO,
分析装置7により入口側NOx濃度が、又、排ガス流量
検出装置8により入口側排ガス流量が検出され、これに
応じた信号すおよび信号fに基づいて反応に必要なアン
モニア量が演算され、これに応じた信号1.を得る。一
方、これとは別に、排ガス流量検出装置8、温度検出装
置9、出ロNO,分析装置10によりそれぞれ入口側排
ガス流量、入口側排ガス温度、出口側NOx濃度が検出
され、これらに応じた信号f1信号1、信号Cに基づい
て(3)弐に該当する変動時のアンモニア吸着不足量が
演算され、これに応じた信号a。
Next, the operation of this control device will be described. First, entrance NO.
The analyzer 7 detects the NOx concentration on the inlet side, and the exhaust gas flow rate detector 8 detects the exhaust gas flow rate on the inlet side, and the amount of ammonia required for the reaction is calculated based on the corresponding signals S and F. Corresponding signal 1. get. On the other hand, apart from this, the exhaust gas flow rate on the inlet side, the exhaust gas temperature on the inlet side, and the NOx concentration on the outlet side are detected by the exhaust gas flow rate detection device 8, temperature detection device 9, outlet NOx, and analysis device 10, respectively, and signals corresponding to these are detected. Based on f1 signal 1 and signal C, the amount of ammonia adsorption deficiency at the time of fluctuation corresponding to (3) 2 is calculated, and signal a corresponding to this is calculated.

を得る。煙道2に注入すべきアンモニアの量は、反応に
必要なアンモニア量とアンモニア吸着不足鎗とを加えた
量であるから、これに応じた信号a。
get. Since the amount of ammonia to be injected into the flue 2 is the sum of the amount of ammonia required for the reaction and the amount of ammonia adsorption deficiency, the signal a corresponding to the amount of ammonia.

と信吟a、とを加算器16で加算することにより、必要
とする制御信号ルを得、この制御信号rLKより比例制
御装置17を介して制御弁5を制御するものである。
The necessary control signal rLK is obtained by adding the signals rLK and shingin a in an adder 16, and the control valve 5 is controlled by this control signal rLK via a proportional control device 17.

このようK、この実施例では反応に必要なアンモニア量
とは別に、触媒へのアンモニア吸着量の通、不足を演算
し、両者を加算してアンモニア注入量としたので、急激
な反応条件の変化に対する脱硝性能の追従性が良好とな
り、前記従来の制御方法で問題となっていた発振や未反
応のアンモニアの触媒層からの、−出を防ぐことができ
る。
In this example, in addition to the amount of ammonia required for the reaction, the amount of ammonia adsorbed on the catalyst was calculated, and the amount of ammonia injected was calculated by adding the two, so that the reaction conditions could change rapidly. The followability of the denitrification performance against the denitrification performance improves, and it is possible to prevent oscillation and the release of unreacted ammonia from the catalyst layer, which were problems in the conventional control method.

次に、第4図に示す本発明の制御方法を実施するための
制御装置の他の実施例について説明する。
Next, another embodiment of the control device for carrying out the control method of the present invention shown in FIG. 4 will be described.

図で[3図に示す実施例と同一部分には同一符号を付し
て説明を省略する。18は演算器である。演算器18に
は、さきの実施例における演算器14と異なり、出口N
Ox分析装置10の出力信号C1入口NOx分析装置7
の出力信号す、前記(2)式における脱硝率設定値X、
に応じた信号X、が入力れ、これに応じた信号 111
ニニl−が出力される。
In the figure, the same parts as those in the embodiment shown in FIG. 18 is a computing unit. Unlike the calculator 14 in the previous embodiment, the calculator 18 has an outlet N.
Output signal C1 of Ox analyzer 10 Inlet NOx analyzer 7
The output signal is the denitrification rate set value X in the above equation (2),
A signal X corresponding to this is input, and a signal corresponding to this 111
Nini l- is output.

1−x。1-x.

又、乗算器12にはさぎの実施例と異なり、排ガス流量
検出装置8の出力信号f、入ロNO,分析装置7の出力
信号b1前記脱硝率設定値X、に応じた信号X、が入力
され、乗算が行われて信号a8が出力される。乗算器1
5には、さぎの実施例における入力信号 In−の代り
に信号、、1−xC・               
 1−x。
Also, unlike the Sagi embodiment, the multiplier 12 receives the output signal f of the exhaust gas flow rate detection device 8, the input NO, the output signal b1 of the analyzer 7, and the signal , multiplication is performed, and signal a8 is output. Multiplier 1
5, the input signal In- in the rabbit embodiment is replaced by a signal, , 1-xC.
1-x.

が入力され、前記(2)式の演算を行って信号a。is input, and the above equation (2) is calculated to obtain the signal a.

が出力される。本実施例の動作はさぎの実施例の動作に
準するものであるので、説明は省略する。
is output. Since the operation of this embodiment is similar to that of the rabbit embodiment, the explanation will be omitted.

このように、本実施はさぎの実施例と同じ効果を有する
ばかりでな(、さぎの実施例における演算器の1つを省
略することができる。
In this way, this embodiment not only has the same effect as the rabbit embodiment (but also allows one of the arithmetic units in the rabbit embodiment to be omitted).

なお、以上の実施例においては排ガス流量の信号な排ガ
ス流量を直接検出することにより得ているが、ボイラ負
荷や過剰空気緻を検出することにより得ることもできる
In the above embodiments, the signal of the exhaust gas flow rate is obtained by directly detecting the exhaust gas flow rate, but it can also be obtained by detecting the boiler load or excess air density.

又、各演算手段としてマイクロコンビ二一夕を用いれば
、制御装置を小型、高信頼度のものとすることができる
Further, by using a microcombiner as each calculation means, the control device can be made small and highly reliable.

以上説明したように、本発明では、反応に必要なアンモ
ニア量とは別に、触媒へのアンモニア吸着量の通、不足
を演算し、両者な加算してこれをアンモニアの注入量と
したので、急激な反応条件の変化に対しても脱硝性能の
追従性が良好となり、又、未反応アンモニアの触媒l−
からの流出を防ぐことができる。
As explained above, in the present invention, in addition to the amount of ammonia required for the reaction, the amount of ammonia adsorbed on the catalyst is calculated, and the amount of ammonia adsorbed to the catalyst is calculated, and the two are added together to determine the amount of ammonia injected. The denitrification performance has good followability even with changes in reaction conditions, and the catalyst l-
It is possible to prevent leakage from.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(II)、(b)は従来の制御方法を用いた場合
の負荷の変動と脱#[置出D 111 N O,x量と
の関係を説明するための説明図、第2図はアンモニア吸
着量と脱硝効率との関係な説明するための説明図、第3
図は本発明のアンモニア注入量制御方法を実施する制御
装置の一実施例の系統図、第4図は本発明のアンモニア
注入量制御方法を実施する制御装置の他の実施例の系統
図である。 l・・・・・・脱硝装置、4・・・・・・アンモニア供
給源、5・・・・・・制御弁、7・・・・・・入口NO
,分析鋏置、8・・・・・・排ガス流量検出装置、9・
・・・・・温度検出装置、10・・・・・・出口NOx
分析装置、11.14.1B・・・・・・演算器、12
.15・・・・・・乗算器、13・・・・・・関数発生
器、16・・・・・・加算器。 第1図(O) 第1図(b) 第2図
Figures 1 (II) and (b) are explanatory diagrams for explaining the relationship between load fluctuations and the amount of desulfurization [output D 111 N O,x] when using the conventional control method; is an explanatory diagram to explain the relationship between ammonia adsorption amount and denitrification efficiency, Part 3
The figure is a system diagram of one embodiment of a control device that implements the ammonia injection amount control method of the present invention, and FIG. 4 is a system diagram of another embodiment of a control device that implements the ammonia injection amount control method of the present invention. . 1... Denitrification device, 4... Ammonia supply source, 5... Control valve, 7... Inlet NO.
, analysis scissors holder, 8...exhaust gas flow rate detection device, 9.
...Temperature detection device, 10...Outlet NOx
Analyzer, 11.14.1B... Arithmetic unit, 12
.. 15... Multiplier, 13... Function generator, 16... Adder. Figure 1 (O) Figure 1 (b) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、触媒にアンモニアを吸着させて排ガス中の窒素酸化
物を除′去する脱硝装置において、設定された前記脱硝
装置出口@窒素酸化物量と前記脱硝装置入口側窒素酸化
物量とKより脱硝反応Kl’するアンモニア注入量に応
じた信号を発生するとともに、この信号に前記触媒に吸
着するアンモニアの調整量に応じた信号を加算し、この
加算された信号でアンモニア注入量を制御することを特
徴とする脱硝装置のアンモニア注入量制御方法。
1. In a denitrification device that removes nitrogen oxides from exhaust gas by adsorbing ammonia on a catalyst, the denitrification reaction Kl is determined from the set amount of nitrogen oxides at the outlet of the denitrification device, the amount of nitrogen oxides at the entrance of the denitrification device, and K. A signal corresponding to the amount of ammonia to be injected is generated, a signal corresponding to the adjusted amount of ammonia adsorbed on the catalyst is added to this signal, and the amount of ammonia to be injected is controlled by this added signal. Ammonia injection amount control method for denitrification equipment.
JP57056047A 1982-04-06 1982-04-06 Method for controlling charging amount of ammonia in denitration apparatus Granted JPS58174227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57056047A JPS58174227A (en) 1982-04-06 1982-04-06 Method for controlling charging amount of ammonia in denitration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57056047A JPS58174227A (en) 1982-04-06 1982-04-06 Method for controlling charging amount of ammonia in denitration apparatus

Publications (2)

Publication Number Publication Date
JPS58174227A true JPS58174227A (en) 1983-10-13
JPH0411248B2 JPH0411248B2 (en) 1992-02-27

Family

ID=13016165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57056047A Granted JPS58174227A (en) 1982-04-06 1982-04-06 Method for controlling charging amount of ammonia in denitration apparatus

Country Status (1)

Country Link
JP (1) JPS58174227A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265124A (en) * 1991-02-21 1992-09-21 Sumitomo Chem Eng Kk Denitration method
JPH04346819A (en) * 1991-05-23 1992-12-02 Niigata Eng Co Ltd Denitration control device and method
JP2003010645A (en) * 2001-07-03 2003-01-14 Babcock Hitachi Kk Method and apparatus for controlling ammonia injection amount to nitrogen oxide removal apparatus and ammonia injection amount correcting apparatus to be employed therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303934A (en) * 1998-06-23 2001-10-31 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2002177741A (en) * 2000-12-18 2002-06-25 Miura Co Ltd Method of controlling denitration apparatus in boiler

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433864A (en) * 1977-08-22 1979-03-12 Hitachi Ltd Process and device for controlling reducing agent for use in denitration plant
JPS551858A (en) * 1978-06-21 1980-01-09 Mitsubishi Chem Ind Ltd Reduction and denitrification by ammonia
JPS56163741A (en) * 1980-05-20 1981-12-16 Kawasaki Heavy Ind Ltd Method for controlling feed rate or nh3 in dry denitration apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433864A (en) * 1977-08-22 1979-03-12 Hitachi Ltd Process and device for controlling reducing agent for use in denitration plant
JPS551858A (en) * 1978-06-21 1980-01-09 Mitsubishi Chem Ind Ltd Reduction and denitrification by ammonia
JPS56163741A (en) * 1980-05-20 1981-12-16 Kawasaki Heavy Ind Ltd Method for controlling feed rate or nh3 in dry denitration apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265124A (en) * 1991-02-21 1992-09-21 Sumitomo Chem Eng Kk Denitration method
JPH04346819A (en) * 1991-05-23 1992-12-02 Niigata Eng Co Ltd Denitration control device and method
JP2003010645A (en) * 2001-07-03 2003-01-14 Babcock Hitachi Kk Method and apparatus for controlling ammonia injection amount to nitrogen oxide removal apparatus and ammonia injection amount correcting apparatus to be employed therefor
JP4627611B2 (en) * 2001-07-03 2011-02-09 バブコック日立株式会社 Ammonia injection amount control method and apparatus for denitration apparatus and ammonia injection amount correction device

Also Published As

Publication number Publication date
JPH0411248B2 (en) 1992-02-27

Similar Documents

Publication Publication Date Title
JPS5940051B2 (en) Electron beam irradiation exhaust gas treatment equipment
RU2138654C1 (en) Methods of and device for conversion of harmful matter in exhaust gases in catalyst
KR940015237A (en) NOx removal control device
US8584444B2 (en) Model-based controls for selective catalyst reduction system
Caton et al. The selective non‐catalytic reduction of nitric oxide using ammonia at up to 15% oxygen
JP6761368B2 (en) Denitration control device and denitration control method
Meisami-Azad et al. An adaptive control strategy for urea-SCR aftertreatment system
KR20180128291A (en) Apparatus for Reduction of Nitrogen oxide
JP4455349B2 (en) NOx treatment method and apparatus for waste treatment facility
Roduit et al. 3‐D modeling of SCR of NOx by NH3 on vanadia honeycomb catalysts
JPS58174227A (en) Method for controlling charging amount of ammonia in denitration apparatus
US20170167341A1 (en) System and method for emission control in power plants
JPH0263524A (en) Method for controlling amount of nh3 to be injected into exhaust gas denitrification device
CN107678305B (en) Ammonia injection control method of ship diesel engine denitration system based on non-uniform distribution
Meisami-Azad et al. PCA-based linear parameter varying control of SCR aftertreatment systems
Matsumura et al. Improvement of de-NOx device control performance using a software sensor
JPH02204614A (en) Method for eliminating nitrogen oxide in exhaust gas of diesel engine
JP3410555B2 (en) Ammonia injection amount control device for denitration equipment
CN111931358A (en) Model-driven SCR denitration ammonia spraying targeting control loop
JPH10216459A (en) Reduction of nox in combustion exhaust gas and device therefor
JPS58143825A (en) Apparatus for controlling pouring amount of ammonia
JPH01180220A (en) Denitrification control device for gas turbine plant
JPS56163741A (en) Method for controlling feed rate or nh3 in dry denitration apparatus
JP2001129354A (en) Denitration apparatus, combustion apparatus and method of operating the same
JPS60187323A (en) Removing method of hydrocarbon