JP4627611B2 - Ammonia injection amount control method and apparatus for denitration apparatus and ammonia injection amount correction device - Google Patents

Ammonia injection amount control method and apparatus for denitration apparatus and ammonia injection amount correction device Download PDF

Info

Publication number
JP4627611B2
JP4627611B2 JP2001201849A JP2001201849A JP4627611B2 JP 4627611 B2 JP4627611 B2 JP 4627611B2 JP 2001201849 A JP2001201849 A JP 2001201849A JP 2001201849 A JP2001201849 A JP 2001201849A JP 4627611 B2 JP4627611 B2 JP 4627611B2
Authority
JP
Japan
Prior art keywords
amount
nox
deviation
outlet
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001201849A
Other languages
Japanese (ja)
Other versions
JP2003010645A (en
Inventor
孝裕 竹友
宏 権藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2001201849A priority Critical patent/JP4627611B2/en
Publication of JP2003010645A publication Critical patent/JP2003010645A/en
Application granted granted Critical
Publication of JP4627611B2 publication Critical patent/JP4627611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling an NH3 injection amount to a nitrogen oxide removal apparatus so as to prevent excess nitrogen oxide removal and leakage of NH3 and avoid deviation from a regulated value of the NOx concentration at an outlet due to insufficient injection amount of NH3 . SOLUTION: The method for controlling ammonia injection amount comprises steps of calculating an inlet NOx amount from the quantity of an object waste gas to be treated and an inlet NOx concentration; calculating the NH3 mole ratio necessary to the NOx amount based on the prescribed values and the measured values of the inlet NOx concentration and an outlet NOx concentration; calculating correcting bias signals for NH3 adsorption amount remaining in a catalyst based on the injected NH3 flow rate, the amount of the object waste gas to be treated, the inlet and outlet NOx concentrations, and the NH3 flow rate leaking from the apparatus; correcting the necessary NH3 flow rate signals based on the correcting bias signals; and operating an NH3 flow rate control apparatus based on the deflection between the corrected necessary NH3 flow rate signal and the practically measured NH3 flow rate signal.

Description

【0001】
【発明の属する技術分野】
本発明は、脱硝装置へのアンモニア注入量制御方法および装置ならびにそれらに使用するアンモニア注入量補正装置に係り、特にボイラなどの燃焼装置から排出される排ガス中の窒素酸化物(NOx)をアンモニア(NH3 )の注入によって還元・除去する脱硝装置へのアンモニア注入量制御方法および装置ならびにこれらに使用するアンモニア注入量補正装置であって、触媒に吸着されるNH3 量を考慮し、かつ出口NOx濃度制御偏差を適切に解消するためのアンモニア注入量補正装置と、該装置を備えた脱硝装置へのアンモニア注入量制御方法および装置に関する。
【0002】
【従来の技術】
排ガス用脱硝装置ではNOx還元剤として一般にNH3 を使用し、これを排ガス中に注入し、装置内に設置した触媒層上で注入したNH3 と排ガス中のNOxを反応させて窒素と水にする。すなわち、
【0003】
【数1】
NH3 +NO+1/4O2 →N2 +3/2・H2
排ガス中のNOxは注入するNH3 と上式で示す反応をして窒素と水になるので、基本的には注入するNH3 量は処理すべきNOx量に見合った量を注入することになる。
【0004】
注入したNH3 はNOxとの反応に使用される以外に、触媒表面に吸着し得るだけ吸着する。したがって、それを超えて注入するとリークアンモニアとして脱硝装置から流出し問題となる。
一方、注入するNH3 量が処理すべきNOx量に対して不足するとNOxを処理しきれなくなり、出口処理ガス中のNOx濃度を規定値以下にすることができなくなる。
【0005】
脱硝装置のアンモニア注入量制御方法についての従来技術を図3に示す。被処理ガス中のNOx量に見合ったNH3 注入量を算出する注入量算出器9は、脱硝装置の入口NOx濃度、出口NOx濃度設定値、出口NOx濃度および被処理ガス量などからNH3 注入量を算出するものである。
【0006】
すなわち、脱硝装置の入口NOx分析計12で検出された入口NOx濃度信号13と被処理ガス量28の被処理ガス流量信号29とを乗算器31で乗算し、総NOx量信号30を算出する。一方、入口NOx濃度信号13と脱硝装置の出口NOx濃度設定器15で設定された設定NOx濃度信号16との減算を行う減算器19を有する必要モル比演算器18で必要モル比(NH3 モル/NOxモル)信号20を算出し、比例積分演算器25を介して加算器26に入力する。
【0007】
一方、出口NOx濃度分析計22で検出された出口NOx濃度検出信号23と設定NOx濃度信号16との偏差を減算器24により算出し、比例積分演算器25を介して加算器26に入力して前記必要モル比信号20の補正を行う。
補正後の必要モル比信号27と先に述べた総NOx量信号30とを乗算器32で乗算し必要NH3 流量信号33を算出する。
【0008】
この必要NH3 流量信号33とNH3 流量計38で検出されたNH3 流量検出信号39を減算器40で減算してNH3 流量偏差信号41を算出し、これを比例積分演算器42で弁開度信号43に変換して、電空変換器44により制御信号45に変換し、NH3 配管5の途中に設けられたNH3 流量調節弁10を開閉して脱硝装置へのNH3 注入量を適正量に制御する。
【0009】
【発明が解決しようとする課題】
従来技術に係る比例積分演算器25によるフィードバック制御装置では、出口NOx濃度を設定値に漸近させることを目的とするが、制御にやや時間を要するとともに、触媒上のNH3 吸着量を考慮したNH3 注入量制御を行っていないので、
(1)多量の吸着NH3 が触媒上に残存していて、しかも負荷が降下するときにはNOxの過剰除去による出口NOx濃度の設定範囲からの下方への逸脱、(2)過剰なNH3 注入によるリークNH3 量の増大、(3)NH3 の過剰使用による不経済等の問題が生じていた。
【0010】
本発明の課題は、上記従来技術の問題点を解決し、触媒に吸着されるNH3 量や装置からのリークNH3 量を正確に把握してNH3 注入量操作にフィードバックさせるとともに、出口NOx濃度の設定値と測定値の偏差に基づくNH3 注入量操作へのフィードバックを迅速かつ調節容易とし、負荷に対応した適切なNH3 注入を行い、これにより過剰注入による過脱硝や、リークNH3 の増大を防止し、またはNH3 注入量不足による出口NOx濃度の規制値からの逸脱を防止することができる脱硝装置へのアンモニア注入量制御方法および装置ならびにそれらに使用するアンモニア注入量補正装置を提供することにある。
【0011】
【課題を解決するための手段】
上記課題を解決するため、本願で特許請求する発明は以下のとおりである。
【0014】
)装置入口からNOxを含有する排ガスを導入するとともに該排ガス中にNH3 を注入して装置内に設けた脱硝触媒層により前記NOxを接触還元したのち装置出口から排出する脱硝装置へ前記NH3 を注入するNH3 注入量制御装置において、前記装置入口から導入した被処理排ガスのNOx量を求める手段と、入口NOx濃度と出口NOx濃度の設定値および測定値に基づきNOx量に対する必要NH3 モル比を算出する手段と、前記入口NOx量と必要NH3 モル比から必要アンモニア流量を求める手段と、被処理ガス量と入口および出口NOx濃度から脱硝反応に消費したNH3 量を求める手段と、求めた消費NH3 量と装置からのリークNH3 量とを注入NH3 量から減算して触媒残存NH3 吸着量補正バイアス信号を求める手段と、装置出口NOx濃度の設定値と測定値の制御偏差量に応じ、かつその偏差がマイナス時はマイナス、プラス時はプラスの値として脱硝出口NOx偏差補正バイアス信号を求める手段と、前記2つの補正バイアス信号を加算する手段と、装置出口NOx濃度の設定値と測定値の偏差に基づき出口NOx偏差補正ゲイン値を算出する手段と、前記加算した補正バイアス信号に上記出口NOx偏差補正ゲイン値を乗算してNH3 注入量補正信号を求める手段と、該NH3 注入量補正信号を前記必要NH3 流量に加算して補正後必要NH3流量を算出する手段と、この補正後必要NH3 流量と実測NH3 流量との偏差に基づきNH3 流量調節手段を操作する手段とを設けたことを特徴とする脱硝装置へのアンモニア注入量制御装置。
【0015】
)装置入口からNOxを含有する排ガスを導入するとともに該排ガス中にNH3 を注入して装置内に設けた触媒層によって前記NOxを還元したのち装置出口から排出する脱硝装置へのNH3 注入量を制御するに際し、前記触媒層に吸着されるNH3 量と出口NOx濃度の設定値と測定値の偏差に基づき上記NH3注入量を補正する装置であって、前記脱硝装置に導入される被処理ガス量と入口および出口NOx濃度から脱硝反応に消費したNH3 量を求める手段と、求めた消費NH3 量と装置からのリークNH3 量を注入NH3 量から減算して触媒残存NH3 吸着量補正バイアス信号を求める手段と、装置出口のNOx濃度の設定値と測定値の偏差量に基づき、かつその偏差がマイナス時はマイナス、プラス時はプラスの値として脱硝出口NOx偏差補正バイアス信号を算出する手段と、前記2つの補正バイアス信号を加算する手段と、装置出口NOx濃度の設定値と測定値の偏差量に基づき出口NOx偏差補正ゲイン値を算出する手段と、前記加算した補正バイアス信号にこの出口NOx偏差補正ゲイン値を乗算してNH3 注入量補正信号を求める手段と、該NH3 注入量補正信号を脱硝装置へのNH3 注入量制御部に入力する手段とを備えてなる脱硝装置へのアンモニア注入量補正装置。
【0016】
【発明の実施の形態】
本発明の実施の形態を図面を用いて以下、説明する。
図2は、脱硝反応器の概略図である。脱硝反応器1は、例えば被処理ガスGの発生源であるボイラからの排ガス(被処理ガスG)を入口ダクト2から導入し、NH3 の注入によって脱硝処理してから出口ダクト3に排出し、さらに図示していない煙突により屋外に排出する。この際、被処理ガスG中のNOxは入口ダクト2に設けられたNH3 注入器4によって被処理ガスG中のNOx量に見合ったNH3 がアンモニア流量計38およびアンモニア流量調節弁10を介して注入され、脱硝反応器1の内部に充填された図示していない脱硝触媒のはたらきによって無害な水蒸気と窒素ガスに分解、除去される。通常、脱硝反応器1の運用は被処理ガスGの発生源、例えばボイラ等の負荷変化時においても脱硝反応器1の出口NOx濃度が規定値以下になるように制御される。ここで被処理ガスG中の入口NOx濃度は入口NOx分析計12で、出口NOx濃度は出口NOx分析計22で計測される。
【0017】
以下、本発明の実施形態である制御回路の全体構造を図1を用いて説明する。
図1は、上記脱硝反応器1に備えられた脱硝制御装置7の実施の形態を示す制御回路である。この脱硝制御装置7は、アンモニアの注入量を算出する注入量算出器9(従来回路)で使用している一部の信号を流用し、従来回路の代替回路として補正NH3 流量算出器50(本発明回路)を設置したものである。
【0018】
補正アンモニア流量算出器50では、入口NOx濃度信号13と出口NOx濃度信号23の差分を減算器57により求め、このNOx濃度差分信号を乗算器58にて被処理ガス量28と乗算する。これは脱硝装置1で還元処理されたNOx量に相当する。この処理NOx量に必要モル比を乗算すればNOx還元反応に直接使用されたNH3 量が得られる。これを信号58aで示す。
【0019】
アンモニア流量計38による実測NH3 流量信号39と上記信号58aの差分を減算器56で求め56aを得る。56aは脱硝装置に注入されたアンモニア量のうち、排ガスとの還元反応にはかかわらなかったアンモニア量に相当する。
このアンモニア量56aから、リークNH3 流量検出器59による脱硝装置からの流出アンモニア流量59aを減算器60にて減算すると触媒に吸着されるNH3 量、すなわちNH3 吸着量補正バイアス信号65を得る。この信号65はNH3 補正出力信号66として図1の加算器51に入力する。
【0020】
一方、出口NOx濃度設定値15の出力信号16と出口NOx濃度分析計22の出力信号23との偏差信号67を関数発生器54に入力し、変化率制御器55を経て出口NOx偏差補正バイアス信号64を得る。この信号64は加算器61、乗算器62を経てNH3 注入補正信号66として加算器51に加算される。
【0021】
なお、出口NOx偏差補正バイアス信号64は、前記偏差信号67の値がプラスの場合、すなわち信号23が信号16より大きい場合はプラスの出力、信号67がマイナスの場合はマイナスとなる。すなわち出口NOx濃度信号23が設定値16より大きい場合は信号64はプラス、信号23が信号16より小さい場合は信号64はマイナスとする。
また、この信号64と前記したNH3 吸着量補正バイアス信号65を加算器61にて加算し、この加算された補正信号61aをNH3 注入補正信号66として加算器51に入力する。
【0022】
なお、関数発生器54は脱硝装置の構造、内蔵された脱硝触媒の構造、成分、性能、排ガス発生源の特性等により規定されるものであり、ボイラ等の試運転時に関数関係が調整される。変化率制御器55は、前記した信号64の変化率を制御するものであり、その目的は脱硝装置へのアンモニア注入量に極度の変化を与えることを抑制するものである。
【0023】
また、出口NOx濃度偏差信号67は関数発生器52に入力され信号52aを出力する。この信号52aは1次遅れ要素53を介して信号64に対して1次遅れ形式の出口NOx偏差補正ゲイン信号63として出力され、乗算器62に入力される。
この結果、乗算器62に入力される前記信号65、または65もしくは信号64と65を加算した信号に信号63が乗算され、ゲイン倍された出力信号66を得る。このゲイン値は0〜Xの範囲で調整される。
【0024】
脱硝出口NOx制御偏差からの必要NH3 補正ゲイン信号63は、出口NOx制御偏差に見合った値を関数発生器52により可変出力する。例えば制御偏差(減算器24出力)がプラス方向の場合は、NH3 補正流量をプラスゲイン倍とし加算器61出力を増加させ、脱硝出口NOx濃度のピークを抑える方向へと動作する。逆に、出口制御偏差(減算器24出力)がマイナス側の場合は、関数発生器52よりマイナスゲイン倍とし、脱硝出口NOxの沈み込みを防止する方向へ動作する。当然出口NOx制御性向上のため関数発生器52にはデットバンドを設けてあり、制御偏差0付近はNH3 流量補正バイアスを変化させない工夫もしてある。
【0025】
上記した実施の形態の動作により、脱硝装置出口NOxのピーク/ボトムを抑えることができるので、その結果、脱硝装置出口NOx値を制御管理値範囲内に維持することが可能である。
【0026】
【発明の効果】
本発明によれば、触媒に吸着されるアンモニア量を考慮し、かつ装置出口のNOx濃度偏差を早急・適切に解消するためのアンモニア注入量補正手段を設けたので、
(1)脱硝装置出口NOx濃度制御偏差の縮小、(2)リークNH3 量の低減、(3)NH3 消費量の低減といった効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例である脱硝装置へのアンモニア注入量制御方法の装置系統を示す図。
【図2】脱硝装置の概略図。
【図3】従来技術に係る脱硝装置へのアンモニア注入量制御方法の装置系統を示す図。
【符号の説明】
5…NH3 配管、8…従来脱硝制御装置、9…注入量算出器、10…NH3 流量調整弁、12…入口NOx濃度分析計、13…入口NOx濃度信号、15…出口NOx濃度設定器、16…設定NOx濃度信号、18…必要モル比演算部、19…減算器、20…必要モル比信号、22…出口NOx濃度分析計、23…出口NOx濃度信号、24…減算器、25…比例積分演算器、26…加算器、27…必要モル比信号(補正後)、28…被処理ガス量、29…被処理ガス流量信号、30…総NOx量信号、31…乗算器、32…乗算器、33…必要NH3 流量信号、38…必要NH3 流量計、39…実測NH3 流量信号、40…減算器、41…NH3 流量偏差信号、42…比例積分器、43…弁開度信号、44…電空変換器、45…制御信号、50…補正NH3 流量算出器、51…加算器、52…関数発生器、53…1次遅れ、54…関数発生器、55…変化率制御器、56…減算器、57…減算器、58…乗算器、59…リークNH3 流量検出器、60…減算器、61…加算器、62…乗算器、63…出口NOx偏差補正ゲイン信号、64…出口NOx偏差補正バイアス信号、65…NH3 吸着量補正バイアス信号、66…NH3 注入補正信号、67…脱硝出口NOx制御偏差、68…補正後必要NH3 流量信号。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for controlling the amount of ammonia injected into a denitration apparatus, and an ammonia injection amount correction apparatus used therefor, and in particular, nitrogen oxide (NOx) in exhaust gas discharged from a combustion apparatus such as a boiler is converted to ammonia (NOx). A method and apparatus for controlling the amount of ammonia injected into a denitration apparatus that reduces and removes by injection of NH 3 ) and an ammonia injection amount correction apparatus used therefor, taking into account the amount of NH 3 adsorbed on the catalyst, and at the outlet NOx The present invention relates to an ammonia injection amount correction device for properly eliminating a concentration control deviation, and an ammonia injection amount control method and device for a denitration apparatus equipped with the device.
[0002]
[Prior art]
In exhaust gas denitration equipment, NH 3 is generally used as a NOx reducing agent, which is injected into the exhaust gas, and NH 3 injected on the catalyst layer installed in the equipment reacts with NOx in the exhaust gas to form nitrogen and water. To do. That is,
[0003]
[Expression 1]
NH 3 + NO + 1 / 4O 2 → N 2 + 3/2 · H 2 O
Since NOx in the exhaust gas reacts with NH 3 to be injected to react with nitrogen and water by the above formula, basically, the amount of NH 3 to be injected is injected in an amount corresponding to the amount of NOx to be processed. .
[0004]
In addition to being used for the reaction with NOx, the injected NH 3 is adsorbed on the catalyst surface as much as possible. Therefore, if it is injected beyond that, it will flow out from the denitration device as leaked ammonia, causing a problem.
On the other hand, if the amount of NH 3 to be injected is insufficient with respect to the amount of NOx to be processed, NOx cannot be completely processed, and the concentration of NOx in the outlet processing gas cannot be reduced below a specified value.
[0005]
FIG. 3 shows a conventional technique regarding the ammonia injection amount control method of the denitration apparatus. Injection volume calculator 9 for calculating a NH 3 injection rate commensurate with the amount of NOx to be treated in the gas, NH 3 injection inlet NOx concentration of the denitration apparatus, the outlet NOx concentration setting, and the like outlet NOx concentration and the processed gas amount The amount is calculated.
[0006]
That is, the inlet NOx concentration signal 13 detected by the inlet NOx analyzer 12 of the denitration apparatus is multiplied by the gas flow rate signal 29 of the gas to be processed 28 by the multiplier 31 to calculate the total NOx amount signal 30. On the other hand, the required molar ratio (NH 3 mol) is calculated by a required molar ratio calculator 18 having a subtractor 19 that performs subtraction between the inlet NOx concentration signal 13 and the set NOx concentration signal 16 set by the outlet NOx concentration setter 15 of the denitration apparatus. / NOx mole) signal 20 is calculated and input to adder 26 via proportional-integral calculator 25.
[0007]
On the other hand, the deviation between the outlet NOx concentration detection signal 23 detected by the outlet NOx concentration analyzer 22 and the set NOx concentration signal 16 is calculated by a subtractor 24 and input to an adder 26 via a proportional-integral calculator 25. The required molar ratio signal 20 is corrected.
A necessary NH 3 flow rate signal 33 is calculated by multiplying the necessary molar ratio signal 27 after correction by the multiplier 32 by the total NOx amount signal 30 described above.
[0008]
The NH 3 flow rate detection signal 39 detected by the necessary NH 3 flow rate signal 33 and the NH 3 flow meter 38 is subtracted by the subtractor 40 calculates the NH 3 flow rate difference signal 41, the valve in proportional-plus-integral calculator 42 so The opening signal 43 is converted into a control signal 45 by the electropneumatic converter 44, and the NH 3 flow rate adjusting valve 10 provided in the middle of the NH 3 pipe 5 is opened and closed to inject NH 3 into the denitration device. To an appropriate amount.
[0009]
[Problems to be solved by the invention]
The feedback control device using the proportional-plus-integral calculator 25 according to the prior art aims to make the outlet NOx concentration asymptotic to the set value. However, it takes a little time for the control and takes into account the NH 3 adsorption amount on the catalyst. 3 Since the injection volume is not controlled,
(1) A large amount of adsorbed NH 3 remains on the catalyst, and when the load drops, the NOx excessive removal causes a downward deviation from the set range of the outlet NOx concentration, and (2) due to excessive NH 3 injection. Problems such as an increase in the amount of leaked NH 3 and (3) uneconomical due to excessive use of NH 3 occurred.
[0010]
An object of the present invention is to solve the problems of the prior art, together with a leakage NH 3 quantity from NH 3 amount and the device to be adsorbed to the catalyst by accurately grasp is fed back to the NH 3 injection rate operation, the outlet NOx the feedback to the NH 3 injection rate operation based on the deviation of the density set value and the measured value is quickly and easily adjusted, performs the appropriate NH 3 injection corresponding to the load, thereby or excessive denitrification due to excessive injection, leakage NH 3 A method and apparatus for controlling the amount of ammonia injected into a denitration device and an ammonia injection amount correcting device used therefor, which can prevent the increase in the NO3 concentration or the deviation from the regulation value of the outlet NOx concentration due to the insufficient amount of NH 3 injection It is to provide.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the invention claimed in the present application is as follows.
[0014]
( 1 ) The NOx containing NOx is introduced from the apparatus inlet, NH 3 is injected into the exhaust gas, and the NOx is contact-reduced by the denitration catalyst layer provided in the apparatus, and then the NOx is discharged from the apparatus outlet to the denitration apparatus. In the NH 3 injection amount control apparatus for injecting NH 3 , means for obtaining the NOx amount of the exhaust gas to be treated introduced from the apparatus inlet, and the required NH for the NOx amount based on the set values and measured values of the inlet NOx concentration and the outlet NOx concentration Means for calculating a 3 molar ratio, means for determining the required ammonia flow rate from the inlet NOx amount and the required NH 3 molar ratio, and means for determining the NH 3 amount consumed in the denitration reaction from the amount of gas to be treated and the inlet and outlet NOx concentrations And means for subtracting the obtained NH 3 amount and the leaked NH 3 amount from the apparatus from the injected NH 3 amount to obtain a catalyst residual NH 3 adsorption amount correction bias signal; A means for obtaining a denitration outlet NOx deviation correction bias signal in accordance with a control deviation amount between the set value and the measured value of the apparatus outlet NOx concentration, and when the deviation is negative, and when the deviation is positive, a positive value; Means for adding a bias signal; means for calculating an outlet NOx deviation correction gain value based on a deviation between a set value of the apparatus outlet NOx concentration and a measured value; and multiplying the added correction bias signal by the outlet NOx deviation correction gain value. means for determining NH 3 injection rate correction signal and, means for calculating the NH 3 injection rate correction signal the need NH 3 flow rate required NH 3 flow rate after correction is added to the, and the corrected required NH 3 flow rate A device for controlling the amount of ammonia injected into the denitration device, comprising means for operating the NH 3 flow rate adjusting means based on a deviation from the measured NH 3 flow rate.
[0015]
( 2 ) The exhaust gas containing NOx is introduced from the inlet of the apparatus, NH 3 is injected into the exhaust gas, the NOx is reduced by the catalyst layer provided in the apparatus, and then discharged from the outlet of the apparatus to NH 3. When controlling the injection amount, the NH 3 injection amount is corrected based on the deviation between the NH 3 amount adsorbed on the catalyst layer and the set value and measured value of the outlet NOx concentration, and is introduced into the denitration device. that means for determining the amount of NH 3 from the treated gas amount and the inlet and outlet NOx concentrations were consumed in denitration reaction is subtracted from the injection amount of NH 3 leakage NH 3 quantity from the consumption amount of NH 3 was determined device catalyst remaining NH 3 and means for finding an adsorption amount correction bias signal, based on the deviation of the measured value and the set value of the NOx concentration in the apparatus outlet, and the time deviation is negative negative, denitrification outlet plus the time as positive values Means for calculating an Ox deviation correction bias signal; means for adding the two correction bias signals; means for calculating an outlet NOx deviation correction gain value based on a deviation between the set value of the apparatus outlet NOx concentration and the measured value; Means for obtaining the NH 3 injection amount correction signal by multiplying the added correction bias signal by the exit NOx deviation correction gain value, and inputting the NH 3 injection amount correction signal to the NH 3 injection amount controller for the denitration apparatus. A device for correcting the amount of ammonia injected into a denitration apparatus comprising the means.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 2 is a schematic view of a denitration reactor. The denitration reactor 1 introduces exhaust gas (treated gas G) from a boiler that is a source of the treated gas G, for example, from the inlet duct 2, denitrates it by injecting NH 3 , and then discharges it to the outlet duct 3. Further, it is discharged outdoors by a chimney (not shown). At this time, NOx in the gas to be treated G is through the NH 3 injector NH 3 ammonia flow rate commensurate with the amount of NOx in the gas to be treated G by 4 meter 38 and the ammonia flow rate regulating valve 10 provided in the inlet duct 2 Then, it is decomposed and removed into harmless water vapor and nitrogen gas by the action of a denitration catalyst (not shown) filled in the denitration reactor 1. Usually, the operation of the denitration reactor 1 is controlled so that the NOx concentration at the outlet of the denitration reactor 1 is not more than a specified value even when the source of the gas G to be processed, for example, a load of a boiler or the like is changed. Here, the inlet NOx concentration in the gas G to be processed is measured by the inlet NOx analyzer 12, and the outlet NOx concentration is measured by the outlet NOx analyzer 22.
[0017]
Hereinafter, the overall structure of a control circuit according to an embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a control circuit showing an embodiment of a denitration control device 7 provided in the denitration reactor 1. This denitration control device 7 diverts a part of the signal used in the injection amount calculator 9 (conventional circuit) for calculating the injection amount of ammonia, and corrects the NH 3 flow rate calculator 50 (as a substitute circuit for the conventional circuit). The circuit of the present invention is installed.
[0018]
In the corrected ammonia flow rate calculator 50, the difference between the inlet NOx concentration signal 13 and the outlet NOx concentration signal 23 is obtained by the subtractor 57, and this NOx concentration difference signal is multiplied by the gas to be processed 28 by the multiplier 58. This corresponds to the amount of NOx reduced by the denitration apparatus 1. By multiplying the amount of the treated NOx by the required molar ratio, the amount of NH 3 directly used in the NOx reduction reaction can be obtained. This is indicated by signal 58a.
[0019]
The difference between the actually measured NH 3 flow rate signal 39 by the ammonia flow meter 38 and the signal 58a is obtained by the subtractor 56 to obtain 56a. 56a corresponds to the amount of ammonia injected into the denitration device that was not involved in the reduction reaction with the exhaust gas.
When the subtractor 60 subtracts the ammonia flow amount 59a flowing out from the denitration apparatus by the leak NH 3 flow rate detector 59 from the ammonia amount 56a, the NH 3 amount adsorbed on the catalyst, that is, the NH 3 adsorption amount correction bias signal 65 is obtained. . This signal 65 is input to the adder 51 of FIG. 1 as an NH 3 correction output signal 66.
[0020]
On the other hand, a deviation signal 67 between the output signal 16 of the outlet NOx concentration set value 15 and the output signal 23 of the outlet NOx concentration analyzer 22 is input to the function generator 54, and the outlet NOx deviation correction bias signal is passed through the change rate controller 55. Get 64. This signal 64 is added to the adder 51 as an NH 3 injection correction signal 66 through an adder 61 and a multiplier 62.
[0021]
The outlet NOx deviation correction bias signal 64 is a positive output when the value of the deviation signal 67 is positive, that is, when the signal 23 is larger than the signal 16, and is negative when the signal 67 is negative. That is, when the outlet NOx concentration signal 23 is larger than the set value 16, the signal 64 is positive, and when the signal 23 is smaller than the signal 16, the signal 64 is negative.
The signal 64 and the NH 3 adsorption amount correction bias signal 65 are added by the adder 61, and the added correction signal 61 a is input to the adder 51 as the NH 3 injection correction signal 66.
[0022]
The function generator 54 is defined by the structure of the denitration device, the structure of the built-in denitration catalyst, components, performance, characteristics of the exhaust gas generation source, and the like, and the functional relationship is adjusted during a trial operation of a boiler or the like. The change rate controller 55 controls the change rate of the signal 64 described above, and its purpose is to suppress an extreme change in the ammonia injection amount into the denitration apparatus.
[0023]
Further, the outlet NOx concentration deviation signal 67 is input to the function generator 52 and outputs a signal 52a. This signal 52 a is output as an output NOx deviation correction gain signal 63 in a first-order lag format with respect to the signal 64 via the first-order lag element 53, and is input to the multiplier 62.
As a result, the signal 65 or 65 or the signal obtained by adding the signals 64 and 65 input to the multiplier 62 is multiplied by the signal 63 to obtain an output signal 66 multiplied by the gain. This gain value is adjusted in the range of 0 to X.
[0024]
The function generator 52 variably outputs a value corresponding to the outlet NOx control deviation as the necessary NH 3 correction gain signal 63 from the denitration outlet NOx control deviation. For example, when the control deviation (subtractor 24 output) is in the plus direction, the NH 3 correction flow rate is multiplied by a plus gain, the adder 61 output is increased, and the operation is performed to suppress the NOx removal NOx concentration peak. Conversely, when the outlet control deviation (output of the subtractor 24) is on the negative side, the function generator 52 sets the negative gain multiple and operates in a direction to prevent the NOx removal outlet NOx from sinking. Naturally, a dead band is provided in the function generator 52 in order to improve the controllability of the outlet NOx, and the NH 3 flow rate correction bias is not changed in the vicinity of the control deviation 0.
[0025]
The operation of the above-described embodiment can suppress the peak / bottom of the NOx removal outlet NOx, and as a result, the NOx removal outlet NOx value can be maintained within the control management value range.
[0026]
【The invention's effect】
According to the present invention, the ammonia injection amount correction means for considering the amount of ammonia adsorbed on the catalyst and quickly and appropriately eliminating the NOx concentration deviation at the apparatus outlet is provided.
(1) Denitration device outlet NOx concentration control deviation is reduced, (2) Leakage NH 3 amount is reduced, (3) NH 3 consumption is reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing an apparatus system of an ammonia injection amount control method for a denitration apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic view of a denitration apparatus.
FIG. 3 is a diagram showing an apparatus system of an ammonia injection amount control method for a denitration apparatus according to the prior art.
[Explanation of symbols]
5 ... NH 3 pipe 8 ... conventional denitration controller, 9 ... injection amount calculator, 10 ... NH 3 flow control valve, 12 ... inlet NOx concentration analyzer, 13 ... inlet NOx concentration signal, 15 ... outlet NOx concentration setter , 16 ... set NOx concentration signal, 18 ... required molar ratio calculation unit, 19 ... subtractor, 20 ... required molar ratio signal, 22 ... outlet NOx concentration analyzer, 23 ... outlet NOx concentration signal, 24 ... subtractor, 25 ... Proportional integral calculator, 26 ... adder, 27 ... necessary molar ratio signal (after correction), 28 ... gas amount to be processed, 29 ... gas flow signal to be processed, 30 ... total NOx amount signal, 31 ... multiplier, 32 ... Multiplier 33 ... Necessary NH 3 flow rate signal 38 ... Necessary NH 3 flow meter 39 ... Measured NH 3 flow rate signal 40 ... Subtractor 41 ... NH 3 flow rate deviation signal 42 ... Proportional integrator 43 ... Valve open Degree signal, 44 ... electro-pneumatic converter, 45 ... control signal, 50 Correction NH 3 flow calculator, 51 ... adder, 52 ... function generator, 53 ... first-order delay, 54 ... function generator, 55 ... change rate controller, 56 ... subtractor, 57 ... subtractor, 58 ... multiplier vessel, 59 ... leakage NH 3 flow detector, 60 ... subtractor, 61 ... adder, 62 ... multiplier, 63 ... outlet NOx deviation correcting gain signal, 64 ... outlet NOx deviation correction bias signal, 65 ... NH 3 adsorption correction bias signal, 66 ... NH 3 injection correction signal, 67 ... denitration outlet NOx control deviation, 68 ... corrected required NH 3 flow rate signal.

Claims (2)

装置入口からNOxを含有する排ガスを導入するとともに該排ガス中にNH3 を注入して装置内に設けた脱硝触媒層により前記NOxを接触還元したのち装置出口から排出する脱硝装置へ前記NH3 を注入するNH3 注入量制御装置において、前記装置入口から導入した被処理排ガスのNOx量を求める手段と、入口NOx濃度と出口NOx濃度の設定値および測定値に基づきNOx量に対する必要NH3 モル比を算出する手段と、前記入口NOx量と必要NH3 モル比から必要アンモニア流量を求める手段と、被処理ガス量と入口および出口NOx濃度から脱硝反応に消費したNH3 量を求める手段と、求めた消費NH3 量と装置からのリークNH3 量とを注入NH3 量から減算して触媒残存NH3吸着量補正バイアス信号を求める手段と、装置出口NOx濃度の設定値と測定値の制御偏差量に応じ、かつその偏差がマイナス時はマイナス、プラス時はプラスの値として脱硝出口NOx偏差補正バイアス信号を求める手段と、前記2つの補正バイアス信号を加算する手段と、装置出口NOx濃度の設定値と測定値の偏差に基づき出口NOx偏差補正ゲイン値を算出する手段と、前記加算した補正バイアス信号に上記出口NOx偏差補正ゲイン値を乗算してNH3 注入量補正信号を求める手段と、該NH3 注入量補正信号を前記必要NH3 流量に加算して補正後必要NH3 流量を算出する手段と、この補正後必要NH3 流量と実測NH3 流量との偏差に基づきNH3 流量調節手段を操作する手段とを設けたことを特徴とする脱硝装置へのアンモニア注入量制御装置。The exhaust gas containing NOx is introduced from the inlet of the apparatus, NH 3 is injected into the exhaust gas, the NOx is contact-reduced by the NOx removal catalyst layer provided in the apparatus, and then the NH 3 is discharged to the NOx removal apparatus discharged from the outlet of the apparatus. In the NH 3 injection amount control device to be injected, means for obtaining the NOx amount of the exhaust gas to be treated introduced from the device inlet, and the required NH 3 molar ratio to the NOx amount based on the set values and measured values of the inlet NOx concentration and the outlet NOx concentration A means for calculating the required ammonia flow rate from the inlet NOx amount and the required NH 3 molar ratio; a means for determining the NH 3 amount consumed in the denitration reaction from the amount of gas to be treated and the inlet and outlet NOx concentrations; It means for determining the catalyst remaining adsorbed NH 3 amount correction bias signal consumption NH 3 amount and the leakage NH 3 quantity from the device by subtracting from the injection NH 3 amount, device Means for obtaining a denitration outlet NOx deviation correction bias signal as a negative value when the deviation is negative and a positive value when the deviation is negative, according to the control deviation amount of the mouth NOx concentration and the measured value, and the two correction bias signals , Means for calculating the outlet NOx deviation correction gain value based on the deviation between the set value of the apparatus outlet NOx concentration and the measured value, and the added correction bias signal multiplied by the outlet NOx deviation correction gain value. NH 3 and means for obtaining an injection quantity correction signal, the NH 3 and means for calculating an injection amount correction signal the need NH 3 flow rate required NH 3 flow rate after correction is added to the actual measurement and the corrected required flow rate of NH 3 NH A device for controlling the amount of ammonia injected into the denitration device, comprising means for operating the NH 3 flow rate adjusting means based on the deviation from the 3 flow rate. 装置入口からNOxを含有する排ガスを導入するとともに該排ガス中にNH3 を注入して装置内に設けた触媒層によって前記NOxを還元したのち装置出口から排出する脱硝装置へのNH3 注入量を制御するに際し、前記触媒層に吸着されるNH3 量と出口NOx濃度の設定値と測定値の偏差に基づき上記NH3 注入量を補正する装置であって、前記脱硝装置に導入される被処理ガス量と入口および出口NOx濃度から脱硝反応に消費したNH3 量を求める手段と、求めた消費NH3 量と装置からのリークNH3 量を注入NH3 量から減算して触媒残存NH3 吸着量補正バイアス信号を求める手段と、装置出口のNOx濃度の設定値と測定値の偏差量に基づき、かつその偏差がマイナス時はマイナス、プラス時はプラスの値として脱硝出口NOx偏差補正バイアス信号を算出する手段と、前記2つの補正バイアス信号を加算する手段と、装置出口NOx濃度の設定値と測定値の偏差量に基づき出口NOx偏差補正ゲイン値を算出する手段と、前記加算した補正バイアス信号にこの出口NOx偏差補正ゲイン値を乗算してNH3 注入量補正信号を求める手段と、該NH3 注入量補正信号を脱硝装置へのNH3 注入量制御部に入力する手段とを備えてなる脱硝装置へのアンモニア注入量補正装置。The amount of NH 3 injected into the denitration device is introduced after exhaust gas containing NOx is introduced from the device inlet and NH 3 is injected into the exhaust gas and the NOx is reduced by the catalyst layer provided in the device and then discharged from the device outlet. A device for correcting the NH 3 injection amount based on a deviation between a set value and measured value of the NH 3 amount adsorbed on the catalyst layer and the outlet NOx concentration when controlled, and to be treated introduced into the denitration device Means for obtaining the amount of NH 3 consumed in the denitration reaction from the gas amount and the inlet and outlet NOx concentrations, and subtracting the obtained amount of consumed NH 3 and the amount of leaked NH 3 from the apparatus from the amount of injected NH 3 to adsorb the remaining catalyst NH 3 Based on the means for obtaining the amount correction bias signal, and the deviation amount between the set value of the NOx concentration at the outlet of the apparatus and the measured value, and when the deviation is negative, it is negative, and when it is positive, it is positive. Means for calculating a correction bias signal; means for adding the two correction bias signals; means for calculating an outlet NOx deviation correction gain value based on a deviation amount between a set value of the apparatus outlet NOx concentration and a measured value; means for determining NH 3 injection rate correction signal by multiplying the exit NOx deviation correction gain in the correction bias signal, means for inputting the NH 3 injection rate correction signal to NH 3 injection rate control unit of the denitration unit A device for correcting the amount of ammonia injected into a denitration apparatus comprising:
JP2001201849A 2001-07-03 2001-07-03 Ammonia injection amount control method and apparatus for denitration apparatus and ammonia injection amount correction device Expired - Fee Related JP4627611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201849A JP4627611B2 (en) 2001-07-03 2001-07-03 Ammonia injection amount control method and apparatus for denitration apparatus and ammonia injection amount correction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201849A JP4627611B2 (en) 2001-07-03 2001-07-03 Ammonia injection amount control method and apparatus for denitration apparatus and ammonia injection amount correction device

Publications (2)

Publication Number Publication Date
JP2003010645A JP2003010645A (en) 2003-01-14
JP4627611B2 true JP4627611B2 (en) 2011-02-09

Family

ID=19038748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201849A Expired - Fee Related JP4627611B2 (en) 2001-07-03 2001-07-03 Ammonia injection amount control method and apparatus for denitration apparatus and ammonia injection amount correction device

Country Status (1)

Country Link
JP (1) JP4627611B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792696B2 (en) * 2003-12-15 2011-10-12 Jfeエンジニアリング株式会社 Denitration control method, denitration control device and program thereof
DE102004031624A1 (en) * 2004-06-30 2006-02-02 Robert Bosch Gmbh Method for operating a catalyst used for cleaning the exhaust gas of an internal combustion engine and apparatus for carrying out the method
JP6339728B2 (en) * 2017-07-10 2018-06-06 ボッシュ株式会社 Control device, exhaust purification device for internal combustion engine, and control method for exhaust purification device
CN115267041B (en) * 2022-09-26 2023-01-17 承德建龙特殊钢有限公司 Post-positioned denitration catalyst life cycle diagnosis device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163741A (en) * 1980-05-20 1981-12-16 Kawasaki Heavy Ind Ltd Method for controlling feed rate or nh3 in dry denitration apparatus
JPS58174227A (en) * 1982-04-06 1983-10-13 Babcock Hitachi Kk Method for controlling charging amount of ammonia in denitration apparatus
JPH0263524A (en) * 1988-08-30 1990-03-02 Sumitomo Metal Ind Ltd Method for controlling amount of nh3 to be injected into exhaust gas denitrification device
JPH04265124A (en) * 1991-02-21 1992-09-21 Sumitomo Chem Eng Kk Denitration method
JPH11319490A (en) * 1998-05-19 1999-11-24 Meidensha Corp Method for controlling denitrator
JP2000163102A (en) * 1998-11-27 2000-06-16 Babcock Hitachi Kk Non-linear optimum state feedback control method/ controller
JP2001198438A (en) * 2000-01-18 2001-07-24 Hitachi Zosen Corp Ammonia injection amount control method for denitration apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163741A (en) * 1980-05-20 1981-12-16 Kawasaki Heavy Ind Ltd Method for controlling feed rate or nh3 in dry denitration apparatus
JPS58174227A (en) * 1982-04-06 1983-10-13 Babcock Hitachi Kk Method for controlling charging amount of ammonia in denitration apparatus
JPH0263524A (en) * 1988-08-30 1990-03-02 Sumitomo Metal Ind Ltd Method for controlling amount of nh3 to be injected into exhaust gas denitrification device
JPH04265124A (en) * 1991-02-21 1992-09-21 Sumitomo Chem Eng Kk Denitration method
JPH11319490A (en) * 1998-05-19 1999-11-24 Meidensha Corp Method for controlling denitrator
JP2000163102A (en) * 1998-11-27 2000-06-16 Babcock Hitachi Kk Non-linear optimum state feedback control method/ controller
JP2001198438A (en) * 2000-01-18 2001-07-24 Hitachi Zosen Corp Ammonia injection amount control method for denitration apparatus

Also Published As

Publication number Publication date
JP2003010645A (en) 2003-01-14

Similar Documents

Publication Publication Date Title
JP2554836B2 (en) Denitration control device
KR940015237A (en) NOx removal control device
JP2012050912A (en) Denitration controller and denitration control method
CN110501901B (en) SCR ammonia injection regulation optimization method based on full-load accurate denitration requirement
JP2010234321A (en) Ammonia injection amount correction controller and ammonia injection amount correction control method
JP4627611B2 (en) Ammonia injection amount control method and apparatus for denitration apparatus and ammonia injection amount correction device
JP2018161634A (en) Denitration control device and denitration control method
JP4792696B2 (en) Denitration control method, denitration control device and program thereof
JPH11267451A (en) Method for controlling injection of ammonia to denitrator
JP5302618B2 (en) Nitrogen oxide treatment equipment
JP4690606B2 (en) Denitration control method and denitration control apparatus
JP5838034B2 (en) Denitration control method and exhaust gas treatment facility
JP4032205B2 (en) Ammonia injection amount control method for denitration equipment
JP3857460B2 (en) Denitration control device
JP3537100B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
JP2002219337A (en) Control method and device of denitration device
JPH11235516A (en) Denitrification device for exhaust gas
JP3410555B2 (en) Ammonia injection amount control device for denitration equipment
JPS6312650B2 (en)
JP2001129354A (en) Denitration apparatus, combustion apparatus and method of operating the same
JP3915142B2 (en) Method and apparatus for controlling ammonia injection amount of denitration apparatus
JP2004154693A (en) Method and apparatus for treating exhaust gas
JPH01180220A (en) Denitrification control device for gas turbine plant
JPH09187625A (en) Device and method for controlling injection of ammonia into stack gas denitrating equipment
JP2695654B2 (en) Control device for ammonia gas injection volume

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees