JP2001129354A - Denitration apparatus, combustion apparatus and method of operating the same - Google Patents

Denitration apparatus, combustion apparatus and method of operating the same

Info

Publication number
JP2001129354A
JP2001129354A JP31300499A JP31300499A JP2001129354A JP 2001129354 A JP2001129354 A JP 2001129354A JP 31300499 A JP31300499 A JP 31300499A JP 31300499 A JP31300499 A JP 31300499A JP 2001129354 A JP2001129354 A JP 2001129354A
Authority
JP
Japan
Prior art keywords
concentration
denitration
nox
ammonia
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31300499A
Other languages
Japanese (ja)
Inventor
Kojiro Higuchi
康二郎 樋口
Sadahiko Ono
貞彦 大野
Kazu Honda
和 本多
Shigeharu Araki
滋治 荒木
Hiroshi Ono
博司 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Tohoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP31300499A priority Critical patent/JP2001129354A/en
Publication of JP2001129354A publication Critical patent/JP2001129354A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a denitration apparatus, a combustion apparatus and a method of operating the two capable of controlling ammonia injection amount and air flow rate according to denitration efficiency. SOLUTION: A method of operating a denitration apparatus for controlling NOx in the denitration apparatus by controlling a control input for ammonia or an ammonia simulant (hereinafter, referred to as ammonia) to be injected into a denitration apparatus on the basis of an NOx concentration is characterized in that concentration of total NOx and concentration of one or a plurality of particular nitrogen oxides are detected, concentration ratio of the concentration of one or a plurality of the particular nitrogen oxides to the concentration of the total NOx is calculated, denitration efficiency of the denitration apparatus is estimated and a preceding control of injection amount of the ammonia is performed according to change of the estimated deritration efficiency or a calibration control of supply amount of an oxygen containing gas to be supplied into a combustion apparatus is performed according to the concentration ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ボイラ、焼却炉、
ディーゼルエンジン等の燃焼装置の燃焼排ガス中に含ま
れるNOxを除去する脱硝装置、燃焼装置とその運転方
法に係り、特に脱硝効率に応じてアンモニア注入量や空
気流量等を制御可能な脱硝装置、燃焼装置及びこれらの
運転制御方法に関する。
The present invention relates to a boiler, an incinerator,
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a denitration apparatus for removing NOx contained in combustion exhaust gas from a combustion apparatus such as a diesel engine, a combustion apparatus, and an operation method thereof. The present invention relates to devices and their operation control methods.

【0002】[0002]

【従来の技術】従来より、乾式排煙脱硝法としてアンモ
ニア(アンモニア類似化合物を含む)を用いた選択接触
還元法が知られており、ボイラ、焼却炉、ディーゼルエ
ンジン等の燃焼装置の燃焼排ガス中に含まれるNO、N
等の窒素酸化物(NOx)を規定値以下に低減させ
るために、脱硝反応の触媒であるアンモニアを、アンモ
ニア注入弁を介して脱硝装置へ注入させている。
2. Description of the Related Art Conventionally, a selective catalytic reduction method using ammonia (including an ammonia-like compound) has been known as a dry-type flue gas denitration method, and it is used in combustion exhaust gas from combustion devices such as boilers, incinerators, and diesel engines. NO, N contained in
O 2 such as nitrogen oxides to reduce below a specified value (NOx), ammonia is a catalyst denitration reactions, thereby injected into the denitrification device through the ammonia injection valve.

【0003】かかる脱硝装置に設けたアンモニア注入弁
の従来の制御装置、特にボイラ煙道に組み込んだ脱硝装
置出口側にアンモニア注入弁の制御装置を配設した従来
技術を図3に基づいて説明する。
A conventional control device for an ammonia injection valve provided in such a denitration device, particularly a conventional technology in which a control device for an ammonia injection valve is arranged on the outlet side of a denitration device incorporated in a boiler flue will be described with reference to FIG. .

【0004】図において、1はNO、NO等を含むN
Ox総量濃度検出器、2は予め規定された基準NOx濃
度を設定するNOx設定値回路で、両者の出力値を第1
の比較器3で比較演算して修正要求値を生成する。前記
比較器3で比較演算されたNOx濃度修正要求値を換算
器4でアンモニア相当値に換算した後、第2の比較器5
でアンモニア流量6と比較して得られたアンモニア流量
要求値を、制御器7を経てアンモニア注入弁8の制御回
路にあたえ、これにより所定の開閉制御が行われる。
In FIG. 1, reference numeral 1 denotes N containing NO, NO 2 and the like.
The Ox total amount concentration detector 2 is a NOx set value circuit for setting a predetermined reference NOx concentration, and outputs both output values to a first value.
The comparator 3 performs a comparison operation to generate a correction request value. After the NOx concentration correction request value calculated by the comparator 3 is converted into an ammonia equivalent value by the converter 4, the second comparator 5
Then, the required value of the ammonia flow obtained by comparing with the ammonia flow 6 is supplied to the control circuit of the ammonia injection valve 8 via the controller 7, whereby predetermined opening / closing control is performed.

【0005】[0005]

【発明が解決しようとする課題】かかる従来技術におい
ては、燃焼排ガス中のNOx総量を検知し、これが規定
値以下になるようにアンモニア注入量を制御していた
が、アンモニアを還元剤として触媒上で反応させる脱硝
装置の特性として、下記式に示すように、総NOx量に
対する、NO,NO等の成分割合により、脱硝効率が
変わるが、従来の方法ではNOxの成分割合による脱硝
効率変化に対し、アンモニア注入量を制御する等の追従
がなされていない。 4NO+4NH+O=4N+6HO ……1) NO+NO+2NH=2N+3HO ……2)
In the prior art, the total amount of NOx in the combustion exhaust gas is detected, and the amount of injected ammonia is controlled so that the amount becomes equal to or less than a specified value. as in the characteristics of denitration apparatus reacted, as shown in the following formula, the total NOx amount, NO, the component ratio of such NO 2, but changes denitration efficiency, the conventional method in denitration efficiency change according to component ratio of NOx On the other hand, there is no follow-up such as controlling the amount of injected ammonia. 4NO + 4NH 3 + O 2 = 4N 2 + 6H 2 O 1) NO + NO 2 + 2NH 3 = 2N 2 + 3H 2 O 2)

【0006】この為、前記従来技術では、脱硝装置出口
側で検出されたNOx総量値に対応させて、アンモニア
注入量を制御しても、そのNOx総量値がNOx設定値
回路で要求される規定NOx値以下に速やかに維持させ
ることができないという課題があった。
For this reason, in the above-mentioned prior art, even if the amount of injected ammonia is controlled in accordance with the total amount of NOx detected at the outlet side of the denitration apparatus, the total NOx amount is required by the NOx set value circuit. There was a problem that it was not possible to quickly maintain the NOx value or less.

【0007】本発明は、かかる従来技術の課題に鑑み、
NOx設定回路で要求される規定NOx値以下に速やか
に低減させることが容易な脱硝装置、燃焼装置及びこれ
らの運転方法を提供することを目的とする。
The present invention has been made in view of the problems of the prior art,
It is an object of the present invention to provide a denitration device, a combustion device, and an operation method thereof that can be easily reduced to a predetermined NOx value or less required by a NOx setting circuit.

【0008】[0008]

【課題を解決するための手段】本発明はかかる課題を解
決するために、請求項1記載の発明においては、NOx
濃度に基づいて脱硝装置内に注入するアンモニア若しく
はアンモニア類似化合物(以下アンモニアという)の操
作量を制御して脱硝装置内のNOxの制御を行う脱硝装
置の運転方法において、NOx総量濃度とともに、1又
は複数の特定酸化窒素、具体的にはNO又は/及びNO
の濃度を検出し、該特定窒素のNOx総量に対する濃
度割合を算出して、脱硝装置の脱硝効率変化を推定し、
該推定された効率変化に応じてアンモニア注入量を先行
的に操作することを特徴とする。
According to the present invention, in order to solve the above-mentioned problems, the invention according to the first aspect is characterized in that NOx
In the operation method of the denitration apparatus for controlling the operation amount of ammonia or an ammonia-like compound (hereinafter referred to as ammonia) to be injected into the denitration apparatus based on the concentration and controlling the NOx in the denitration apparatus, A plurality of specific nitric oxides, specifically NO and / or NO
2, the concentration ratio of the specific nitrogen to the total amount of NOx is calculated, and the denitration efficiency change of the denitration device is estimated.
It is characterized in that the ammonia injection amount is preliminarily operated according to the estimated change in efficiency.

【0009】請求項3記載の発明は、かかる発明を効果
的に実施する装置に関する発明で、NOx総量濃度検出
器と、1又は複数の特定酸化窒素の濃度を検出する手段
と、該特定窒素のNOx総量に対する濃度割合を算出す
る手段と、該濃度割合に対する脱硝装置の脱硝効率変化
を推定する補正係数を生成する手段とを具え、該補正係
数に基づいてNOX総量濃度に対応する基準アンモニア
注入量を補正し、該補正されたアンモニア注入量を脱硝
装置内に注入することを特徴とする。
A third aspect of the present invention relates to an apparatus for effectively implementing the present invention, wherein a total NOx concentration detector, a means for detecting the concentration of one or more specific nitric oxides, A means for calculating a concentration ratio with respect to the total NOx amount; and a means for generating a correction coefficient for estimating a change in the denitration efficiency of the denitration apparatus with respect to the concentration ratio, and a reference ammonia injection amount corresponding to the total NOx concentration based on the correction coefficient. And the corrected ammonia injection amount is injected into the denitration apparatus.

【0010】前記式に示すように、前記NOとNO
含むNOxは、還元剤としてのアンモニアと反応する
が、「NO」の反応は1)式と2)式の両者で行われる
が、NO+NOの反応は2)式のみで行われる。従っ
て、NOx総濃度中における前記特定酸化窒素の濃度割
合からNOx総濃度に対応する規定アンモニア注入量で
は前記1)式と2)式の反応に必要なアンモニア注入量
から過不足が生じ、その過不足に対応する脱硝率が推定
される。従って、この推定脱硝率に応じて注入するアン
モニア量を増減し脱硝率が変化してもこれに見合うアン
モニア注入量を与えることにより、脱硝装置出口NOx
値を要求される規定NOx値に速やかに低減させる事が
出来る。
As shown in the above equation, NOx containing NO and NO 2 reacts with ammonia as a reducing agent. The reaction of “NO” is carried out by both equations 1) and 2). The reaction of NO + NO 2 is performed only by the equation 2). Accordingly, the specified ammonia injection amount corresponding to the total NOx concentration based on the concentration ratio of the specific nitrogen oxide in the total NOx concentration causes excess or deficiency due to the ammonia injection amount required for the reactions of the above equations 1) and 2). The denitration rate corresponding to the shortage is estimated. Therefore, the amount of ammonia to be injected is increased / decreased in accordance with the estimated denitration rate, and even if the denitration rate changes, an ammonia injection amount commensurate with the change is given, so that the NOx at the denitration apparatus outlet is reduced.
The value can be promptly reduced to the required specified NOx value.

【0011】請求項4記載の発明は、酸素含有ガス(例
えば空気)と燃料とを燃焼器内で燃焼して得られた燃焼
排ガスを脱硝装置本体内に導入して、該本体内でアンモ
ニアとの反応制御によりNOxの低減を行う燃焼装置の
運転方法において、NOx総量濃度とともに、1又は複
数の特定酸化窒素の濃度、具体的にはNO又は/及びN
の濃度を検出し、該特定窒素のNOx総量に対する
濃度割合を算出して、該濃度割合に応じて前記燃焼器内
に供給する酸素含有ガスの供給量を補正制御することを
特徴とする。
According to a fourth aspect of the present invention, a combustion exhaust gas obtained by burning an oxygen-containing gas (for example, air) and a fuel in a combustor is introduced into a denitration apparatus main body, and ammonia and ammonia are introduced into the main body. In the operation method of the combustion device for reducing NOx by the reaction control of the above, the concentration of one or more specific nitric oxides, specifically NO and / or N
Detecting the concentration of O 2 , calculating the concentration ratio of the specific nitrogen to the total amount of NOx, and correcting and controlling the supply amount of the oxygen-containing gas supplied into the combustor according to the concentration ratio. .

【0012】請求項6記載の発明は、かかる発明を効果
的に実施する装置に関する発明で、酸素含有ガスと燃料
とを燃焼器内で燃焼して得られた燃焼排ガスを脱硝装置
本体内に導入して、該本体内でアンモニアとの反応制御
によりNOxの低減を行う燃焼装置において、NOx総
量濃度検出器と、1又は複数の特定酸化窒素の濃度を検
出する手段と、該特定窒素のNOx総量に対する濃度割
合を算出する手段と、該濃度割合に応じて前記燃焼器内
に供給する酸素含有ガスの供給量を補正する補正係数を
生成する手段とを具え、該補正係数に基づいて前記燃焼
器内に供給する酸素含有ガスの供給量を補正制御するこ
とを特徴とする。
The invention according to claim 6 relates to an apparatus for effectively implementing such an invention, and introduces a combustion exhaust gas obtained by burning an oxygen-containing gas and a fuel in a combustor into a denitration apparatus main body. And a NOx total concentration detector, means for detecting the concentration of one or more specific nitric oxides, a NOx total amount of the specific nitrogen, Means for calculating a concentration ratio to the combustor, and means for generating a correction coefficient for correcting the supply amount of the oxygen-containing gas supplied into the combustor in accordance with the concentration ratio. It is characterized in that the supply amount of the oxygen-containing gas supplied to the inside is corrected and controlled.

【0013】前記1)式に示すように、「NO」の反応
を行うためには、O、即ち空気の存在が前提となる。
従ってNO濃度に比してNO濃度が大きい場合は、該
NOを有効に脱硝するために、燃焼に必要な空気に加え
て、脱硝に必要な空気を必要とする。従って前記NO又
は、NO濃度割合合から脱硝装置の脱硝効率変化を推
定し、推定された効率変化に応じて燃焼器の空気流量を
調節することにより燃焼速度を調節し、これにより脱硝
装置に入ってくるガスのNO割合を調節することによ
り、脱硝装置出口のNOx量を規定値以下に維持する事
が出来る。
As shown in the above formula (1), the reaction of "NO" requires the presence of O 2 , ie, air.
Therefore, when the NO concentration is higher than the NO 2 concentration, air required for denitration is required in addition to air required for combustion in order to effectively denitrate the NO. Thus the NO or to estimate the denitration efficiency change of the denitration unit from NO 2 concentration ratio case, to adjust the burning rate by adjusting the air flow of the combustor in accordance with the estimated efficiency change, thereby to denitrator By adjusting the NO ratio of the incoming gas, the NOx amount at the outlet of the denitration device can be maintained at a specified value or less.

【0014】[0014]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、形状、その相対配置などは特に特定
的な記載がない限り、この発明の範囲をそれのみに限定
する趣旨ではなく単なる説明例に過ぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, unless otherwise specified, dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the invention, but are merely illustrative examples.

【0015】図1は本発明の第1実施形態にかかる、ボ
イラ20内の脱硝装置出口側に設けたアンモニア注入弁
のNOx制御装置を示す。本実施形態は、窒素酸化物で
あるNO、NO等のすべての窒素酸化物のNOx総量
濃度を検出する検出器1とNO濃度検出器9夫々の検
出端とを脱硝装置の出口部に設置すると共に、アンモニ
ア注入管の流路上にアンモニア流量検出器6を設置す
る。そして本実施形態においては、前記従来技術に示す
比較器とアンモニア注入弁8の制御回路の間にNO
度比に対応して補正を行う補正器が介装され、該補正器
に入力される補正係数は、前記NO濃度検出器9、N
の割合を計算する演算器10、関数発生器11の経
路を経て演算された補正係数に基づくように設定されて
いる。
FIG. 1 shows a NOx control device of an ammonia injection valve provided on the outlet side of a denitration device in a boiler 20 according to a first embodiment of the present invention. This embodiment is a nitrogen oxide NO, the detector 1 and the NO 2 concentration detector 9 respective detection edge for detecting the NOx amount concentration of all nitrogen oxides such as NO 2 at the exit of denitrator At the same time, the ammonia flow detector 6 is installed on the flow path of the ammonia injection pipe. In the present embodiment, a compensator that performs compensation in accordance with the NO 2 concentration ratio is interposed between the comparator shown in the related art and the control circuit of the ammonia injection valve 8, and is input to the compensator. The correction coefficient is determined by the NO 2 concentration detector 9, N
The setting is made so as to be based on the correction coefficient calculated via the path of the calculator 10 for calculating the ratio of O 2 and the function generator 11.

【0016】図1に於いて、NOx総量濃度検出器1と
NO濃度検出器9の信号が、NO の割合を計算する
演算器10に入力される。NOの割合を計算する演算
器10はNOx総量濃度に対するNO、またはNOの
濃度割合を演算し、この出力は関数発生器11に入力さ
れる。関数発生器11はNOx総量濃度に対するN
、またはNOの濃度割合に応じた脱硝率の変化分を
補償するためのアンモニア流量値を決定し、補正器12
に注入アンモニアの補正量を与えるものである。そして
該アンモニア流量要求量を制御器7を経てアンモニア流
量要求量がアンモニア注入弁8に与えられ、アンモニア
が脱硝装置内であって図示しない注入装置により燃焼ガ
ス中に、注入混合され脱硝触媒中で脱硝される。
In FIG. 1, the total NOx concentration detector 1
NO2If the signal of the concentration detector 9 is NO 2Calculate the percentage of
The data is input to the arithmetic unit 10. NO2Operation to calculate the percentage of
The device 10 is provided with NO for the total NOx concentration.2Or NO
The density ratio is calculated, and this output is input to the function generator 11.
It is. The function generator 11 provides N to the total NOx concentration.
O 2Or the change in the denitration rate according to the NO concentration ratio
The ammonia flow value for compensation is determined, and the corrector 12
To give a correction amount of the injected ammonia. And
The required amount of ammonia flow is passed through the controller 7 to the ammonia flow.
The required quantity is given to the ammonia injection valve 8 and the ammonia
Is in the denitration device and the combustion gas is
The mixture is injected and mixed, and denitrated in a denitration catalyst.

【0017】NO濃度検出器9より得られた値とNO
x総量濃度検出器1から得られた値とからNOとNO
の割合を演算器10にて演算する。尚、NOxにはNO
とNOの他にNが存在するが、Nは直ち
にNOとNOに分解し、従って事実上は、NOxには
NOとNOの2種類と考えて良い。
The value obtained from the NO 2 concentration detector 9 and the NO
From the value obtained from the x total concentration detector 1, NO and NO 2
Is calculated by the calculator 10. NOx is NO
N 2 O 3 exists in addition to NO 2 and NO 2 , but N 2 O 3 immediately decomposes into NO and NO 2 , and therefore, in fact, NOx can be considered to be NO and NO 2 .

【0018】そして前記NOとNOいずれもバナジウ
ム、モリブデン、タングステン等の触媒下で、還元剤と
してのアンモニアと反応するが、その反応式は下記の通
りであり、NOの反応は1)式で反応し、「NO+NO
」の反応は2)式で行われ、且つその反応速度も異な
る。即ち、「NO」の反応は1)式と2)式の両者で行
われるが、NOの反応は2)式のみで行われる。 4NO+4NH+O=4N+6HO ……1) NO+NO+2NH=2N+3HO ……2)
Both NO and NO 2 react with ammonia as a reducing agent in the presence of a catalyst such as vanadium, molybdenum, or tungsten. The reaction formula is as follows. Reacts, "NO + NO
The reaction of 2 'performed in 2), and also the reaction rate varies. That is, the reaction of "NO" is 1) and 2) of the carried out at both the reaction of NO 2 is carried out in 2) only. 4NO + 4NH 3 + O 2 = 4N 2 + 6H 2 O 1) NO + NO 2 + 2NH 3 = 2N 2 + 3H 2 O 2)

【0019】従ってNOの濃度を求めれば、その濃度
量に対応した2)式反応速度と反応量に必要な時間あた
りのアンモニア注入量(速度)が求まる。
Therefore, when the concentration of NO 2 is determined, the reaction rate according to the formula 2) corresponding to the concentration and the ammonia injection amount (rate) per time required for the reaction amount can be determined.

【0020】次に前記NOx総量濃度よりNO濃度を
引けばNO濃度Ttが求まるが、この「NO」の反応は
1)式と2)式の両者で行われるために、一義的にはア
ンモニア注入量(注入速度が求まらないが、前記NO
濃度に対応するモル濃度が2)式で反応する「NO」濃
度Tとなる。とすると、NO濃度Ttより「NO」濃
度Tを引いた値が、1)式で反応する「NO」濃度T
となる。これを式で書くと、下記のようになる。
Next, the NO concentration Tt is determined by subtracting the NO 2 concentration from the NOx total amount concentration. However, since the reaction of “NO” is carried out by both the formulas 1) and 2), the reaction of the NO amount injected (injection rate is not obtained, but the nO 2
The molar concentration corresponding to the concentration is the “NO” concentration T 2 that reacts according to the expression 2). Then, the value obtained by subtracting the “NO” concentration T 2 from the NO concentration Tt is the “NO” concentration T that reacts according to the equation (1).
It becomes 1 . This can be expressed as the following expression.

【0021】NOxt−NO≒NOTt…3) ∵NO≒NOT 故にNOTt−NO≒NOT…4) NOxt:NOx総量濃度 NO:NO濃度 NOTt:NO濃度Tt NOT:2)式で反応する「NO」濃度 NOT:1)式で反応する「NO」濃度NOxt-NO2≒ NOTt ... 3) ∵NO2≒ NOT2  Therefore NOTt-NO2≒ NOT1... 4) NOxt: NOx total amount concentration NO2: NO2Concentration NOTt: NO concentration Tt NOT2: NO) concentration NOT which reacts with the formula 2)1: 1) "NO" concentration which reacts by the formula

【0022】従って、NO濃度検出器9とNOx総量
濃度検出器1から夫々得られたNOとNOの割合を演
算器10にて演算した後、その割合出力を前記3)及び
4)式に基づく関数発生器11に入力することにより、
容易に前記NOxを脱硝するのに必要な比較器5よりの
アンモニア注入量(速度)に対する補正係数を得ること
が出来る。
Therefore, after calculating the ratio of NO and NO 2 obtained from the NO 2 concentration detector 9 and the NOx total amount concentration detector 1 by the calculator 10, the ratio output is calculated by the above formulas 3) and 4). By inputting to the function generator 11 based on
It is possible to easily obtain a correction coefficient for the ammonia injection amount (speed) from the comparator 5 necessary for denitration of the NOx.

【0023】そして比較器5で得られたアンモニア流量
6出力と関数発生器11からの補正係数出力を補正器1
2に送り、制御器7を経て目的とするアンモニア流量要
求値が アンモニア注入弁8にあたえられる。
The output of the ammonia flow 6 obtained by the comparator 5 and the output of the correction coefficient from the function generator 11
Then, the target ammonia flow demand value is given to the ammonia injection valve 8 via the controller 7.

【0024】かかる実施形態によれば、還元剤としての
アンモニアを触媒上でNOxに作用させて還元させる脱
硝装置の特性として、総NOx量に対する、NO,NO
等の成分割合により、脱硝効率が変わるが、従来の方
法ではNOxの成分割合による脱硝効率変化に対し、追
従がなされなかったのに対し、本実施形態は、NO
度に基づき脱硝率を推定し、この推定脱硝率に応じて注
入するアンモニア量を増減し脱硝率が変化してもこれに
見合うアンモニア注入量を与えることにより、脱硝装置
出口NOx値を要求される規定NOx値以下に速やかに
低減させることができる。
According to this embodiment, as a characteristic of the denitration apparatus for reducing the NOx by causing the ammonia as the reducing agent to act on the catalyst, the NO, NO with respect to the total NOx amount
Although the denitration efficiency changes depending on the component ratio such as 2 , the conventional method does not follow the denitration efficiency change due to the NOx component ratio, whereas the present embodiment sets the denitration ratio based on the NO 2 concentration. By estimating and increasing / decreasing the amount of ammonia to be injected in accordance with the estimated denitration rate and providing an ammonia injection quantity commensurate with the change in the denitration rate, the NOx value at the denitration apparatus outlet can be quickly reduced to a required specified NOx value or less. Can be reduced.

【0025】図2に、本願の第2実施形態であるNOx
制御装置周りを示す。本実施例では、燃焼器に投入する
空気流量を調節することにより、ボイラ20内の脱硝装
置のNOx制御を行うものである。即ち、前記1)式に
示すように、「NO」の反応を行うためには、O、即
ち空気の存在が前提となる。従ってNO濃度に比して
NO濃度が大きい場合は、該NOを有効に脱硝するため
に、燃焼に必要な空気に加えて、脱硝に必要な空気を必
要とする。
FIG. 2 shows a NOx according to a second embodiment of the present invention.
2 shows the vicinity of the control device. In the present embodiment, the NOx control of the denitration device in the boiler 20 is performed by adjusting the flow rate of the air supplied to the combustor. That is, as shown in the above formula (1), the presence of O 2 , that is, air is prerequisite for performing the “NO” reaction. Therefore, when the NO concentration is higher than the NO 2 concentration, air required for denitration is required in addition to air required for combustion in order to effectively denitrate the NO.

【0026】そこで本実施形態では、演算されたNO値
として必要な酸素量(空気量)を関数発生器11で演算
して、その値を補正器13に入力して、燃焼器内に供給
する、予め規定された空気流量を与える空気流量調節器
14からの出力に前記補正器内で補正係数を掛けて補正
し、燃焼器とともに脱硝装置で必要な空気流量デマンド
を空気流量調節ベーン15に与えるか若しくは燃焼器へ
供給する空気量を調整してその燃焼速度を調整する事に
より、前記脱硝装置内の脱硝効率の増加を図っている。
Therefore, in the present embodiment, the required oxygen amount (air amount) is calculated by the function generator 11 as the calculated NO value, and the calculated value is input to the corrector 13 to be supplied into the combustor. The output from the air flow controller 14 that gives a predetermined air flow is corrected by multiplying the output by the correction coefficient in the corrector, and the air flow demand required by the denitration device together with the combustor is given to the air flow control vane 15. Alternatively, the amount of air supplied to the combustor is adjusted to adjust the combustion rate, thereby increasing the denitration efficiency in the denitration apparatus.

【0027】即ち、図2を説明するに、窒素酸化物であ
るNO、NO等を総称したNOx総量濃度検出器1と
NO濃度検出器9とをボイラ20内の脱硝装置の出口
部に設置する。又、NO濃度検出器9より得られた値
とNOx総量濃度検出器1から得られた値とからNO、
NOの割合を計算する演算器10を設け、NO濃度
に比してNO濃度が大きい場合は、この演算器で前記
2)式で反応される以外の過剰のNO、言い換えれば
1)式で反応するNO濃度を算出する。これは前記した
ように前記3)、4)式より容易に求められる。
[0027] That is, a description of FIG. 2, NO is nitrogen oxide, the NOx amount density detector 1 and the NO 2 concentration detector 9 which collectively NO 2 or the like to the outlet portion of the denitration apparatus in the boiler 20 Install. Further, from the value obtained from the NO 2 concentration detector 9 and the value obtained from the NOx total concentration detector 1, NO,
An arithmetic unit 10 for calculating the ratio of NO 2 is provided, and when the NO concentration is higher than the NO 2 concentration, excess NO other than the reaction by the above equation 2), in other words, equation 1) Is used to calculate the concentration of NO that reacts. This can be easily obtained from the above equations 3) and 4) as described above.

【0028】そして前記4)式より(NOT)濃度が
求まれば、下記1’)式を満足するに必要な「O」の
当量が求まり、これに対応する空気量も関数発生器で換
算できる。そして前記関数発生器で換算した空気量に対
応する補正係数を補正器に入力すれば、燃焼器とともに
脱硝装置で必要な空気、即ち燃焼に必要な空気に加え
て、脱硝に必要な空気流量デマンドが出力され、その補
正空気流量調節ベーン15の開閉制御が行われる。 4(NOT)+4NH+O=4N+6HO ……1’)
When the (NOT 1 ) concentration is obtained from the above equation (4), the equivalent of “O 2 ” necessary to satisfy the following equation (1 ′) is obtained, and the corresponding air amount is also calculated by the function generator. Can be converted. When a correction coefficient corresponding to the air amount converted by the function generator is input to the corrector, the air flow demand required for denitration in addition to the air required for the denitration device together with the combustor, that is, the air required for combustion, Is output, and the opening and closing control of the correction air flow rate adjusting vane 15 is performed. 4 (NOT 1 ) + 4NH 3 + O 2 = 4N 2 + 6H 2 O 1 ′)

【0029】即ち、演算器10演算されたNOの過剰濃
度割合を関数発生器11に入力せ、該関数発生器 11
は前記NO過剰濃度割合に応じた脱硝率の変化分を補償
するための燃焼器21への空気流量補正値を決定し、補
正器13の補正係数によって、燃焼器21の空気流量を
調節することにより燃焼速度を調節し、これにより脱硝
装置に入る燃焼ガスのNO割合を調節するための燃焼器
21への空気流量を補正する事が出来る。
That is, the computing unit 10 inputs the calculated excess NO concentration to the function generator 11, and the function generator 11
Determines an air flow correction value to the combustor 21 for compensating a change in the denitration rate according to the NO excess concentration ratio, and adjusts the air flow rate of the combustor 21 by a correction coefficient of the corrector 13. To adjust the combustion rate, and thereby the air flow rate to the combustor 21 for adjusting the NO ratio of the combustion gas entering the denitration device can be corrected.

【0030】従って、本第2実施形態によれば、NO
濃度に比してNO濃度が大きい場合は、演算器でこの過
剰のNO濃度を推定し、この推定NO濃度に応じて燃焼
器の空気量を増減し脱硝率が変化してもこれに見合うN
O割合を持った空気量を含む燃焼ガスを脱硝装置に与え
ることにより、脱硝装置出口NOx値を要求される規定
NOx値以下に速やかに低減させることができる。
Therefore, according to the second embodiment, NO 2
If the NO concentration is higher than the concentration, the excess NO concentration is estimated by a computing unit, and the amount of air in the combustor is increased or decreased according to the estimated NO concentration.
By supplying a combustion gas containing an air amount having an O ratio to the denitration device, the NOx value at the denitration device outlet can be promptly reduced to the required specified NOx value or less.

【0031】[0031]

【発明の効果】以上記載のごとく請求項1〜3記載の発
明によれば、この推定脱硝率に応じて注入するアンモニ
ア量を増減し脱硝率が変化してもこれに見合うアンモニ
ア注入量を与えることにより、脱硝装置出口NOx値を
要求される規定NOx値に速やかに低減させる事が出来
る。
As described above, according to the first to third aspects of the present invention, the amount of ammonia to be injected is increased or decreased in accordance with the estimated denitration rate, and even if the denitration rate changes, an ammonia injection amount commensurate with the change is provided. As a result, the NOx value at the denitration device outlet can be promptly reduced to the required specified NOx value.

【0032】又、請求項4〜6記載の発明によれば、N
濃度割合から脱硝装置の脱硝効率変化を推定し、推
定された効率変化に応じて燃焼器の空気流量を調節する
ことにより燃焼速度を調節し、これにより脱硝装置に入
ってくるガスのNO割合を調節することにより、脱硝装
置出口のNOx量を規定値以下に維持する事が出来る。
According to the invention of claims 4 to 6, N
The denitration efficiency change of the denitration device is estimated from the O 2 concentration ratio, and the combustion speed is adjusted by adjusting the air flow rate of the combustor in accordance with the estimated change in efficiency. By adjusting the ratio, the NOx amount at the outlet of the denitration device can be maintained at a specified value or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態にかかる、ボイラ内の
脱硝装置出口側に設けたアンモニア注入弁のNOx制御
装置を示すブロック図である。
FIG. 1 is a block diagram showing a NOx control device of an ammonia injection valve provided on a denitration device outlet side in a boiler according to a first embodiment of the present invention.

【図2】 本発明の第2実施形態にかかる、ボイラ内の
脱硝装置周りのNOx制御装置を示すブロック図であ
る。
FIG. 2 is a block diagram showing a NOx control device around a denitration device in a boiler according to a second embodiment of the present invention.

【図3】 従来技術にかかるボイラ内の脱硝装置出口側
に設けたアンモニア注入弁のNOX制御装置を示すブロ
ック図である。
FIG. 3 is a block diagram showing a NOx control device of an ammonia injection valve provided on the exit side of a denitration device in a boiler according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 NOx総量濃度を検出する検出器 6 アンモニア流量検出器 8 アンモニア注入弁 9 NO濃度検出器 10 演算器 11 関数発生器 12,13 補正器 14 空気流量調整器 15 空気流量調節ベーン 20 ボイラ 21 燃焼器Detecting a 1 NOx amount concentration detector 6 the ammonia flow detector 8 ammonia injection valve 9 NO 2 concentration detector 10 calculator 11 a function generator 12, 13 corrector 14 air flow regulator 15 air flow conditioner vanes 20 boiler 21 combustion vessel

フロントページの続き (72)発明者 大野 貞彦 仙台市青葉区一番町三丁目7番1号 東北 電力株式会社内 (72)発明者 本多 和 新潟県北蒲原郡聖籠町東港一丁目1番地 155号 東北電力株式会社東新潟火力発電 所内 (72)発明者 荒木 滋治 長崎市飽の浦町1番1号 三菱重工業株式 会社長崎造船所内 (72)発明者 小野 博司 長崎市飽の浦町1番1号 三菱重工業株式 会社長崎造船所内 Fターム(参考) 4D002 AA12 AC01 AC04 AC10 BA06 CA01 CA07 DA07 GA02 GA03 GB01 GB02 GB03 GB06 4D048 AA06 AA07 AB02 AB03 AC04 BA23X BA26X BA27X CA01 CA03 CC38 CC39 DA01 DA02 DA05 DA08 DA10 DA20 Continuing from the front page (72) Inventor Sadahiko Ohno 3-7-1, Ichibancho, Aoba-ku, Sendai City Tohoku Electric Power Co., Inc. Tohoku Electric Power Co., Inc.Higashi Niigata Thermal Power Station (72) Inventor Shigeru Araki 1-1, Akunouracho, Nagasaki City Mitsubishi Heavy Industries, Ltd. Inside Nagasaki Shipyard Co., Ltd. F-term in Nagasaki Shipyard (reference) 4D002 AA12 AC01 AC04 AC10 BA06 CA01 CA07 DA07 GA02 GA03 GB01 GB02 GB03 GB06 4D048 AA06 AA07 AB02 AB03 AC04 BA23X BA26X BA27X CA01 CA03 CC38 CC39 DA01 DA02 DA05 DA08 DA10 DA20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 NOx濃度に基づいて脱硝装置内に注入
するアンモニア若しくはアンモニア類似化合物(以下ア
ンモニアという)の操作量を制御して脱硝装置内のNO
xの制御を行う脱硝装置の運転方法において、 NOx総量濃度とともに、1又は複数の特定酸化窒素の
濃度を検出し、該特定窒素のNOX総量に対する濃度割
合を算出して、脱硝装置の脱硝効率変化を推定し、該推
定された効率変化に応じてアンモニア注入量を先行的に
操作することを特徴とする脱硝装置の運転方法。
1. An operation amount of ammonia or an ammonia-like compound (hereinafter, referred to as “ammonia”) to be injected into a denitration device is controlled based on a NOx concentration to control NO in the denitration device.
In the method of operating the denitration apparatus for controlling x, the concentration of one or more specific nitric oxides is detected together with the total NOx concentration, and the concentration ratio of the specific nitrogen to the total NOx is calculated to change the denitration efficiency of the denitration apparatus. And operating the ammonia injection amount in advance in accordance with the estimated change in efficiency.
【請求項2】 前記特定酸化窒素が、NO又は/及びN
であることを特徴とする請求項1記載の脱硝装置の
運転方法。
2. The method according to claim 2, wherein the specific nitric oxide is NO and / or N
How the operation of the denitration apparatus of claim 1 wherein the O 2.
【請求項3】 NOx総量濃度検出器と、1又は複数の
特定酸化窒素の濃度を検出する手段と、該特定窒素のN
Ox総量に対する濃度割合を算出する手段と、該濃度割
合に対する脱硝装置の脱硝効率変化を推定する補正係数
を生成する手段とを具え、該補正係数に基づいてNOx
総量濃度に対応する基準アンモニア注入量を補正し、該
補正されたアンモニア注入量を脱硝装置内に注入するこ
とを特徴とする脱硝装置。
3. A total NOx concentration detector, means for detecting the concentration of one or more specific nitric oxides,
A means for calculating a concentration ratio with respect to the total amount of Ox; and a means for generating a correction coefficient for estimating a change in the denitration efficiency of the denitration apparatus with respect to the concentration ratio, wherein NOx is determined based on the correction coefficient.
A denitration apparatus wherein a reference ammonia injection amount corresponding to a total concentration is corrected, and the corrected ammonia injection amount is injected into a denitration device.
【請求項4】 酸素含有ガスと燃料とを燃焼器内で燃焼
して得られた燃焼排ガスを脱硝装置本体内に導入して、
該本体内でアンモニアとの反応制御によりNOxの低減
を行う燃焼装置の運転方法において、 NOx総量濃度とともに、1又は複数の特定酸化窒素の
濃度を検出し、該特定窒素のNOx総量に対する濃度割
合を算出して、該濃度割合に応じて前記燃焼器内に供給
する酸素含有ガスの供給量を補正制御することを特徴と
する脱硝装置の運転方法
4. A combustion exhaust gas obtained by burning an oxygen-containing gas and a fuel in a combustor is introduced into a denitration apparatus main body,
In the operating method of the combustion device for reducing NOx by controlling reaction with ammonia in the main body, the concentration of one or more specific nitric oxides is detected together with the total NOx concentration, and the concentration ratio of the specific nitrogen to the total NOx is determined. Calculating and correcting and controlling the supply amount of an oxygen-containing gas to be supplied into the combustor according to the concentration ratio.
【請求項5】 前記特定酸化窒素が、NO又は/及びN
であることを特徴とする請求項1記載の燃焼装置の
運転方法。
5. The method according to claim 5, wherein the specific nitric oxide is NO and / or N
How the operation of the combustion apparatus according to claim 1, wherein the O 2.
【請求項6】 酸素含有ガスと燃料とを燃焼器内で燃焼
して得られた燃焼排ガスを脱硝装置本体内に導入して、
該本体内でアンモニアとの反応制御によりNOxの低減
を行う燃焼装置において、 NOx総量濃度検出器と、1又は複数の特定酸化窒素の
濃度を検出する手段と、該特定窒素のNOx総量に対す
る濃度割合を算出する手段と、該濃度割合に応じて前記
燃焼器内に供給する酸素含有ガスの供給量を補正する補
正係数を生成する手段とを具え、該補正係数に基づいて
前記燃焼器内に供給する酸素含有ガスの供給量を補正制
御することを特徴とする燃焼装置。
6. A combustion exhaust gas obtained by burning an oxygen-containing gas and a fuel in a combustor is introduced into a denitration apparatus main body,
In a combustion apparatus for reducing NOx by controlling reaction with ammonia in the main body, a NOx total concentration detector, means for detecting the concentration of one or more specific nitric oxides, and a concentration ratio of the specific nitrogen to the total NOx amount And a means for generating a correction coefficient for correcting the supply amount of the oxygen-containing gas supplied into the combustor according to the concentration ratio, and supplying the correction coefficient to the combustor based on the correction coefficient. A combustion apparatus for correcting and controlling a supply amount of an oxygen-containing gas to be supplied.
JP31300499A 1999-11-02 1999-11-02 Denitration apparatus, combustion apparatus and method of operating the same Pending JP2001129354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31300499A JP2001129354A (en) 1999-11-02 1999-11-02 Denitration apparatus, combustion apparatus and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31300499A JP2001129354A (en) 1999-11-02 1999-11-02 Denitration apparatus, combustion apparatus and method of operating the same

Publications (1)

Publication Number Publication Date
JP2001129354A true JP2001129354A (en) 2001-05-15

Family

ID=18036084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31300499A Pending JP2001129354A (en) 1999-11-02 1999-11-02 Denitration apparatus, combustion apparatus and method of operating the same

Country Status (1)

Country Link
JP (1) JP2001129354A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080026A (en) * 2001-09-11 2003-03-18 Mitsubishi Heavy Ind Ltd Method and apparatus for controlling denitrification
JP2009281294A (en) * 2008-05-22 2009-12-03 Denso Corp Exhaust emission control device for internal combustion engine
JP2018189059A (en) * 2017-05-10 2018-11-29 一般財団法人電力中央研究所 Thermal power generation facility, power generation facility, and combustion facility
CN111582639A (en) * 2020-04-01 2020-08-25 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Denitration system running state evaluation system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080026A (en) * 2001-09-11 2003-03-18 Mitsubishi Heavy Ind Ltd Method and apparatus for controlling denitrification
JP4690606B2 (en) * 2001-09-11 2011-06-01 三菱重工業株式会社 Denitration control method and denitration control apparatus
JP2009281294A (en) * 2008-05-22 2009-12-03 Denso Corp Exhaust emission control device for internal combustion engine
JP4726926B2 (en) * 2008-05-22 2011-07-20 株式会社デンソー Exhaust gas purification device for internal combustion engine
US8209966B2 (en) 2008-05-22 2012-07-03 Denso Corporation Exhaust emission control device for internal combustion
JP2018189059A (en) * 2017-05-10 2018-11-29 一般財団法人電力中央研究所 Thermal power generation facility, power generation facility, and combustion facility
CN111582639A (en) * 2020-04-01 2020-08-25 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Denitration system running state evaluation system
CN111582639B (en) * 2020-04-01 2023-03-24 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Denitration system running state evaluation system

Similar Documents

Publication Publication Date Title
KR100490813B1 (en) NOx CLEANING APPARATUS OF INTERNAL COMBUSTION ENGINE
JP2554836B2 (en) Denitration control device
US9631776B2 (en) Model-based controls for selective catalyst reduction systems
US8584444B2 (en) Model-based controls for selective catalyst reduction system
KR101601520B1 (en) System for selective catalytic reuction and method for selective catalytic reduction
JP4792696B2 (en) Denitration control method, denitration control device and program thereof
JP2001129354A (en) Denitration apparatus, combustion apparatus and method of operating the same
JPH11267451A (en) Method for controlling injection of ammonia to denitrator
JP5302618B2 (en) Nitrogen oxide treatment equipment
KR100294991B1 (en) Method and apparatus for controlling the amount of treated material administered to reduce the content of nitrogen oxides in the exhaust gases emitted from the combustion process
JPH0633743A (en) Denitration control device
JP3831804B2 (en) Exhaust gas denitration equipment
JP4690597B2 (en) Combustion type abatement system
JP2635643B2 (en) Denitration control device for gas turbine plant
JPH03238024A (en) Apparatus for controlling denitration of waste gas
JP3902737B2 (en) Ammonia injection control method for denitration catalyst device of waste treatment facility
JPH0820070B2 (en) Nitrogen oxide reduction device
JPH08168639A (en) Method and device for controlling injection amount of ammonia into denitrification device with denitration catalyst
JP4352452B2 (en) Cogeneration system
JPH08318132A (en) Method for denitrating waste gas and denitrator
JP4352453B2 (en) Cogeneration system
JPH04338214A (en) Device for decreasing nitrogen oxides
JPH01168319A (en) Nox reducer of exhaust gas of power generating diesel engine
JP3263184B2 (en) DeNOx control device
JPH0148054B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070810