JPS58126927A - Steel material heating furnace - Google Patents

Steel material heating furnace

Info

Publication number
JPS58126927A
JPS58126927A JP948782A JP948782A JPS58126927A JP S58126927 A JPS58126927 A JP S58126927A JP 948782 A JP948782 A JP 948782A JP 948782 A JP948782 A JP 948782A JP S58126927 A JPS58126927 A JP S58126927A
Authority
JP
Japan
Prior art keywords
combustion gas
furnace
heated
combustion
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP948782A
Other languages
Japanese (ja)
Other versions
JPH0213011B2 (en
Inventor
Masato Fujioka
藤岡 政人
Koichi Yuda
油田 耕一
Nobuyoshi Nishihara
信義 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP948782A priority Critical patent/JPS58126927A/en
Publication of JPS58126927A publication Critical patent/JPS58126927A/en
Publication of JPH0213011B2 publication Critical patent/JPH0213011B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/52Methods of heating with flames

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To obtain a steel material heating furnace that prevents heat deviation of heated material, to improve the quality and to reduce equipment cost by arranging plural semi-cylindrical radial tubes at plural places, and providing combustion gas dispersing walls provided with combustion gas passing grooves below the tubes. CONSTITUTION:The upper face of a material 5 to be heated charged in a heating furnace is heated by roof burners 2 and the lower face is heated by side burners 3 during carrying. Semi-cylindrical radial tubes 11 and combustion gas dispersing walls 12 are provided in the lower part of the furnace. Fuel supplied from side burners 3 and air for combustion are mixed and burnt in the semi- cylindrical radial tubes 11 to secure stable distribution of furnace temperature. Grooves 13 for passing combustion gas are provided on the upper end faces of radial tube 11 side of combustion gas dispersing walls 12 and a part of flow of combustion gas in the lower part of radial tubes 11 is dispersed in the furnace by collision with combustion gas dispersing walls 12. Distribution of furnace temperature is formed optionally by combination of the area of opening of grooves 13 for passing combustion gas and combustion gas dispersing walls 12 and the material 5 to be heated is heated uniformly.

Description

【発明の詳細な説明】 本発明はスラブ、ビレット等の鋼材を目的の圧延温Kま
で均一加熱する銅材加熱炉に関するtのである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a copper material heating furnace that uniformly heats steel materials such as slabs and billets to a target rolling temperature K.

従来、との@0加熱炉は被熱材(鋼材)の上。Conventionally, the @0 heating furnace was placed on the heated material (steel material).

下EIK直火バーナを配置した燃焼富會設け、装入側か
ら抽出側に向って被熱材會搬送しながら加熱上行う直火
燃焼方式の加熱炉が一般に採用されており、燃焼室での
バーナ配置方法によってサイドバーナ、軸流バーナ、ル
ーフバーナの三方式があることが一般的に知られている
A heating furnace with a direct-fired combustion method is generally adopted, in which a combustion chamber is equipped with a lower EIK direct-fired burner, and the material to be heated is heated while being conveyed from the charging side to the extraction side. It is generally known that there are three types of burner arrangement methods: side burners, axial burners, and roof burners.

前者のすイドバーナ方式は炉の両側壁部にバーナを配置
する構造のため、一般に炉長方向は比較的均一な炉温分
布が得られ易いが、炉巾方向については均一な炉温分布
が得られにくいという欠点を有しており、設備的には炉
構造が簡素なため設備コストが安いという特黴會持って
いゐ。
The former Suido burner method has a structure in which burners are placed on both side walls of the furnace, so it is generally easy to obtain a relatively uniform furnace temperature distribution in the furnace length direction, but it is not possible to obtain a uniform furnace temperature distribution in the furnace width direction. It has the disadvantage of being difficult to mold, and has the special feature of low equipment costs due to the simple structure of the furnace.

これに対して、生者の軸流バーナ方式は炉の長手方向に
パー、すを配置する構造のためサイドバーナ方式の場合
とは逆に、一般に炉巾方向は比較的均一な炉温分布が得
られ島いが、−長方向については均一な炉温分布が得ら
れにくいという欠点會有しており、設備的に%バーナの
配量上炉巾方向にノーメ部會設ける必*pあるため炉床
利用率が低く、かつ設備コストが高く、作業性及び保守
性が悪いという欠点管持っている。
On the other hand, the axial flow burner system has a structure in which the pars are arranged in the longitudinal direction of the furnace, so contrary to the side burner system, the furnace temperature distribution is generally relatively uniform in the width direction of the furnace. However, it has the drawback that it is difficult to obtain a uniform furnace temperature distribution in the longitudinal direction, and it is necessary to provide a nome section in the width direction of the furnace in terms of the equipment for rationing the burner. It has the disadvantages of low hearth utilization rate, high equipment cost, and poor workability and maintenance.

一方、後者のルーフバーナ方式はその性格上、上部燃焼
富の天井炉壁にバーナを配置する構造のため、炉巾及び
炉長方向の全面にわたって比較的均一な炉温分布か得ら
れるという特徴を有しているか、他のニオ式に比べてバ
ーナ本数が多くな;bため一般に設備費が^く、かつバ
ーナ配置の性格上、上郁燃*iiのみしか適用できない
という欠点を有している。
On the other hand, the latter roof burner method has a structure in which the burner is placed on the ceiling furnace wall of the upper combustion chamber, so it has the characteristic of obtaining a relatively uniform furnace temperature distribution over the entire width and length of the furnace. However, the number of burners is large compared to other NIO types; therefore, the equipment cost is generally high, and due to the nature of the burner arrangement, only the upper Ikunen *ii can be applied.

又、この種の直火燃焼方式を燃焼機能面からみた場合、
バーナから供給され次燃料と燃焼用空気′9I!:tI
!炉内(燃焼基円)の自白空間で混合燃焼させ、かO燃
焼ガスの輝炎放射、ガス放射及びpm放射を利用して被
熱材の加熱を行うものであるか、一般にこの梳の直火燃
焼方式ではバーナから供給畜れる流体の噴出エネルギー
會十分に大きく織って41その火炎長紘精々3〜4 v
m L、かならず、加えて低負荷燃焼時にはバーナ供給
流体の噴出エネルギーも小さくなるため火炎の直進性が
低下し、浮力による火炎の舞上り楓象や炉内ガス流れに
よる火炎の曲折現象が発生するという基本的な問題を有
していたため、最近の加熱炉のごとく炉の大証化(炉巾
で10〜15%、炉長で加〜50m)や操業の多様化(
950〜1250C迄の広温度朝日で均一加熱)に対し
ては、従来の直火燃焼方式では十分に対処することかで
きなかった。
Also, when looking at this type of direct flame combustion method from the combustion function perspective,
The next fuel and combustion air supplied from the burner '9I! :tI
! Is it mixed combustion in the inner space of the furnace (combustion base circle) and heats the heated material using the bright flame radiation, gas radiation, and PM radiation of the combustion gas? In the fire combustion method, if the energy of the fluid ejected from the burner is sufficiently large, the flame will be at most 3 to 4 V.
m L, in addition, during low-load combustion, the ejection energy of the burner supply fluid also decreases, so the straightness of the flame decreases, and the flame soaring phenomenon due to buoyancy and the flame bending phenomenon due to the gas flow in the furnace occur. Because of this basic problem, it is necessary to increase the furnace width by 10 to 15% and increase the furnace length by ~50 m, as in the case of recent heating furnaces, and to diversify operations (
Conventional direct-fire combustion methods could not adequately cope with the problem (uniform heating in the morning sun over a wide temperature range of 950 to 1250 C).

又、最近は炉の大証化に伴い被熱材の搬送手段として一
般にウオーキングビーム方式を採用する傾向にあるか、
このウオーキングビーム方式では被熱材を断熱、水冷構
造の固定及び可動スキッドで支持、搬送する方式のため
、このスキλド直上にある被熱材はスキッドバイブのシ
ャドウ効果により伝熱が阻害されるため、被熱材の他の
部分に比べて加熱がされにくいという欠点を有しており
、被熱材の均一加熱のためには加熱初期の段階でこのス
キッドシャドウSt−積極的に加熱する、いわゆるピー
ク温W、【有した炉温分布を形成することか望オしいが
、従来  “の直火燃焼方式の加熱炉では任意点、即ち
、スキッド部にビーク炉温を作ることは一般的に不可能
であった。
In addition, recently, with the increasing use of furnaces, there has been a general tendency to adopt the walking beam method as a means of conveying heated materials.
In this walking beam method, the heated material is supported and transported by a fixed and movable skid with an insulated and water-cooled structure, so the heat transfer of the heated material directly above this skid is inhibited by the shadow effect of the skid vibrator. Therefore, it has the disadvantage that it is difficult to heat compared to other parts of the material to be heated, and in order to uniformly heat the material to be heated, this skid shadow must be actively heated at the initial stage of heating. It is desirable to form a furnace temperature distribution with a so-called peak temperature W, but in conventional direct-fire combustion type heating furnaces, it is generally not possible to create a peak furnace temperature at an arbitrary point, that is, at the skid part. It was impossible.

本発Bi4は、従来の直火燃焼式加熱炉の問題点である
被熱材の均−加熱性の改善に1限を置き、被熱材0@熱
騎止による加熱いのアップと品質の向上を設備コストの
安いサイドバーナ方式で−るため、横断面を下方に肉け
た半円筒状放射管上、七〇一端が炉内に位置する様に複
数個配し、鋏各放射管O炉壁管端に燃焼装置管配すと共
に、骸各放射管の下方に放射管と直交状に所定間隔t−
シいて複数段の燃焼ガス分散at配設し、咳燃焼ガス分
散壁の放射管側上端面に半円筒状放射管の横断向と相対
する形で燃焼ガス通過溝を設けることを特徴とした鋼材
加熱炉である。
This Bi4 focuses on improving the uniformity of heating of the heated material, which is a problem with conventional direct-fired combustion heating furnaces, and improves heating efficiency and quality by reducing the heat-receiving material by 0@thermal suspension. In order to achieve this by using a side burner method with low equipment costs, multiple radiant tubes are placed on top of the semi-cylindrical radiator tube with its cross section tapered downward, with the 70-1 end located inside the furnace, and each radiant tube O A combustion device is installed at the end of the furnace wall tube, and a predetermined interval t-
A steel material characterized in that a plurality of stages of combustion gas dispersion at are arranged, and a combustion gas passage groove is provided on the upper end surface of the combustion gas distribution wall on the radiation tube side in a form facing the transverse direction of the semi-cylindrical radiation tube. It is a heating furnace.

以下、21図から26図に従って本発明の一実施例【説
明する。
Hereinafter, one embodiment of the present invention will be described according to FIGS. 21 to 26.

#Aにおいて1は耐火断熱性と機密性を有した炉壁、2
#i炉壁1の天井部の炉長方向と炉巾方向に複数個配置
され九ルーフバーナ、3はFINIC)炉長方向の下部
両側IIK配雪されたサイドバーナであり、4は加熱炉
内を各燃焼室に仕切壁、5は被熱材、即ち鋼材、 6t
!予熱帯、7は加熱帯、8は均熱帯である。
In #A, 1 is a furnace wall with fireproof insulation and airtightness, 2
#i A plurality of roof burners are arranged in the furnace length direction and furnace width direction on the ceiling of the furnace wall 1. 3 is a side burner with IIK snow distributed on both sides of the lower part in the furnace length direction, and 4 is a Partition wall in each combustion chamber, 5 is heated material, i.e. steel material, 6t
! 7 is a preheating zone, 7 is a heating zone, and 8 is a soaking zone.

9は被熱材5t−支持するための固定スキッド、10は
被熱材5を搬送するための可動スキッドでアシ水冷パイ
プの外面は断熱構造となっている。
9 is a fixed skid for supporting the heated material 5t; 10 is a movable skid for conveying the heated material 5; the outer surface of the reed water cooling pipe has a heat insulating structure.

11#iサイドバーナ3の炉内側先端部に設けられた横
断面を下方に向けた所要長さの耐熱性と熱伝導性を有し
た半円筒状放射管、12は半円筒状放射管lit炉内に
支持、固定すると同時にサイドバーナ3から放出された
燃焼ガスを炉内へ分散供給するための耐熱性を有した燃
焼ガス分散壁で、通常、半円筒状放射管11の下部に直
交状に複数段設けている。
11 #i A semi-cylindrical radiant tube with heat resistance and thermal conductivity of the required length with the cross section facing downward, provided at the tip inside the furnace of the side burner 3, 12 is a semi-cylindrical radiant tube lit furnace It is a combustion gas dispersion wall that has heat resistance for supporting and fixing the combustion gas emitted from the side burner 3 into the furnace, and is usually installed orthogonally at the bottom of the semi-cylindrical radiant tube 11. It has multiple stages.

13#i燃焼ガス分散壁12の放射管111i1の上端
面に放射管11の横断面と相対する形で設けられた燃焼
ガス通過溝である。
13#i This is a combustion gas passage groove provided on the upper end surface of the radiation tube 111i1 of the combustion gas distribution wall 12 in a manner facing the cross section of the radiation tube 11.

又、図中の破線による矢印はルーフバーナ2からの燃焼
ガス流れ會、実IIKよる矢印はサイドバーナから炉内
へ分散供給される燃焼ガス流れ【示したものである。
Further, the broken line arrows in the figure indicate the flow of combustion gas from the roof burner 2, and the arrows indicated by IIK indicate the flow of combustion gas distributed and supplied from the side burners into the furnace.

次に本発明の作動機能について説明する。Next, the operational functions of the present invention will be explained.

加熱炉内にめ入され念被熱材5は被熱材5の支持、搬送
V&置である固定スキッド9及び可動スキッド10によ
って装入側の予熱帯6から抽出側の均熱帯8に向って搬
送される間に被熱材5の上面はルーフバーナ2により、
被熱材5の下向はサイドバーナ3により加熱が行われる
The heated material 5 inserted into the heating furnace is moved from the preheating zone 6 on the charging side to the soaking zone 8 on the extraction side by a fixed skid 9 and a movable skid 10, which are supporting and conveying devices for the heated material 5. While being conveyed, the upper surface of the heated material 5 is heated by the roof burner 2.
The downward direction of the heated material 5 is heated by the side burner 3 .

この場合、加熱炉の下shサイドバーナ3と半円筒状放
射管11及び燃焼ガス分散壁12で構成されている念め
、サイドバーナ3から供給された燃料と燃焼用空気は半
円筒状放射管11内で温合燃焼が行われるため、従来の
直火燃焼方式に比べて浮力や炉内ガス流れの影響管受け
にくく燃焼量の多少に関係なく安定した炉温分布を確保
することが可能である。
In this case, since the heating furnace is composed of a lower side burner 3, a semi-cylindrical radiant tube 11, and a combustion gas distribution wall 12, the fuel and combustion air supplied from the side burner 3 are transferred to the semi-cylindrical radiant tube. Because warming combustion takes place in the combustion chamber 11, it is less susceptible to the effects of buoyancy and gas flow in the furnace compared to conventional direct-fire combustion methods, making it possible to ensure a stable furnace temperature distribution regardless of the amount of combustion. be.

更に、この燃焼ガスは半円筒状放射管11内を過って炉
の中央部付近1で需動するようになっているが、半円筒
状放射管11の所要位置に適当数の燃焼ガス分散遺12
が設けられてお夛、この燃焼ガス分散壁りには所要の開
口面積比率した燃焼ガス通過溝13が設けられているた
め、牛P(筒状放射管11下部の燃焼ガス噴流の一部は
、この燃焼ガス分散壁12 K @突し炉内へ分散供給
か行われる。
Furthermore, although this combustion gas passes through the semi-cylindrical radiant tube 11 and is distributed near the central part 1 of the furnace, an appropriate number of combustion gases are distributed at required positions in the semi-cylindrical radiant tube 11. Remains 12
This combustion gas distribution wall is provided with a combustion gas passage groove 13 having a required opening area ratio, so that a part of the combustion gas jet at the bottom of the cylindrical radial tube 11 is , this combustion gas distribution wall 12K is distributed and supplied into the thrust furnace.

従って、この燃焼ガス通過溝13の開口面積と燃焼ガス
分散壁12の取付位置及び敷金適当に組合せることによ
り加熱目的にあわせた温度分布を確保することができる
ため、被熱材5の輯熱が行われる予、加熱帯6,7では
サイドバーナ3側からニア4図の(イ)、(ロ)、(ハ
)の順のように遂次開口面積を減少するように熱焼ガス
分散壁12ヲ配すことにより炉巾方向にビーク炉温を形
成(2、固定スキッド9と可動スキッド100間のいわ
ゆるスキッドシャドウ部を積極加熱を行う一方で、被熱
材5が略目標温度着で加熱された均熱帯8では芳4図の
(イ)ように開口面積が広い燃焼ガス分散壁12ヲ全般
にわ九って設けることにより、! 炉巾方向に均一な炉温分布管形成することができるため
、950〜1250℃という広加熱温度範囲で被熱材5
の均一加熱が安定して行えるようになった。
Therefore, by appropriately combining the opening area of the combustion gas passage groove 13, the mounting position of the combustion gas distribution wall 12, and the deposit, it is possible to ensure a temperature distribution that matches the heating purpose. In the heating zones 6 and 7, heating gas distribution walls are installed so as to sequentially reduce the opening area in the order of (A), (B), and (C) in Figure 4 from the side burner 3 side. 12 to form a peak furnace temperature in the width direction of the furnace. In the soaking zone 8, as shown in Fig. 4 (a), by providing the combustion gas distribution wall 12 with a wide opening area across the entire area, it is possible to form a tube with uniform furnace temperature distribution in the width direction of the furnace. Therefore, the heated material 5 can be heated in a wide heating temperature range of 950 to 1250℃.
Uniform heating can now be performed stably.

次に本発明の効果を燃焼実験炉(高1,8×巾3、ox
JIL4ms)で確認した結果會例示する。
Next, we will examine the effects of the present invention in a combustion experimental furnace (height 1.8 x width 3, ox
The following is an example of the results confirmed using JIL4ms).

実験は本発明の効果を確認するため炉巾方向に1.7 
mのピッチで燃焼量150万1ceaj/h Oノ(−
すt2本廐付け、被熱材8による奪熱を模擬するため天
井炉壁には水冷奪熱管を配し、燃料としてはコークス炉
ガス、燃焼用空気としては300℃の熱風食用い空気比
1.1の共通条件のもとて従来O直火加熱方式と本発明
の加熱方式の比較上行った結果を25図及び第6図に示
す・才5図は従来の直火燃焼方式の一例として、実炉で
炉中方向の温度分布特性が最も優れているとの評価が高
いガス二流式サイトノ(−すの炉温分布の欄定例でめる
In order to confirm the effect of the present invention, the experiment was carried out using
At a pitch of m, the combustion amount is 1,500,0001ceaj/h Oノ(-
A water-cooled heat-absorbing pipe is installed on the ceiling furnace wall to simulate heat absorption by the heat-receiving material 8, coke oven gas is used as the fuel, and hot air at 300°C is used as the combustion air. Figures 25 and 6 show the results of comparing the conventional O direct flame heating method and the heating method of the present invention under the common conditions of 1. Figure 5 shows an example of the conventional direct flame combustion method. In the column for the furnace temperature distribution of the gas two-flow type site, which is highly rated as having the best temperature distribution characteristics in the furnace direction in actual furnaces.

又、26図は本発−の半円筒状放射管11と燃焼ガス分
散壁12【組合ゼた場合の炉温分布の側足例でめり、バ
ーナとしてはノズルミックスタイプ【使用し、半円筒状
放射管11としては400ダの半割SZaチューブヲ3
.2惰の長さで使用l。
In addition, Figure 26 shows an example of the furnace temperature distribution when the semi-cylindrical radiation tube 11 and the combustion gas distribution wall 12 are combined. The radial tube 11 is a 400-da half-split SZa tube 3.
.. Used with a length of 2 ins.

た結果であり、図中の斜線五は燃焼ガス分散壁12七芳
4図のビ)の形で全段配置したものであり燃焼ガス通過
溝13の面積としては開口面積比率(40Q521O1
llf面積に対する比率)240−の結果であり、斜線
BFi燃焼ガス分散壁12をサイト°ノ(−す3側から
24図のビ)、(ロ)、(ハ)の順に配置したものであ
り、各燃焼ガス分散壁12の開口面積比率はバーナ側よ
り240.240.60.20.20チと漸減した場合
の結果である。
The diagonal line 5 in the figure indicates that the combustion gas distribution wall 12 is arranged in all stages in the form of Shichiyoshi 4 (B) in Figure 4, and the area of the combustion gas passage groove 13 is determined by the opening area ratio (40Q521O1
This is the result of 240- (ratio to llf area), and the diagonal line BFi combustion gas dispersion wall 12 is arranged in the order of site ° (-B in Fig. 24 from the 3 side), (B), and (C). The results are obtained when the opening area ratio of each combustion gas distribution wall 12 gradually decreases from the burner side to 240.240.60.20.20 inches.

第5図及び−76図は横軸にノ(−すからの距離を、縦
軸には炉温會バーナ長方向の各断面での測定温度(T)
 RMOとバーナ長方向の平均温f(T)AVKとの差
で示したものであり燃焼量加〜10〇−の範囲で実験し
た結果上図中の斜線範囲で表示したものである。
In Figures 5 and 76, the horizontal axis shows the distance from No. (-), and the vertical axis shows the temperature measured at each cross section in the longitudinal direction of the furnace burner
It is shown as the difference between RMO and the average temperature f(T)AVK in the burner length direction, and the results of experiments in the range of combustion amount addition to 100 - are shown in the shaded range in the above figure.

即ち、従来の直火燃焼方式でニノクーナから約1+ 5
 ynO点に火炎のピーク温度があり、それより先でけ
魚速に炉温の低下が見られる、いわゆるバーナ測高の温
度傾向を示すため炉巾が広(へ大mかでは炉中央部の炉
温か低くなり被熱材5の加熱が大きくなることを示して
いる。
That is, approximately 1+5
There is a peak temperature of the flame at the ynO point, and a decrease in the furnace temperature can be seen at a faster rate beyond that point, which is the so-called temperature trend of burner measurement. This indicates that the furnace temperature decreases and the heating of the heated material 5 increases.

一方、半円筒状放射管11と燃焼ガス分散壁戎1組合せ
た本発明でFi26−に示すように燃焼ガス分散1ll
i12の位置と燃焼ガス通過溝13の開口面積を遍?M
AK遥択することにより、フラットで均一な炉温分布か
ら所定の位置にビーク点【持つえ炉温分布オでt自由に
作り出すむとが可能であり、従来の直火燃焼方式ではバ
ーナ型式と燃焼量で一義的に決まっていた炉温分布を加
熱目的にあわせて自由に選択できるようになった。
On the other hand, in the present invention, in which a semi-cylindrical radiator tube 11 and a combustion gas dispersion wall 1 are combined, a combustion gas dispersion 1ll as shown in Fi26- is used.
Is the position of i12 and the opening area of combustion gas passage groove 13 uniform? M
By selecting AK, it is possible to freely create a peak point at a predetermined position from a flat and uniform furnace temperature distribution. Furnace temperature distribution, which used to be determined primarily by quantity, can now be freely selected according to the heating purpose.

なお、上記実施例ではルーフバーナ2とサイドバーナ3
0組合せであるが、炉の上部を軸流バーナ、下*’を半
円筒状放射管11と燃焼ガス分散41121組合せた軸
流バーナとすること、更にこれら管組合せることも可能
である。
In addition, in the above embodiment, the roof burner 2 and the side burner 3
0 combination, but it is also possible to use an axial flow burner in the upper part of the furnace and an axial flow burner in which the lower part *' is a combination of a semi-cylindrical radiant tube 11 and a combustion gas dispersion 41121, and it is also possible to combine these tubes.

以上述べたように本発明の銅材加熱炉は従来の直火式加
熱炉の問題点であったバーナ長方向の炉温分布の改41
t−図るため、直火燃焼バーナの先端に半円筒状放射管
と燃焼ガス分散壁【配置することにより炉内の所要位曾
へ燃焼ガスの分散供給’tFiかる加熱方式のため、従
来の直火加熱方式に比べて、 ■炉温分布の可変性に対する自由度が大きく、加熱目的
に適した炉温分布を任意に形成することが可能なため被
熱材の均一加熱、即ち品質の向上が可能である。
As described above, the copper material heating furnace of the present invention has improved the furnace temperature distribution in the burner length direction, which was a problem of conventional direct-fired heating furnaces.
By placing a semi-cylindrical radiant tube and a combustion gas dispersion wall at the tip of the direct-fired combustion burner, combustion gas is distributed to the required locations within the furnace. Compared to the fire heating method, there is a greater degree of freedom in the variability of the furnace temperature distribution, and it is possible to arbitrarily form the furnace temperature distribution suitable for the heating purpose, resulting in uniform heating of the heated material, which improves quality. It is possible.

■半円筒状放射管内燃焼のため浮力や炉内ガス流れの影
l1t−受けることが少なく、燃焼量に関係なく略一定
の炉温分布の確保が可能であり低温加熱に適している。
■Since combustion is carried out in a semi-cylindrical radiant tube, there is little influence from buoyancy or gas flow in the furnace, and it is possible to maintain a substantially constant furnace temperature distribution regardless of the amount of combustion, making it suitable for low-temperature heating.

■被熱材に面した半円筒状放射管の上面が固体放射面と
なるため伝熱量の増加、即ち加熱T/Hのアップが可能
である。
(2) Since the upper surface of the semi-cylindrical radiant tube facing the heated material becomes a solid radiant surface, it is possible to increase the amount of heat transfer, that is, increase the heating T/H.

■半円筒状放射管の下部が開放構造のため、円筒状放射
管上使用した場合に比べて開放面からの炉内ガスの41
込み作用により放射管か極端に過熱されることが無いた
め放射管の長喪   0命化が可能であり、かつ放射管
内燃焼に伴い発生するMox問題についても低NOx化
か可能である。
■Because the lower part of the semi-cylindrical radiant tube is open, 41% of the gas in the furnace is released from the open surface compared to when used on a cylindrical radiant tube.
Since the radiant tube is not extremely overheated due to the embedding action, it is possible to eliminate the long lifespan of the radiant tube, and it is also possible to reduce the NOx problem caused by combustion inside the radiant tube.

■サイドバーナ方式で均一な炉温分布が得られるため下
部の炉mが簡素化され作業性、保守性か向上し、かつ設
備コストの低下が可能である。
■Since a uniform furnace temperature distribution is obtained using the side burner method, the lower furnace m is simplified, workability and maintainability are improved, and equipment costs can be reduced.

という数多くの特徴を有した鋼材加熱炉である。This is a steel heating furnace with many features.

【図面の簡単な説明】[Brief explanation of drawings]

図面において21滴は本発明の鋼材加熱炉の縦断面図、
22図は第1mlのエーエ線における側断面図、第3図
は22図の■−π線からみた炉下sVcおける一部分の
平面図、第4図ビ)、(ロ)(ハ)は本発明において用
いる半円筒状放射管と燃鉤ガス過過mt−設けた燃焼ガ
ス分散壁の拡大断面図、第5図は従来の直火燃焼方式に
おける炉内温匿分布O淘定例の図、第6図は本発明の半
円筒状放射管と燃焼ガス分散壁を組合せた場合の炉内温
度分布の欄定例管示す図である。 1は炉壁、2はルーフバーナ、3はサイドバーナ、4は
仕切壁、5は被熱材(鋼材)、6は予熱帯、7は加熱槽
、8は均熱帯、9は固定スキッド、1(l可動スキッド
、11ハ半円筒状放射管、12は燃焼ガス分散壁、13
は燃焼ガス通過溝。 ヤJ真 尤6囚
In the drawing, 21 drops is a longitudinal cross-sectional view of the steel heating furnace of the present invention,
Figure 22 is a side cross-sectional view of the 1 ml line taken along the AHE line, Figure 3 is a plan view of a portion of the sVc below the furnace seen from the ■-π line in Figure 22, and Figures 4 (b), (b) and (c) show the present invention. Fig. 5 is an enlarged cross-sectional view of the semi-cylindrical radiant tube and the combustion gas dispersion wall provided with the combustion gas permeation mt used in the conventional direct-fire combustion system. The figure is a diagram showing a typical tube showing the temperature distribution inside the furnace when the semi-cylindrical radiant tube of the present invention and the combustion gas distribution wall are combined. 1 is a furnace wall, 2 is a roof burner, 3 is a side burner, 4 is a partition wall, 5 is a heated material (steel material), 6 is a preheating zone, 7 is a heating tank, 8 is a soaking zone, 9 is a fixed skid, 1 ( l Movable skid, 11 C semi-cylindrical radiation tube, 12 combustion gas distribution wall, 13
is the combustion gas passage groove. YaJ Shinyu 6 Prisoners

Claims (1)

【特許請求の範囲】 横断両管下方に向けた半円筒状放射管管、七〇一端か炉
内に位置するように複数個配し、鋏各放射管のデー側管
端に燃m装置を近接すると共に、骸放射管O下方に放射
管と直交状に所定間隔【おいて複数段の燃焼ガス分散壁
を配設し、該燃焼ガス分散@0放射管側上端面に半円筒
状放射管の横断面と相対する形で燃焼ガス通過溝を設け
るよう構成してなることt″特徴する鋼材加熱炉。
[Scope of Claims] A plurality of semi-cylindrical radiator tubes facing downward in both transverse tubes are arranged so as to be located at either end or inside the furnace, and a combustion device is provided at the end of the side tube of each radiator tube. At the same time, a plurality of combustion gas dispersion walls are arranged at a predetermined interval below the radiant tube O at right angles to the radiant tube, and a semi-cylindrical radiator wall is placed on the upper end surface of the radiant tube side for dispersing the combustion gas @0. 1. A steel heating furnace characterized by having a structure in which a combustion gas passage groove is provided facing the cross section of the pipe.
JP948782A 1982-01-26 1982-01-26 Steel material heating furnace Granted JPS58126927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP948782A JPS58126927A (en) 1982-01-26 1982-01-26 Steel material heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP948782A JPS58126927A (en) 1982-01-26 1982-01-26 Steel material heating furnace

Publications (2)

Publication Number Publication Date
JPS58126927A true JPS58126927A (en) 1983-07-28
JPH0213011B2 JPH0213011B2 (en) 1990-04-03

Family

ID=11721583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP948782A Granted JPS58126927A (en) 1982-01-26 1982-01-26 Steel material heating furnace

Country Status (1)

Country Link
JP (1) JPS58126927A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059311U (en) * 1991-07-19 1993-02-09 カシオ計算機株式会社 Watch band

Also Published As

Publication number Publication date
JPH0213011B2 (en) 1990-04-03

Similar Documents

Publication Publication Date Title
US2594914A (en) Burner
US4469314A (en) Metal heating furnace
US2276527A (en) Apparatus for heating fluids
US2298149A (en) Continuous heating furnace
US6450162B1 (en) Indirect radiant heating device
BR112014000230B1 (en) device for transferring a metallurgical material
JP2000144241A (en) Heating method for continuous charging type heating furnace and continuous charging type heating furnace
JPS58126927A (en) Steel material heating furnace
US4388068A (en) Metal heating furnace
JPS6036586Y2 (en) steel heating furnace
US2220582A (en) Heater tube for furnaces
JPS6038659Y2 (en) steel heating furnace
JPH0125870Y2 (en)
JPS6036587Y2 (en) Heating equipment in steel heating furnaces
JPS60226690A (en) Heater for heating furnace
US2673728A (en) Apparatus for and method of annealing
JP3419917B2 (en) Continuous heating device
JP3149666B2 (en) Radiant heating device and combustion method thereof
JPS60226691A (en) Heater for heating furnace
US3623715A (en) Furnace method for reheating billets or slabs
JP3906423B2 (en) Hot dip galvanizing furnace
US1371773A (en) Furnace or oven
US2988350A (en) Combustion apparatus
JPH08291327A (en) Continuous heating apparatus
SU1211294A1 (en) Blast furnace air stove