JPS6038659Y2 - steel heating furnace - Google Patents

steel heating furnace

Info

Publication number
JPS6038659Y2
JPS6038659Y2 JP817382U JP817382U JPS6038659Y2 JP S6038659 Y2 JPS6038659 Y2 JP S6038659Y2 JP 817382 U JP817382 U JP 817382U JP 817382 U JP817382 U JP 817382U JP S6038659 Y2 JPS6038659 Y2 JP S6038659Y2
Authority
JP
Japan
Prior art keywords
furnace
radiant tube
combustion
combustion gas
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP817382U
Other languages
Japanese (ja)
Other versions
JPS58113759U (en
Inventor
政人 藤岡
耕一 油田
信義 西原
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP817382U priority Critical patent/JPS6038659Y2/en
Publication of JPS58113759U publication Critical patent/JPS58113759U/en
Application granted granted Critical
Publication of JPS6038659Y2 publication Critical patent/JPS6038659Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Tunnel Furnaces (AREA)

Description

【考案の詳細な説明】 本考案はスラブ、ビレット等の鋼材を目的の圧延温度ま
で均一加熱する鋼材加熱炉に関するものである。
[Detailed Description of the Invention] The present invention relates to a steel heating furnace that uniformly heats steel materials such as slabs and billets to a target rolling temperature.

従来、この種の加熱炉は被熱材(鋼材)の上下面に直火
バーナを配置した燃焼室を設け、装入側から抽出側に向
って被熱材を搬送しながら加熱を行う直火燃焼方式の加
熱炉が一般に採用されており、燃焼室でのバーナ配置方
法によってサイドバーナ、軸流バーナ、ルーフバーナの
三方式があることが一般的に知られている。
Conventionally, this type of heating furnace has a combustion chamber with direct flame burners arranged on the upper and lower surfaces of the material to be heated (steel material), and the material to be heated is heated while being conveyed from the charging side to the extraction side. Combustion type heating furnaces are generally used, and it is generally known that there are three types depending on how the burners are arranged in the combustion chamber: side burners, axial burners, and roof burners.

前者のサイドバーナ方式は炉の両側壁部にバーナを配置
する構造のため、一般に炉長方向は比較的均一な炉温分
布が得られ易いが、炉巾方向については均一な炉温分布
が得られにくいという欠点を有しており、設備的には炉
構造が簡素なため設備コストが安いという特徴を持って
いる。
The former side burner method has a structure in which burners are placed on both side walls of the furnace, so it is generally easy to obtain a relatively uniform furnace temperature distribution in the furnace length direction, but it is not possible to obtain a uniform furnace temperature distribution in the furnace width direction. It has the disadvantage of being difficult to burn, and its equipment is characterized by low equipment costs due to its simple furnace structure.

これに対して、中老の軸流バーナ方式は炉の長手方向に
バーナを配置する構造のためサイドバーナ方式の場合と
は逆に、一般に炉巾方向は比較的均一な炉温分布が得ら
れ易いが、炉長方向については均一な炉温分布が得られ
にくいという欠点を有しており、設備的にもバーナの配
置上炉巾方向にノーズ部を設ける必要があるため炉床利
用率が低く、かつ設備コストが高く、作業性及び保守性
が悪いという欠点を持っている。
On the other hand, the axial flow burner method used by Chuo has a structure in which the burners are arranged in the longitudinal direction of the furnace, so contrary to the case of the side burner method, a relatively uniform furnace temperature distribution is generally obtained in the width direction of the furnace. However, it has the disadvantage that it is difficult to obtain a uniform furnace temperature distribution in the furnace length direction, and in terms of equipment, it is necessary to provide a nose section in the furnace width direction due to the burner arrangement, which reduces the hearth utilization rate. It has the disadvantages of low cost, high equipment cost, and poor workability and maintainability.

一方、後者のルーフバーナ方式はその性格上、上部燃焼
室の天井炉壁にバーナを配置する構造のため、炉巾及び
炉長方向の全面にわたって比較的均一な炉温分布が得ら
れるという特徴を有しているが、他の三方式に比べてバ
ーナ本数が多くなるため一般に設備費が高く、かつバー
ナ配置の性格上、上部燃焼室のみしか適用できないとい
う欠点を有していた。
On the other hand, the latter roof burner method has a structure in which the burner is placed on the ceiling furnace wall of the upper combustion chamber, so it has the characteristic that a relatively uniform furnace temperature distribution can be obtained over the entire furnace width and furnace length direction. However, since the number of burners is larger than the other three methods, the equipment cost is generally high, and due to the nature of the burner arrangement, it has the disadvantage that it can only be applied to the upper combustion chamber.

又、この種の直火燃焼方式を燃焼機能面からみた場合、
バーナから供給された燃料と燃焼用空気を直接炉内(燃
焼室内)の自由空間で混合燃焼させ、その燃焼ガスの輝
炎放射、ガス放射及び炉壁放射を利用して被熱材の加熱
を行うものであるが、一般にこの種の直火燃焼方式では
バーナから供給される流体の噴出エネルギーを十分に大
きく取っても、その火炎長は精々3〜4mLかならず、
加えて低負荷燃焼時にはバーナ供給流体の噴出エネルギ
ーも小さくなるため火炎の直進性が低下し、浮力による
火炎の舞上り現象や炉内ガス流れによる火炎の曲折現象
を発生するという基本的な問題を有していたため、最近
の加熱炉のごとく炉の大型化(炉巾で10〜15m、、
炉長で30〜50m)や操業の多様化(950〜125
0℃迄の広温度範囲で均一加熱)に対しては、従来の直
火燃焼方式では十分に対処することができなかった。
Also, when looking at this type of direct flame combustion method from the combustion function perspective,
The fuel and combustion air supplied from the burner are mixed and burned directly in the free space inside the furnace (combustion chamber), and the material to be heated is heated using the bright flame radiation, gas radiation, and furnace wall radiation of the combustion gas. However, in general, in this type of direct combustion method, even if the ejection energy of the fluid supplied from the burner is sufficiently large, the flame length is only 3 to 4 mL at most.
In addition, during low-load combustion, the ejection energy of the burner supply fluid also decreases, which reduces the straightness of the flame, resulting in the fundamental problem of flame soaring due to buoyancy and flame bending due to gas flow in the furnace. Because of this, the furnace has become larger (10 to 15 m in width, as in recent heating furnaces).
Furnace length: 30-50m) and diversification of operations (950-125m)
Conventional direct-fire combustion methods have not been able to adequately cope with the problem of uniform heating over a wide temperature range down to 0°C.

又、最近は炉の大型化に伴ない被熱材の搬送手段として
一般にウオーキングビーム方式を採用する傾向にあるが
、このウオーキングビーム方式では被熱材を断熱、水冷
構造の固定及び可動スキッドで支持、搬送する方式のた
めこのスキッド直上にある被熱材はスキッドパイプのシ
ャドウ効果により伝熱が阻害されるため、被熱材の他の
部分に比べて加熱がされにくいという欠点を有しており
、被熱材の均一加熱のためには加熱初期の段階でこのス
キッドシャドウ部を積極的に加熱する、いわゆるピーク
温度を有した炉温分布を形成することが望ましいが、従
来の直火燃焼方式の加熱炉では任意点、即ちスキッド部
にピーク炉温を作ることは一般的に下可能であった。
In addition, recently, as furnaces have become larger, there has been a general tendency to adopt a walking beam method as a means of transporting heated materials, but in this walking beam method, heated materials are supported by a fixed and movable skid with an insulated and water-cooled structure. Because of the conveyance method, heat transfer to the heated material directly above the skid is inhibited by the shadow effect of the skid pipe, so it has the disadvantage that it is difficult to heat compared to other parts of the heated material. In order to uniformly heat the material to be heated, it is desirable to actively heat this skid shadow area in the early stages of heating, creating a furnace temperature distribution with a so-called peak temperature. In heating furnaces, it was generally possible to create a peak furnace temperature at any point, that is, at the skid area.

本考案は、従来の直火燃焼式加熱炉の問題点である被熱
材の均−加熱性の改善に主眼を置き、被熱材の偏熱防止
による加熱T/Hのアップと品質の向上を設備コストの
安いサイドバーナ方式で図るため、両端を開放した円筒
状放射管を炉内に複数個配し該円筒状放射管の炉壁側管
端に燃焼装置を配すと共に、該円筒状放射管の炉内側管
端に近接して横断面を下方に向けた半円筒状放射管を配
設し、該半円筒状放射管の下方に半円筒状放射管と直交
状に燃焼ガス分散壁を所定間隔で複数個配設し、燃焼ガ
ス分散壁と半円筒状放射管の横断面とで燃焼ガス通過溝
を設けてなることを特徴とする鋼材加熱炉である。
This invention focuses on improving the uniform heating of the heated material, which is a problem with conventional direct-fired combustion heating furnaces, and increases heating T/H and quality by preventing uneven heat of the heated material. In order to achieve this using a side burner method with low equipment costs, a plurality of cylindrical radiant tubes with both ends open are arranged in the furnace, and a combustion device is arranged at the end of the cylindrical radiant tube on the furnace wall side. A semi-cylindrical radiant tube with a cross section facing downward is disposed close to the inner tube end of the radiant tube, and a combustion gas dispersion wall is provided below the semi-cylindrical radiant tube and perpendicular to the semi-cylindrical radiant tube. A steel heating furnace is characterized in that a plurality of radial tubes are arranged at predetermined intervals, and combustion gas passage grooves are provided in the combustion gas distribution wall and the cross section of the semi-cylindrical radiant tube.

以下、第1図から第8図に従って本考案の一実施例を説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 8.

図において1は耐火断熱性と機密性を有した炉壁、2は
炉壁1の天井部の炉長方向と炉巾方向に複数個配置され
たルーフバーナ、3は炉壁1の炉長方向の下部両側壁に
配置されたサイドバーナであり、4は加熱炉を各燃焼室
に仕切るための仕切壁、5は被熱材、即ち鋼材、6は予
熱帯、7は加熱帯、8は均熱帯である。
In the figure, 1 is a furnace wall with fireproof insulation and airtightness, 2 is a plurality of roof burners arranged in the furnace length direction and furnace width direction on the ceiling of the furnace wall 1, and 3 is a furnace wall on the furnace wall 1 in the furnace length direction. Side burners are placed on both lower side walls, 4 is a partition wall for partitioning the heating furnace into each combustion chamber, 5 is a material to be heated, that is, steel, 6 is a preheating zone, 7 is a heating zone, and 8 is a soaking zone. It is.

9は被熱材5を支持するための固定スキッド、10は被
熱材5を搬送するための可動スキッドであり水冷スキッ
ドパイプの外面は断熱構造となっている。
9 is a fixed skid for supporting the heated material 5; 10 is a movable skid for conveying the heated material 5; the outer surface of the water-cooled skid pipe has a heat insulating structure.

11はサイドバーナ3の炉内側先端部に間隙を設けて配
置された所要長さの耐熱性と熱伝導性を有した円筒状放
射管、12は円筒状放射管11の支柱壁、13は円筒状
放射管11の炉内側先端部に連接して設けられた横断面
を下方に向けた所要長さの耐熱性と熱伝導を有した半円
筒状放射管、14は半円筒状放射管13を炉内に支持、
固定すると同時にサイドバーナ3から放出された燃焼ガ
スを炉内へ分散供給するための耐熱性を有した燃焼ガス
分散壁で、通常半円筒状放射管13の下部に直交状に所
定間隔をおいて複数段設けられている。
Reference numeral 11 denotes a cylindrical radiant tube having a required length of heat resistance and thermal conductivity, which is disposed with a gap at the tip inside the furnace of the side burner 3, 12 is a support wall of the cylindrical radiator tube 11, and 13 is a cylinder. A semi-cylindrical radiant tube 14 having heat resistance and heat conduction and having a required length with a cross section facing downward, which is connected to the front end of the inside of the furnace of the radial tube 11, is a semi-cylindrical radiant tube 13. Supported in the furnace,
A heat-resistant combustion gas dispersion wall for dispersing and supplying combustion gas emitted from the side burner 3 into the furnace at the same time as fixing the wall, and is usually placed at a predetermined interval orthogonally at the bottom of the semi-cylindrical radiant tube 13. There are multiple stages.

15は燃焼ガス分散壁14の半円筒状放射管13側の上
端面に半円筒状放射管13と相対する形で設けられた燃
焼ガス通過溝であり、通常加熱目的に応じて開口面積が
決定される。
15 is a combustion gas passage groove provided on the upper end surface of the combustion gas distribution wall 14 on the side of the semicylindrical radiant tube 13 so as to face the semicylindrical radiant tube 13, and the opening area is usually determined depending on the purpose of heating. be done.

又、図中の破線による矢印はルーフバーナ2からの燃焼
ガス流れを、実線による矢印はサイドバーナ3から炉内
へ分散供給される燃焼ガス流れを示したものである。
Further, the broken line arrows in the figure indicate the flow of combustion gas from the roof burner 2, and the solid line arrows indicate the flow of combustion gas distributed and supplied from the side burner 3 into the furnace.

次に本考案の作動機能について説明する。Next, the operating function of the present invention will be explained.

加熱炉内に装入された被熱材5は、被熱材5の支持、搬
送装置である固定スキッド9及び可動スキッド10によ
って装入側の予熱帯6から抽出側の均熱帯8に向って搬
送される間に被熱材5の上面はルーフバーナ2より、被
熱材5の下面はサイドバーナ3により加熱が行われる。
The material to be heated 5 charged into the heating furnace is moved from the preheating zone 6 on the charging side to the soaking zone 8 on the extraction side by a fixed skid 9 and a movable skid 10, which are supporting and conveying devices for the material to be heated 5. While being transported, the upper surface of the heat target material 5 is heated by the roof burner 2, and the lower surface of the heat target material 5 is heated by the side burner 3.

この場合、加熱炉の下部はサイドバーナ3の先端に円筒
状放射管11を配置する構造のため、サイドバーナ3か
ら供給された燃料と燃焼用空気は円筒状放射管11内で
混合、燃焼が行われるため従来の直火燃焼方式に比べて
浮力や炉内ガス流れの影響を受けることがないため、燃
焼量の多少に関係なく炉内の目的位置まで燃焼ガスを搬
送することが可能である。
In this case, the lower part of the heating furnace has a structure in which the cylindrical radiant tube 11 is placed at the tip of the side burner 3, so the fuel and combustion air supplied from the side burner 3 are mixed and combusted within the cylindrical radiant tube 11. Because this method is carried out, it is not affected by buoyancy or gas flow in the furnace compared to conventional direct-fire combustion methods, so it is possible to transport the combustion gas to the target location in the furnace regardless of the amount of combustion. .

更に、この燃焼ガスは円筒状放射管11の炉内側管端を
連接して設けられた半円筒状放射管13内を通一つで炉
の中央部付近まで流動するようになっているが、半円筒
状放射管13の所要位置に適当数の燃焼ガス分散壁14
が設けられており、この燃焼ガス分散壁14には所要の
開口面積を有した燃焼ガス通過溝15が設けられている
ため、半円筒状放射管13下部の燃焼ガス噴流の一部は
この燃焼ガス分散壁14に衝突し炉内へ分散供給が行わ
れる。
Furthermore, this combustion gas flows through a semi-cylindrical radiant tube 13 provided by connecting the inner tube ends of the cylindrical radiant tubes 11 to near the center of the furnace. A suitable number of combustion gas dispersion walls 14 are provided at required positions of the semi-cylindrical radiation tube 13.
Since this combustion gas distribution wall 14 is provided with a combustion gas passage groove 15 having a required opening area, a part of the combustion gas jet at the bottom of the semi-cylindrical radiant tube 13 is absorbed by this combustion gas. The gas collides with the gas distribution wall 14 and is distributed and supplied into the furnace.

従って、円筒状放射管11の長さと燃焼ガス通過溝15
の開口面積及び燃焼ガス分散壁14の位置及び数を適当
に組合せることにより、加熱目的にあった炉温分布を形
成することが可能である。
Therefore, the length of the cylindrical radiation tube 11 and the combustion gas passage groove 15 are
By appropriately combining the opening area of the combustion gas distribution wall 14 and the position and number of the combustion gas distribution walls 14, it is possible to form a furnace temperature distribution suitable for the heating purpose.

この結果、被熱材5の加熱が行われにくい固定スキッド
9及び可動スキッド10のいわゆるスキッドシャドウ部
を積極的に加熱することが可能となり、950〜125
0°Cという広温度範囲にわたって被熱材5の均一加熱
が安定して行えるという特徴を有している。
As a result, it becomes possible to actively heat the so-called skid shadow portions of the fixed skid 9 and the movable skid 10, where heating of the heated material 5 is difficult, and
It has the characteristic that uniform heating of the heated material 5 can be performed stably over a wide temperature range of 0°C.

次に本考案の効果を燃焼実験炉(高1.8×巾3.0×
長6.477L)で確認した結果を例示する。
Next, we will demonstrate the effect of this invention in a combustion experimental furnace (height 1.8 x width 3.0 x
6.477L) is exemplified.

実験は本考案の効果を確認するため炉巾方向に1.7m
のピッチで燃焼量150万Kcal/hのバーナを2本
取付け、被熱材5による奪熱を横絞するため天井炉壁に
は水冷奪熱管を配し、燃料としてはコークス炉ガス、燃
焼用空気としては300℃の熱風を用い空気比1.1の
共通条件のもとで、従来の直火燃焼方式と本考案の燃焼
方式の比較を行った結果を第6図から第8図に示す。
The experiment was carried out at 1.7 m in the width direction of the furnace in order to confirm the effectiveness of this invention.
Two burners with a combustion rate of 1.5 million Kcal/h are installed at a pitch of Figures 6 to 8 show the results of a comparison between the conventional direct flame combustion method and the combustion method of the present invention, using hot air at 300°C as the air and under the common condition of an air ratio of 1.1. .

第6図は従来の直火燃焼方式の一例として、実炉での炉
巾方向の温度分布特性が最も優れているとの評価が高い
ガス二流方サイドバーナの炉温分布の測定例である。
FIG. 6 shows an example of measuring the furnace temperature distribution of a gas two-flow side burner, which is highly rated as having the best temperature distribution characteristics in the furnace width direction in an actual furnace, as an example of a conventional direct-fire combustion method.

又、第7図は円筒状放射管11を単独で使用した場合の
炉温分布の測定例であり、バーナとしてはノズルミック
スバーナを使用し円筒状放射管11としては500φの
SiCチューブを4.8肌の長さで使用した結果である
Moreover, FIG. 7 shows an example of measuring the furnace temperature distribution when the cylindrical radiant tube 11 is used alone. A nozzle mix burner is used as the burner, and a 500φ SiC tube is used as the cylindrical radiant tube 11. This is the result of using the product at a length of 8 skins.

第8図は円筒状放射管11の炉内側管端に連接して半円
筒状放射管13と燃焼ガス分散壁14を組合せた本考案
の炉温分布の測定例であり、バーナとしては第7図と同
じものを使用し、円筒状放射管11は直径が400φて
長さが1.6mのSiCチューブをバーナから2007
7+771の間隙を設けて配置し、半円筒状放射管13
としては直径400φの半割SiCチューブを1.6m
の長さで配置し半円筒状放射管13の燃焼ガス分散壁1
4の燃焼ガス通過溝15の開口面積比率(400φの断
面積に対する比率)をバーナ側から110.70.70
%と漸減した場合の結果である。
FIG. 8 shows an example of measuring the furnace temperature distribution of the present invention in which a semi-cylindrical radiant tube 13 and a combustion gas distribution wall 14 are connected to the furnace inner tube end of the cylindrical radiant tube 11, and a seventh burner is used as the burner. Using the same one as shown in the figure, the cylindrical radiation tube 11 is a SiC tube with a diameter of 400φ and a length of 1.6 m.
The semi-cylindrical radiation tube 13 is arranged with a gap of 7+771.
For example, 1.6 m of half-split SiC tube with a diameter of 400φ
The combustion gas distribution wall 1 of the semi-cylindrical radiant tube 13 is arranged with a length of
The opening area ratio (ratio to the cross-sectional area of 400φ) of the combustion gas passage groove 15 in No. 4 is 110.70.70 from the burner side.
This is the result when it gradually decreases to %.

第6図から第8図は横軸にバーナから距離を、縦軸には
炉温をバーナ長方向の各断面での測定温度(’I’)
SECとバーナ長方向の平均温度(T)AVEとの差で
示したものであり、燃焼量20〜100%の範囲で実験
した結果を図中の斜線範囲で表示したものである。
In Figures 6 to 8, the horizontal axis shows the distance from the burner, and the vertical axis shows the furnace temperature, and the temperature measured at each cross section in the longitudinal direction of the burner ('I').
It is shown by the difference between SEC and the average temperature (T)AVE in the burner length direction, and the results of experiments in the range of combustion amount of 20 to 100% are shown in the shaded range in the figure.

この結果、従来の直火燃焼方式ではバーナから約1.5
771の所に火炎のピーク温度があり、それより先では
急速に炉温の低下が見られる、いわゆるバーナ測高の温
度傾向を示すため炉巾が広い大型炉では炉中央部の炉温
か低くなり被熱材5の偏熱が大きくなることを示してい
る。
As a result, in the conventional direct combustion method, approximately 1.5
There is a peak flame temperature at 771, and a rapid drop in furnace temperature can be seen beyond that point, which is a so-called burner height measurement temperature trend.In large furnaces with a wide furnace width, the furnace temperature in the center of the furnace is lower. This indicates that the uneven heat of the heated material 5 increases.

これに対して円筒状放射管による燃焼方式では燃焼量に
ほとんど関係なく、バーナ長方向に対して略均−な炉温
分布が得られるということを示している。
On the other hand, the combustion method using a cylindrical radiant tube shows that a substantially uniform furnace temperature distribution in the burner length direction can be obtained, almost regardless of the combustion amount.

又、円筒状放射管の先端に半円筒状放射管と燃焼ガス分
散壁を組合せて配置した本考案では燃焼ガス分散壁の位
置と燃焼ガス通過溝の開口面積を適当に選択することに
より、炉内の所定位置にピーク点を持った炉温分布を形
成することができることを示している。
In addition, in the present invention, in which a semi-cylindrical radiant tube and a combustion gas dispersion wall are arranged at the tip of a cylindrical radiant tube, the furnace can be This shows that it is possible to form a furnace temperature distribution with a peak point at a predetermined position within the range.

以上述べたように本考案の鋼材加熱炉は従来の直火燃焼
力加熱炉の問題点であったバーナ長方向の炉温分布の改
善を図るため直火燃焼バーナの先端に円筒状放射管を配
し、この円筒状放射管の先端に半円筒状放射管と燃焼ガ
ス分散壁を配置することにより、炉内の所要位置に所要
のピーク点を有した炉温分布を形成することができるた
め、加熱炉で被熱材の偏熱原因となるスキッドシャドウ
部を積極的に加熱することが可能であり、被熱材の均一
加熱、即ち偏熱防止により加熱T/Hのアッフト品質の
向上が設備コストの安いサイドバーナ方式で可能という
特徴を有した鋼材加熱炉である。
As mentioned above, the steel heating furnace of the present invention has a cylindrical radiant tube at the tip of the direct-fired combustion burner in order to improve the furnace temperature distribution in the burner length direction, which was a problem with conventional direct-fired combustion power heating furnaces. By arranging a semi-cylindrical radiant tube and a combustion gas distribution wall at the tip of this cylindrical radiant tube, it is possible to form a furnace temperature distribution with a desired peak point at a desired position within the furnace. It is possible to actively heat the skid shadow part that causes uneven heat of the heated material in the heating furnace, and improves the after quality of heating T/H by uniformly heating the heated material, that is, preventing uneven heat. This is a steel heating furnace that can be heated using a side burner method with low equipment costs.

【図面の簡単な説明】[Brief explanation of the drawing]

図面において第1図は本考案の鋼材加熱炉の縦断面図、
第2図は第1図のI−I線における側断面図、第3図は
第2図の■−■線からみた炉下部における一部分の平面
図、第4図は放射管と支柱壁の拡大断面図、第5図は本
考案において用いる半円筒状放射管と燃焼ガス通過溝を
設けた燃焼ガス分散壁の拡大図、第6図は従来の直火燃
焼方式における炉内温度分布の測定例の図、第7図は円
筒状放射管燃焼方式における炉内温度分布の測定例の図
、第8図は円筒状放射管及び半円筒状放射管と燃焼ガス
分散壁を組合せた本考案の炉温分布の測定例を示す図で
ある。 1は炉壁、2はルーフバーナ、3はサイドバーナ、4は
仕切壁、5は被熱材(鋼材)、6は予熱帯、7は加熱帯
、8は均熱帯、9は固定スキッド、10は可動スキッド
、11は円筒状放射管、12は支柱壁、13は半円筒状
放射管、14は燃焼ガス分散壁、15は燃焼ガス通過溝
In the drawings, FIG. 1 is a longitudinal cross-sectional view of the steel heating furnace of the present invention;
Figure 2 is a side sectional view taken along line I-I in Figure 1, Figure 3 is a plan view of a portion of the lower part of the reactor seen from line ■-■ in Figure 2, and Figure 4 is an enlarged view of the radiation tube and support wall. A cross-sectional view, Figure 5 is an enlarged view of the semi-cylindrical radiation tube used in the present invention and a combustion gas distribution wall provided with combustion gas passage grooves, and Figure 6 is an example of measuring the temperature distribution inside the furnace in a conventional direct-fire combustion system. Figure 7 shows an example of measuring the temperature distribution inside the furnace in the cylindrical radiant tube combustion method, and Figure 8 shows the furnace of the present invention which combines a cylindrical radiant tube, a semi-cylindrical radiant tube, and a combustion gas distribution wall. It is a figure which shows the measurement example of temperature distribution. 1 is a furnace wall, 2 is a roof burner, 3 is a side burner, 4 is a partition wall, 5 is a heated material (steel material), 6 is a preheating zone, 7 is a heating zone, 8 is a soaking zone, 9 is a fixed skid, 10 is a A movable skid, 11 a cylindrical radial tube, 12 a support wall, 13 a semi-cylindrical radiant tube, 14 a combustion gas distribution wall, and 15 a combustion gas passage groove.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 両端を開放した円筒状放射管を炉内に複数個配し、該円
筒状放射管の炉壁側管端に燃焼装置を配すと共に、該円
筒状放射管の炉内側管端に近接して、横断面を下方に向
けた半円筒状放射管を配設し、該半円筒状放射管の下方
に半円筒状放射管と直交状に燃焼ガス分散壁を所定間隔
で複数個配設し、燃焼ガス分散壁と半円筒状放射管の横
断面とで燃焼ガス通過溝を設けてなる、鋼材加熱炉
A plurality of cylindrical radiant tubes with both ends open are disposed in the furnace, and a combustion device is disposed at the furnace wall side tube end of the cylindrical radiant tube, and a combustion device is disposed close to the furnace wall side tube end of the cylindrical radiant tube. , disposing a semi-cylindrical radiant tube with a cross section facing downward, and disposing a plurality of combustion gas dispersion walls at predetermined intervals below the semi-cylindrical radiant tube perpendicularly to the semi-cylindrical radiant tube; A steel heating furnace in which a combustion gas passage groove is formed by a combustion gas distribution wall and a cross section of a semi-cylindrical radiant tube.
JP817382U 1982-01-26 1982-01-26 steel heating furnace Expired JPS6038659Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP817382U JPS6038659Y2 (en) 1982-01-26 1982-01-26 steel heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP817382U JPS6038659Y2 (en) 1982-01-26 1982-01-26 steel heating furnace

Publications (2)

Publication Number Publication Date
JPS58113759U JPS58113759U (en) 1983-08-03
JPS6038659Y2 true JPS6038659Y2 (en) 1985-11-19

Family

ID=30020884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP817382U Expired JPS6038659Y2 (en) 1982-01-26 1982-01-26 steel heating furnace

Country Status (1)

Country Link
JP (1) JPS6038659Y2 (en)

Also Published As

Publication number Publication date
JPS58113759U (en) 1983-08-03

Similar Documents

Publication Publication Date Title
US6334770B1 (en) Fluid-fuel furnace burner for iron and steel products
US4469314A (en) Metal heating furnace
JPH0633949B2 (en) Fluidized bed equipment
US2276527A (en) Apparatus for heating fluids
US2298149A (en) Continuous heating furnace
US6450162B1 (en) Indirect radiant heating device
US4388068A (en) Metal heating furnace
BR112014000230B1 (en) device for transferring a metallurgical material
JPS6038659Y2 (en) steel heating furnace
JPS6036586Y2 (en) steel heating furnace
JPS6036587Y2 (en) Heating equipment in steel heating furnaces
US4884967A (en) Steel reheating furnace
JPH0213011B2 (en)
JPS60226690A (en) Heater for heating furnace
KR100761211B1 (en) A partial combustion burner for preheating oxygen
US2673728A (en) Apparatus for and method of annealing
JPS639564B2 (en)
JPH0375609B2 (en)
JPS6215232Y2 (en)
JPH1025515A (en) Continuous type heating furnace
CN108317856B (en) Vertical pipe square box furnace
JPH0348200Y2 (en)
JPS60200908A (en) Heating furnace for steel material
JPS6319313Y2 (en)
JPS62186115A (en) Radiant tube and heating method thereof