JP3419917B2 - Continuous heating device - Google Patents

Continuous heating device

Info

Publication number
JP3419917B2
JP3419917B2 JP28647294A JP28647294A JP3419917B2 JP 3419917 B2 JP3419917 B2 JP 3419917B2 JP 28647294 A JP28647294 A JP 28647294A JP 28647294 A JP28647294 A JP 28647294A JP 3419917 B2 JP3419917 B2 JP 3419917B2
Authority
JP
Japan
Prior art keywords
combustion
temperature
furnace
discharge ports
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28647294A
Other languages
Japanese (ja)
Other versions
JPH08143949A (en
Inventor
英樹 村上
順一 林
政孝 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28647294A priority Critical patent/JP3419917B2/en
Publication of JPH08143949A publication Critical patent/JPH08143949A/en
Application granted granted Critical
Publication of JP3419917B2 publication Critical patent/JP3419917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼片など金属材料をつ
ぎつぎに通過させて所定温度に加熱する装置において、
被加熱物毎の温度制御を行うことのできる高効率連続加
熱装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for heating a metal material such as steel slab one after another to a predetermined temperature.
The present invention relates to a high-efficiency continuous heating device capable of controlling the temperature of each object to be heated.

【0002】[0002]

【従来の技術】スラブやビレット等の鋼片など金属材料
に、熱間圧延や熱処理を施す際の加熱炉として、被加熱
材をつぎつぎに通過させて所定温度に加熱する連続加熱
炉が使用されている。被加熱材の温度制御としては、炉
全体の温度を制御するもの、あるいは炉内を加熱帯およ
び均熱帯に区分して各帯ごとに制御するもの等が採用さ
れている。加熱には一般的に、炉内壁面に単数はたは複
数個設置された、図5に示されるような直接加熱ガスバ
ーナや図6に示されるスパイラルバーナが使用されてい
る(「燃焼機器工学」辻正一著)。
2. Description of the Related Art As a heating furnace for performing hot rolling or heat treatment on metal materials such as steel slabs such as slabs and billets, there is used a continuous heating furnace for heating a material to be heated to a predetermined temperature one after another. ing. As the temperature control of the material to be heated, one that controls the temperature of the entire furnace, one that divides the inside of the furnace into a heating zone and a soaking zone, and that controls in each zone is adopted. For heating, generally, a direct heating gas burner as shown in FIG. 5 or a spiral burner as shown in FIG. 6 installed on the inner wall surface of the furnace is used (“combustion equipment engineering”). Shoichi Tsuji)).

【0003】近年、鋼材品質の厳格化の要求が高まって
おり、鋼片の焼き上げ温度も目標温度での均一化が要求
されている。また一方で、加熱炉設備の大型化により加
熱炉内での炉温のばらつきが生じ易くなっており、その
結果たとえば図8に示すような炉内温度分布が発生し、
鋼材温度に不均一が生じる場合があった。この問題の改
良技術として、たとえば特公昭53−3106号公報に
は、炉幅方向に複数のバーナ及び熱電対による温度検出
器を設置し、その温度情報を元に燃料の流量制御弁を自
動操作することでバーナの燃焼制御を行い、加熱炉の幅
方向の温度を均一に加熱する方法が提案されている。
In recent years, there has been an increasing demand for stricter quality of steel materials, and it is required that the baking temperature of steel slabs be made uniform at the target temperature. On the other hand, due to the increase in the size of the heating furnace facility, variations in the furnace temperature within the heating furnace are likely to occur, and as a result, a temperature distribution in the furnace as shown in FIG. 8 occurs,
There were cases where the steel material temperature became uneven. As a technique for improving this problem, for example, in Japanese Patent Publication No. 53-3106, a temperature detector using a plurality of burners and thermocouples is installed in the furnace width direction, and a fuel flow control valve is automatically operated based on the temperature information. A method has been proposed in which burner combustion control is performed by doing so to uniformly heat the temperature in the width direction of the heating furnace.

【0004】特開平5−118764号公報には、蓄熱
体を通してバーナへの燃焼用空気の供給及びバーナから
の燃焼ガスの排出を行う蓄熱式交換燃焼バーナシステム
を採用することにより、加熱炉のゾーン内温度分布を均
一化する鉄鋼加熱炉を提案している。また、特開平5−
180409号公報には、ガラス溶解炉等の高温加熱炉
において、その側壁内面に開口させた空気ダクト内及び
ダクト開口部横の側壁内面数カ所に燃料ガス噴出部を設
けて、燃料ガス供給量を調整することで燃焼制御を行う
方法が提案されている。
Japanese Unexamined Patent Publication (Kokai) No. 5-118764 adopts a heat storage type exchange combustion burner system for supplying combustion air to a burner through a heat storage body and discharging combustion gas from the burner, thereby making a zone of a heating furnace. We have proposed a steel heating furnace that makes the internal temperature distribution uniform. In addition, JP-A-5-
Japanese Patent No. 180409 discloses that in a high-temperature heating furnace such as a glass melting furnace, a fuel gas injection portion is provided in an air duct opened to the inner surface of the side wall and in several places on the inner surface of the side wall next to the duct opening to adjust the supply amount of the fuel gas. A method of performing combustion control by doing so has been proposed.

【0005】[0005]

【発明が解決しようとする課題】上記特公昭53−31
06号公報に提案された方法は、炉幅方向の炉温ばらつ
きに着目し、検出値に応じて個々のバーナの燃焼制御を
行う点で注目すべき技術であるが、従来型の加熱用ガス
バーナでは、高温フレームの位置がバーナ口位置に依存
しているため、燃焼量を制御してフレーム長さ、温度を
調整するだけでは炉内温度の均一化も鋼材の均一加熱の
実用上実現が困難であった。また、炉長方向で炉温雰囲
気に分布が生じるため、加熱条件の異なる被加熱材に混
在する場合の温度管理は困難であった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method proposed in Japanese Laid-Open Patent Publication No. 06 is a technique to be noted in that it pays attention to the furnace temperature variation in the furnace width direction and controls the combustion of each burner according to the detected value, but it is a conventional heating gas burner. Since the position of the high temperature frame depends on the burner port position, it is difficult to practically realize uniform heating of the steel material evenly by controlling the combustion amount and adjusting the frame length and temperature. Met. Further, since the furnace temperature atmosphere is distributed in the furnace length direction, it is difficult to control the temperature when mixed in the materials to be heated under different heating conditions.

【0006】また、上記特開平5−118764号公報
等に提案された蓄熱型交換燃焼バーナシステムを適用す
る方法も、ガスバーナによる加熱炉であり、炉内の温度
分布がバーナ位置に依存するため、炉内温度の不均一性
を取り除くことは困難であった。
Further, the method of applying the heat storage type exchange combustion burner system proposed in the above-mentioned Japanese Patent Laid-Open No. 5-1187764 is also a heating furnace using a gas burner, and the temperature distribution in the furnace depends on the burner position. It was difficult to remove the non-uniformity of the temperature in the furnace.

【0007】上記特開平5−180409号公報に提案
された方法は、加熱炉側壁内面に燃料ガス噴出部を設け
てダクト開口部近傍での燃焼制御を行う点で注目すべき
技術であるが、側壁での燃料ガス噴出は、ダクト内で行
われた燃焼の排ガスを用いた二次的な低炭素燃焼であ
り、この方法によって炉内の温度を均一化することは困
難であった。本発明は、スラブやビレット等の鋼片など
金属材料を通過させて所定温度に加熱する連続加熱炉に
おいて、各種被加熱材を炉幅方向のみならず炉長方向に
も均一に加熱できる装置を目的とする。
The method proposed in the above-mentioned Japanese Patent Laid-Open No. 5-180409 is a remarkable technique in that a fuel gas jetting portion is provided on the inner surface of the side wall of the heating furnace to control combustion in the vicinity of the duct opening. The fuel gas injection on the side wall is a secondary low carbon combustion using the exhaust gas of the combustion performed in the duct, and it was difficult to make the temperature in the furnace uniform by this method. The present invention provides a continuous heating furnace that heats a metal material such as a steel slab such as a slab or a billet to a predetermined temperature in order to uniformly heat various materials to be heated not only in the furnace width direction but also in the furnace length direction. To aim.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明の第1の手段は、被加熱材を通過させて所定温
度に加熱する連続加熱炉において、前記加熱炉の被加熱
材通過ライン方向に、高温燃焼用空気吐出口を加熱炉の
両側壁に対向して設け、天井またはスキッドのサポート
パイプいずれか一方または双方に複数の燃料ガス吐出口
を設けると共に、前記対向して設けた1対以上の高温燃
焼用空気吐出口と該複数の燃料ガス吐出口とを一組とし
た各組により炉内を被加熱材の通過ライン方向に区画し
て形成される燃焼ゾーン毎に燃焼制御を行う燃焼制御装
置を設けるものである。好ましくは第2の手段として、
第1の手段において上記各燃焼ゾーンの間に被加熱材通
過ライン上方または下方の一方または双方に仕切壁を設
けるものである。
[Means for Solving the Problems] A first means of the present invention for achieving the above object is to provide a continuous heating furnace in which a material to be heated is passed to heat it to a predetermined temperature. In the line direction, high-temperature combustion air discharge ports are provided opposite to both side walls of the heating furnace, and a plurality of fuel gas discharge ports are provided on either or both of the ceiling and skid support pipes. Combustion control for each combustion zone formed by partitioning the inside of the furnace in the passage line direction of the material to be heated by each set of one or more pairs of high-temperature combustion air discharge ports and the plurality of fuel gas discharge ports A combustion control device for performing the above is provided. Preferably, as the second means,
In the first means, a partition wall is provided between the combustion zones and above or below the heated material passage line.

【0009】また、第3の手段として、被加熱材を通過
させて所定温度に加熱する連続加熱炉において、前記加
熱炉の両側壁間の被加熱材通過ライン上下に複数の仕切
壁を設けて燃焼ゾーンを形成し、該各燃焼ゾーンには、
両側壁に対向して設けた1対以上の高温燃焼用空気吐出
口と、仕切壁に設けた複数の燃料ガス吐出口を備えると
共に、各燃焼ゾーン毎に燃焼制御を行う燃焼制御装置を
設けるものである。
Further, as a third means, in a continuous heating furnace for heating a material to be heated to a predetermined temperature, a plurality of partition walls are provided above and below the material passing line between the side walls of the heating furnace. Forming combustion zones, each combustion zone comprising:
One or more pairs of high temperature combustion air discharge ports provided opposite to both side walls and a plurality of fuel gas discharge ports provided on the partition wall, and a combustion control device for performing combustion control for each combustion zone Is.

【0010】さらに第4の手段として、被加熱材を通過
させて所定温度に加熱する連続加熱炉において、前記加
熱炉のノーズ壁に複数の高温燃焼用空気吐出口を設け、
天井またはスキッドのサポートパイプいずれか一方また
は双方に複数の燃料ガス吐出口を設けるものである。
Further, as a fourth means, in a continuous heating furnace for heating a material to be heated to a predetermined temperature, a plurality of high temperature combustion air discharge ports are provided on a nose wall of the heating furnace,
A plurality of fuel gas discharge ports are provided on either or both of the ceiling and the skid support pipe.

【0011】[0011]

【作用】以下、図面により本発明装置を説明する。図1
は第1の発明の例を示す斜視図であり、スラブ等の被加
熱材Sが、連続加熱炉9内スキッドパイプ3上を通過ラ
インLに沿って図の右から左へ、ウォーキングビーム
(図示せず)等により次々送られる。
The device of the present invention will be described below with reference to the drawings. Figure 1
FIG. 3 is a perspective view showing an example of the first invention, in which a material S to be heated such as a slab or the like is walked along a passage line L on the skid pipe 3 in the continuous heating furnace 9 from the right to the left in the drawing (FIG. (Not shown) and so on.

【0012】本発明の第1の手段は、このような炉にお
いて、図1に示されるように被加熱材通過ラインLの上
下の両側壁に、お互い向かい合って複数対(図では10
対が見えている)の高温燃焼用空気の吐出口1、1’、
2、2’(2’は図示せず)がラインLの方向に設けら
れている。さらに炉の上部の天井に通過ラインと直交す
る方向即ち炉幅方向、及びライン方向に複数の燃料ガス
吐出口14が、また炉下部では、スキッドパイプ3のサ
ポートパイプ4の両面または片面に炉幅方向に燃料ガス
吐出口15が設けられている。
The first means of the present invention, in such a furnace, has a plurality of pairs (10 in the drawing) facing each other on both upper and lower side walls of the heated material passage line L as shown in FIG.
(The pair is visible) 1)
2, 2 '(2' is not shown) are provided in the direction of the line L. Further, a plurality of fuel gas discharge ports 14 are provided on the ceiling of the upper part of the furnace in a direction orthogonal to the passage line, that is, the furnace width direction and the line direction, and in the lower part of the furnace, the furnace width is provided on both sides or one side of the support pipe 4 of the skid pipe 3. A fuel gas discharge port 15 is provided in the direction.

【0013】次に、図1における燃焼方法について述べ
る。対にして設けられた空気吐出口1、1’、2、2’
(2’は図示せず)の両サイドから同時にまたは一方か
ら、燃料ガスの着火温度より100℃以上高温に加熱さ
れた燃焼用空気を吹き込み、炉内9に高温流動場を生成
させ、この高温流動場に天井13に複数配備された燃料
ガス吐出口14及びサポートパイプ4に複数配備された
燃料ガス吐出口15より燃料ガスを吹き込む。高温燃焼
用空気は、蓄熱器16等により排ガス顕熱を熱交換する
ことにより、あるいは、炉外部の熱風炉により製造す
る。
Next, the combustion method in FIG. 1 will be described. Air outlets 1, 1 ', 2, 2'provided in pairs
(2 'is not shown) From either side or both simultaneously or from one side, combustion air heated to a temperature 100 ° C or more higher than the ignition temperature of the fuel gas is blown to generate a high temperature flow field in the furnace 9, and this high temperature is generated. Fuel gas is blown into the flow field from a plurality of fuel gas outlets 14 provided on the ceiling 13 and a plurality of fuel gas outlets 15 provided on the support pipe 4. The high-temperature combustion air is produced by exchanging sensible heat of exhaust gas with the heat storage device 16 or the like, or by a hot stove outside the furnace.

【0014】燃焼は燃料ガスと高温流動場の高温空気が
接触した瞬間から始まり、高温流動場内に拡散しながら
進行する。なお、高温燃焼用空気が対に設けた吐出口の
一方から吹き込まれる場合、燃焼排ガスは対となるもう
一方の吐出口で吸引され、蓄熱器で熱交換した後排出さ
れる。この場合、蓄熱器の熱容量に合わせて適時吐出と
吸引を切り替えることが望ましい。高温燃焼用空気を両
サイドから吐出する場合は、燃焼排ガスは図中左から右
へ継ぎ部11を通って排出される。
Combustion starts at the moment when the fuel gas and the hot air in the hot flow field contact each other, and proceeds while diffusing in the hot flow field. When the high temperature combustion air is blown from one of the paired discharge ports, the combustion exhaust gas is sucked by the other pair of discharge ports, heat-exchanged by the heat accumulator, and then discharged. In this case, it is desirable to switch discharge and suction appropriately according to the heat capacity of the heat accumulator. When the high temperature combustion air is discharged from both sides, the combustion exhaust gas is discharged from left to right in the figure through the joint 11.

【0015】本発明装置により、炉幅方向に分布した多
数の燃料ガス吐出口から燃料が供給されることで、幅方
向に均等に広がった燃焼場を形成することができ、バー
ナ炎の位置に依存した温度分布を生じる従来の加熱炉と
は異なり、被加熱物の炉幅方向に均一な加熱が可能とな
る。また、本発明装置の各燃料ガス吐出口からの供給ガ
ス量に分布をつけることで被加熱物の局所加熱も可能と
なる。
By supplying fuel from a large number of fuel gas discharge ports distributed in the furnace width direction by the device of the present invention, it is possible to form a combustion field that spreads evenly in the width direction, and at the burner flame position. Unlike the conventional heating furnace that produces a dependent temperature distribution, the object to be heated can be uniformly heated in the furnace width direction. In addition, by heating the amount of gas supplied from each fuel gas discharge port of the device of the present invention, it becomes possible to locally heat the object to be heated.

【0016】図1において燃焼ゾーンZ1 は、鋼片S上
両側壁に設けた向かい合う1対の燃焼用空気吐出口1、
1’とそれら吐出口間上部の天井に設けられた複数の燃
料ガス吐出口14を一組として形成され、温度検出器1
0により、該ゾーンの雰囲気温度を検出し、図1の破線
で示すように燃焼制御装置12に入力する。燃焼ゾーン
1 は、鋼片S下両側壁に設けた向かい合う1対以上の
燃焼用空気吐出口2、2’(2’は図示せず)と、それ
ら吐出口間へ燃料ガスを吐出するためにサポートパイプ
4に設けられた複数の燃料ガス吐出口15を一組として
複数形成され、温度検出器(図示せず)により、該ゾー
ンR1 の雰囲気温度を検出し、図1の破線で示すように
燃焼制御装置12に入力する。
In FIG. 1, the combustion zone Z 1 is a pair of facing combustion air discharge ports 1 provided on both side walls of the steel slab S.
1'and a plurality of fuel gas discharge ports 14 provided on the ceiling above the discharge ports are formed as one set, and the temperature detector 1
0, the ambient temperature of the zone is detected and input to the combustion control device 12 as shown by the broken line in FIG. The combustion zone R 1 is for discharging one or more pairs of facing air discharge ports 2, 2 ′ (2 ′ not shown) provided on both side walls below the steel slab S and for discharging fuel gas between these discharge ports. 1. A plurality of fuel gas discharge ports 15 provided in the support pipe 4 are formed as one set, and the ambient temperature of the zone R 1 is detected by a temperature detector (not shown), which is indicated by the broken line in FIG. Is input to the combustion control device 12.

【0017】あらかじめ入力された情報に基づき、点線
で示すように燃料ガス調整弁を作動させて供給量を調整
して燃焼制御を行い、被加熱材S1 を目的温度に加熱す
る。なお、区画形成される燃焼ゾーンの数は、燃焼制御
効率を考え、炉の大きさと所要の制御精度等の観点から
決めるが、小型の炉では、炉全体を一つの燃焼ゾーンと
して制御してもよい。
Based on the information inputted in advance, the fuel gas regulating valve is operated as shown by the dotted line to adjust the supply amount and the combustion control is performed to heat the heated material S 1 to the target temperature. It should be noted that the number of combustion zones to be divided and formed is determined from the perspective of the size of the furnace and the required control accuracy, etc., in consideration of combustion control efficiency, but in a small furnace, even if the entire furnace is controlled as one combustion zone. Good.

【0018】燃焼ゾーンZ2 、Z3 ・・・Zn-1 、Zn
および燃焼ゾーンR2 、R3 ・・Rn-1 、Rn について
も同様にして、各燃料ガスの供給量制御を行い、被加熱
材S2 、S3 ・・・Sn-1 、Sn をそれぞれ所定の温度
均一に加熱することができる。各被加熱材の装入温度が
異なる場合、あるいは所定の加熱目標温度が異なる場合
でも、本発明装置の燃焼制御により、それぞれの所定温
度に幅方向均一に加熱できる。
Combustion zones Z 2 , Z 3 ... Z n-1 , Z n
Similarly, for the combustion zones R 2 , R 3, ... R n-1 , R n , the supply amount of each fuel gas is controlled, and the heated materials S 2 , S 3 ... S n-1 , S n-1 . Each n can be heated to a predetermined temperature uniformly. Even if the charging temperature of each material to be heated is different, or even if the predetermined heating target temperature is different, the combustion control of the device of the present invention enables uniform heating in the respective predetermined temperatures.

【0019】上部燃焼ゾーンZ1 〜Zn および下部燃焼
ゾーンR1 〜Rn は、図1に示される様に、上下の燃焼
ゾーンが上下にほぼ対応するように区画して形成するこ
とが好ましいが、高温燃焼用空気吐出口15の配置が上
下で異なる場合やサポートパイプの配置等の条件によ
り、各燃焼ゾーンが上下で異なる高温燃焼用空気吐出口
の個数を含む、あるいは異なるサポートパイプの個数を
含む形で形成され、炉の燃焼ゾーンの数、位置が上下で
異なって形成してもよい。
As shown in FIG. 1, the upper combustion zones Z 1 to Z n and the lower combustion zones R 1 to R n are preferably divided and formed so that the upper and lower combustion zones substantially correspond to each other. However, depending on the conditions such as the arrangement of the high temperature combustion air discharge ports 15 at the top and bottom, and the arrangement of the support pipes, each combustion zone includes the number of different high temperature combustion air discharge ports at the top and bottom, or the number of different support pipes. The number and position of the combustion zones of the furnace may be different from each other.

【0020】つぎに本発明の第2の手段は、図2の斜視
図に示されるように被加熱材通過ラインLの上下の両側
壁に、複数の高温燃焼用空気の吐出口1、1’、2、
2’(2’は図示せず)をラインLの方向に設けられ、
上部の天井には被加熱材通過ラインと直交する幅方向に
複数の燃料ガス吐出口14が、スキッドパイプ3のサポ
ートパイプ4の両面または片面に幅方向に複数の燃料ガ
ス吐出口15を設けている。
The second means of the present invention is, as shown in the perspective view of FIG. 2, a plurality of high temperature combustion air discharge ports 1, 1'on both upper and lower side walls of the heated material passage line L. 2,
2 '(2' is not shown) is provided in the direction of the line L,
The upper ceiling is provided with a plurality of fuel gas discharge ports 14 in the width direction orthogonal to the heated material passage line, and a plurality of fuel gas discharge ports 15 in the width direction on both sides or one side of the support pipe 4 of the skid pipe 3. There is.

【0021】前述のように、1対以上の高温燃焼用空気
吐出口と、複数の燃焼ガス吐出口との組によって燃焼ゾ
ーンが区画形成されるが、この区画毎に仕切壁5、7を
設けるものである。仕切壁は、側壁の隣り合う高温燃焼
用空気吐出口間に、両側壁間に設けられる。燃焼ゾーン
が2対の高温燃焼用空気吐出口を含む組で形成される場
合は、ライン方向での仕切壁5の配置は、図2のように
高温燃焼用空気吐出口2対毎に設ける。
As described above, the combustion zone is defined by a set of one or more pairs of high temperature combustion air discharge ports and a plurality of combustion gas discharge ports, and partition walls 5 and 7 are provided for each of these partitions. It is a thing. The partition wall is provided between the adjacent high temperature combustion air discharge ports on the side wall and between both side walls. When the combustion zone is formed by a set including two pairs of high temperature combustion air outlets, the partition wall 5 is arranged in the line direction for every two pairs of high temperature combustion air outlets.

【0022】なお、この燃焼ゾーンは、炉の上部と下部
とでほぼ対応する位置に区画形成され、仕切壁もこれに
対応して設けられることが望ましいが、高温燃焼用空気
吐出口の配置、個数が上下で異なったり、あるいはサポ
ートパイプの配置条件等により、燃焼ゾーンの位置が上
下で異なる場合には、仕切壁も上下で異なる位置に設け
られる。
It should be noted that this combustion zone is preferably formed by partitioning the upper and lower portions of the furnace in substantially corresponding positions, and the partition wall is also provided corresponding to this, but the location of the high temperature combustion air discharge port, If the number of the combustion zones is different in the upper and lower parts due to the difference in the number of the upper and lower parts or the arrangement condition of the support pipes, the partition walls are also provided in the different positions in the upper and lower parts.

【0023】図2における燃焼方法について述べる。高
温燃焼用空気吐出口1、2の両サイドから同時にまたは
片側から、燃料ガスの着火温度より100℃以上高温に
加熱された燃焼用空気を吹き込み、炉内9に高温流動場
を生成させ、天井13に複数配備された燃料ガス吐出口
14及びサポートパイプ4の両面または片面に炉幅方向
複数配備された燃料ガス吐出口15より燃料ガスを吹き
込む。燃焼は燃料ガスと先に生成させた高温流動場の高
温空気が接触した瞬間から始まり、仕切壁に挟まれた高
温流動場内に拡散しながら進行する。
The combustion method in FIG. 2 will be described. The combustion air heated to 100 ° C. or more higher than the ignition temperature of the fuel gas is blown from both sides of the high-temperature combustion air discharge ports 1 and 2 simultaneously or from one side to generate a high-temperature flow field in the furnace 9, A plurality of fuel gas discharge ports 14 and a plurality of fuel gas discharge ports 15 are provided on both sides or one side of the support pipe 4 in the furnace width direction. Combustion starts at the moment when the fuel gas and the hot air in the high-temperature fluidized field generated earlier come into contact with each other, and proceeds while diffusing in the high-temperature fluidized field sandwiched between the partition walls.

【0024】高温燃焼用空気は、蓄熱器16等により排
ガス顕熱を熱交換することにより製造してもよいし、ま
た炉外部の熱風炉により発生させてもよい。本発明装置
により、仕切壁と炉壁で形成された燃焼ゾーン内に多数
のガス吐出口から燃料が供給されることで、幅方向に均
等に広がった燃焼場を形成することができ、被加熱物の
炉幅方向に均一な加熱が可能となる。
The high temperature combustion air may be produced by exchanging sensible heat of exhaust gas with the heat storage unit 16 or the like, or may be generated by a hot air stove outside the furnace. By the device of the present invention, the fuel is supplied from a large number of gas discharge ports into the combustion zone formed by the partition wall and the furnace wall, whereby a combustion field that is evenly spread in the width direction can be formed, and the heating target Uniform heating in the width direction of the object becomes possible.

【0025】図2において燃焼ゾーンZ1 は、鋼片Sの
上部にあり、天井、側壁と仕切壁5で囲まれた内部で、
側壁に設けた向かい合う一組の燃焼用空気吐出口1とそ
れら吐出口間の上部天井に設けられた複数の燃料ガス吐
出口14を一組として形成され、温度検出器10によ
り、該ゾーンの雰囲気温度を検出し、図2の破線で示す
ように燃焼制御装置12に入力する。
In FIG. 2, the combustion zone Z 1 is located above the steel slab S and is surrounded by the ceiling, the side wall and the partition wall 5,
A pair of facing combustion air discharge ports 1 provided on the side walls and a plurality of fuel gas discharge ports 14 provided on the upper ceiling between the discharge ports are formed as a set. The temperature is detected and input to the combustion control device 12 as shown by the broken line in FIG.

【0026】燃焼ゾーンR1 は、鋼片Sの下部にあり、
床面、側壁と仕切壁7で囲まれた内部で、側壁に設けた
向かい合う一組の燃焼用空気吐出口2とそれら吐出口間
へ燃料ガスを吐出するためにサポートパイプ4に設けら
れた複数の燃料ガス吐出口15を一組として形成され、
温度検出器(表示せず)により、該ゾーンR1 の雰囲気
温度を検出し、図2の破線で示すように燃焼制御装置1
2に入力する。あらかじめ入力された情報に基づき、点
線で示すように燃料ガス調整弁を作動させて供給量を調
整して燃焼制御を行い、被加熱材S1 を目的温度に加熱
する。
The combustion zone R 1 is located below the billet S,
Inside the floor, the side wall and the partition wall 7, a pair of facing air discharge ports 2 provided on the side wall and a plurality of support pipes 4 for discharging fuel gas between the discharge ports are provided. Formed as a set of fuel gas discharge ports 15 of
A temperature detector (not shown) detects the ambient temperature of the zone R 1 , and as shown by the broken line in FIG.
Enter 2. Based on the information input in advance, the fuel gas adjusting valve is operated as shown by the dotted line to adjust the supply amount to perform combustion control and heat the material to be heated S 1 to the target temperature.

【0027】燃焼ゾーンZ2 、Z3 ・・・Zn-1 、Zn
および燃焼ゾーンR2 、R3 ・・Rn-1 、Rn について
も同様にして、各燃料ガスの供給量制御を行い、被加熱
材S2 、S3 ・・・Sn-1 、Sn をそれぞれ所定の温度
均一に加熱することができる。各被加熱材の装入温度が
異なる場合、あるいは所定の加熱目標温度が異なる場合
でも、本発明装置の燃焼制御により、それぞれの所定温
度に幅方向均一に加熱できる。
Combustion zones Z 2 , Z 3 ... Z n-1 , Z n
Similarly, for the combustion zones R 2 , R 3, ... R n-1 , R n , the supply amount of each fuel gas is controlled, and the heated materials S 2 , S 3 ... S n-1 , S n-1 . Each n can be heated to a predetermined temperature uniformly. Even if the charging temperature of each material to be heated is different, or even if the predetermined heating target temperature is different, the combustion control of the device of the present invention enables uniform heating in the respective predetermined temperatures.

【0028】上部燃焼ゾーンZ1 〜Zn および下部燃焼
ゾーンR1 〜Rn は、図2に示される様に、上下の燃焼
ゾーンが上下にほぼ対応するように区間して形成するこ
とが好ましいが、高温燃焼用空気吐出口15の配置が上
下で異なる場合やサポートパイプの配置等の条件によ
り、各燃焼ゾーンが、上下で異なる高温燃焼用空気吐出
口の個数を含む、あるいは異なるサポートパイプの個数
を含む形で形成され、炉の燃焼ゾーンの数、位置が上下
で異なって形成してもよい。
As shown in FIG. 2, the upper combustion zones Z 1 to Z n and the lower combustion zones R 1 to R n are preferably formed so that the upper and lower combustion zones substantially correspond to each other. However, depending on conditions such as the arrangement of the high temperature combustion air discharge ports 15 at the top and bottom and the arrangement of the support pipes, each combustion zone includes the number of different high temperature combustion air discharge ports at the top and bottom, or different support pipes are provided. The number of combustion zones in the furnace may be different from each other in the number and position of the combustion zones.

【0029】仕切壁は、中心部と表層部で異なる材質で
構成し、中心部は断熱耐火レンガまたは断熱キャスタブ
ルを採用し、表層部はアルミナーシリカ系のプラスチッ
ク耐火物または耐熱用セラミックファイバーを採用する
ことができる。
The partition wall is made of different materials in the central part and the surface layer part, the central part is made of heat-resistant refractory brick or heat-resistant castable, and the surface part is made of alumina-silica plastic refractory or heat-resistant ceramic fiber. can do.

【0030】つぎに本発明第3の手段は、図3の斜視図
に示されるように被加熱材通過ラインLの上下で、両側
壁間に亘って仕切壁5、7を設け、この仕切壁と側壁に
囲まれた区画で燃焼ゾーンを形成する。この燃焼ゾーン
の両側壁には複数の高温燃焼用空気の吐出口1、1’、
2、2’(2’は図示せず)をラインLの方向に設ける
とともに、仕切壁5、7には炉幅方向に複数の燃料吐出
口6、8をそれぞれ配備する。
Next, in the third means of the present invention, as shown in the perspective view of FIG. 3, partition walls 5 and 7 are provided above and below the heated material passage line L and between both side walls. And a section surrounded by side walls forms a combustion zone. On both side walls of this combustion zone, a plurality of high temperature combustion air outlets 1, 1 ',
2, 2 '(2' is not shown) is provided in the direction of the line L, and the partition walls 5, 7 are provided with a plurality of fuel discharge ports 6, 8 in the furnace width direction, respectively.

【0031】燃焼ゾーンの両側壁に設ける高温燃焼用空
気吐出口の数は、少なくとも1対あればよいが、燃焼ゾ
ーンの大きさ、空気吐出口の大きさ等によって選択すれ
ば良い。仕切壁の配置数、即ち形成する燃焼ゾーンの数
は、燃焼制御効率の点から、炉の大きさ、所要の制御精
度の観点から決めるが、上述のように高温燃焼用空気吐
出口の大きさ、対の数等も考慮して決定する。
The number of air outlets for high temperature combustion provided on both side walls of the combustion zone may be at least one pair, but may be selected depending on the size of the combustion zone, the size of the air outlets and the like. The number of partition walls arranged, that is, the number of combustion zones to be formed is determined from the viewpoint of the combustion control efficiency from the viewpoint of the size of the furnace and the required control accuracy, but as described above, the size of the air outlet for high temperature combustion. , Number of pairs, etc. are also taken into consideration.

【0032】なお、仕切壁は炉の上部と下部とでほぼ対
応する位置に、即ち燃焼ゾーンが上下でほぼ対応する位
置に形成されることが望ましいが、炉の構造たとえばサ
ポートパイプの配置等の関係で、上下が対応する位置に
設けることが困難な場合は、上下で仕切壁の位置、仕切
壁の個数が異なる、即ち燃焼ゾーンの位置、ゾーン数が
上下で異なっても良い。
Although it is desirable that the partition wall is formed at a position where the upper part and the lower part of the furnace substantially correspond to each other, that is, a position where the combustion zones vertically correspond to each other, the structure of the furnace, for example, the arrangement of support pipes, etc. If it is difficult to provide the upper and lower parts at corresponding positions, the positions of the partition walls and the number of the partition walls may be different between the upper and lower parts, that is, the position of the combustion zone and the number of zones may be different between the upper and lower parts.

【0033】図3における燃焼方法について述べる。高
温燃焼用空気吐出口1、2の両サイドから同時または片
側から、燃料ガスの着火温度より100℃以上高温に加
熱された燃焼用空気を吹き込み炉内9に生成させた高温
流動場に、仕切壁上両面に炉幅方向複数配備された燃料
ガス吐出口6、8より、高温空気吐出流に向けて同時に
燃料ガスを吹き込む。高温燃焼用空気は、蓄熱器16等
により排ガス顕熱を熱交換することにより製造してもよ
いし、また炉外部の熱風炉により発生させてもよい。
The combustion method in FIG. 3 will be described. From both sides of the high temperature combustion air outlets 1 and 2 simultaneously or from one side, the combustion air heated to 100 ° C. or more higher than the ignition temperature of the fuel gas is blown into the high temperature flow field generated in the furnace 9 The fuel gas is simultaneously blown toward the hot air discharge flow from the fuel gas discharge ports 6 and 8 arranged on both sides of the wall in the furnace width direction. The high temperature combustion air may be produced by exchanging sensible heat of exhaust gas with the heat storage unit 16 or the like, or may be generated by a hot air stove outside the furnace.

【0034】炉内は燃料ガスが着火するのに十分な高熱
エネルギー場になるため燃焼は燃料ガスと高温空気が接
触した瞬間から始まり、高温流動場内に拡散しながら進
行する。本発明装置により、炉幅方向に分布した多数の
ガス吐出口から燃料が供給されることで幅方向に均等に
広がった燃焼場を形成することができ、被加熱物の炉幅
方向に均一な加熱が可能となる。
Since the inside of the furnace has a high thermal energy field sufficient to ignite the fuel gas, the combustion starts from the moment when the fuel gas and the high temperature air come into contact with each other, and proceeds while diffusing into the high temperature flow field. With the device of the present invention, it is possible to form a combustion field that is evenly spread in the width direction by supplying fuel from a large number of gas discharge ports distributed in the furnace width direction, and to make the heating target uniform in the furnace width direction. It becomes possible to heat.

【0035】燃焼ゾーンZ1 は仕切壁により上下一組と
して形成され、温度検出器10により、該ゾーンの雰囲
気温度を検出し、図3の破線で示すように燃焼制御装置
12に入力する。あらかじめ入力された情報に基づき、
点線で示すように燃料ガス調整弁を作動させて供給量を
調整して燃焼制御を行い、被加熱材S1 を目的温度に加
熱する。上部燃焼ゾーンZ1 〜Zn および下部燃焼ゾー
ンR1 〜Rn は、図3に示される様に燃焼ゾーンが上下
でほぼ対応する位置に形成されることが望ましいが、炉
の構造たとえばサポートパイプの配置等の関係で、上下
が対応する位置に設けることが困難な場合は、燃焼ゾー
ンの位置、ゾーン数が上下で異なっても良い。
The combustion zone Z 1 is formed as a set of upper and lower sides by partition walls, and the temperature detector 10 detects the ambient temperature of the zone and inputs it to the combustion control device 12 as shown by the broken line in FIG. Based on the information entered in advance,
As shown by the dotted line, the fuel gas adjusting valve is operated to adjust the supply amount to control combustion and heat the material to be heated S 1 to the target temperature. The upper combustion zones Z 1 to Z n and the lower combustion zones R 1 to R n are preferably formed at positions substantially corresponding to each other in the upper and lower combustion zones as shown in FIG. When it is difficult to provide the upper and lower positions corresponding to each other due to the arrangement, etc., the position of the combustion zone and the number of the zones may be different between the upper and lower positions.

【0036】燃焼ゾーンZ2 、Z3 ・・・Zn-1 、Zn
についても同様にして、各燃料ガスの供給量制御を行
い、被加熱材S2 、S3 ・・・Sn-1 、Sn をそれぞれ
所定の温度均一に加熱することができる。各被加熱材の
装入温度が異なる場合、あるいは所定の加熱目標温度が
異なる場合でも、本発明装置の燃焼制御により、それぞ
れの所定温度に幅方向均一に加熱できる。
Combustion zones Z 2 , Z 3 ... Z n-1 , Z n
In the same manner, the supply amount of each fuel gas can be controlled to heat the materials to be heated S 2 , S 3 ... S n-1 and S n to a predetermined temperature uniformly. Even if the charging temperature of each material to be heated is different, or even if the predetermined heating target temperature is different, the combustion control of the device of the present invention enables uniform heating in the respective predetermined temperatures.

【0037】上部燃焼ゾーンZ1 〜Zn および下部燃焼
ゾーンR1 〜Rn は、図3に示される様に、各々鋼片S
1 〜Sn の上下に位置することが好ましいが、サポート
パイプ4の配置条件により、上下の各燃焼ゾーンを異な
る個数で異なる位置に配置できる。第1と第2の発明装
置においては、空気口1および2の燃焼用空気吐出と燃
焼排ガス吸引を交互に切り替えることで、さらに燃焼ゾ
ーンの均一性をあげることができる。
As shown in FIG. 3, the upper combustion zones Z 1 to Z n and the lower combustion zones R 1 to R n are respectively billets S.
It is preferably located above and below the 1 to S n, but the arrangement condition of the support pipe 4, can place each combustion zone vertically different positions in different number. In the first and second invention devices, the uniformity of the combustion zone can be further increased by alternately switching the combustion air discharge and the combustion exhaust gas suction of the air ports 1 and 2.

【0038】つぎに第3の本発明装置は、図4の斜視図
に示されるように被加熱材通過ラインLの上部ノーズ2
1壁に、複数の高温燃焼用空気の吐出口1を設け、さら
に上部の天井に該ライン方向に複数の燃料吐出口4をそ
れぞれ配備している。
Next, in the third device of the present invention, as shown in a perspective view of FIG.
A plurality of outlets 1 for high temperature combustion air are provided on one wall, and a plurality of fuel outlets 4 are provided on the upper ceiling in the line direction.

【0039】図4における燃焼方法について述べる。高
温燃焼用空気吐出口1から、燃料ガスの着火温度より1
00℃以上高温に加熱された燃焼用空気を吹き込み、炉
内に生成させた高温流動場に、天井ライン方向複数配備
された燃料ガス吐出口4より高温空気吐出流にむけて燃
料ガスを吹き込む。高温燃焼用空気は、炉外部の熱風炉
22により発生させてもよいし、また、蓄熱器等より排
ガス顕熱を熱交換することにより製造してもよい。
The combustion method in FIG. 4 will be described. 1 from the ignition temperature of the fuel gas from the high temperature combustion air outlet 1.
Combustion air heated to a high temperature of 00 ° C. or more is blown into the high-temperature flow field generated in the furnace, and the fuel gas is blown toward the high-temperature air discharge stream from the fuel gas discharge ports 4 provided in plural in the ceiling line direction. The high temperature combustion air may be generated by a hot air stove 22 outside the furnace, or may be produced by exchanging sensible heat of exhaust gas with a heat accumulator or the like.

【0040】炉内は燃料ガスが着火するのに充分な高熱
エネルギー場になるため、燃焼は燃料ガスと高温空気が
接触した瞬間から始まり、高温流動場内に拡散しながら
進行する。燃焼排ガスは図中左から右へ継ぎ部11を通
って炉前方向へ排出される。本発明装置により、ライン
方向に分布した多数のガス吐出口から燃料が供給される
ことで、幅方向に任意の温度燃焼場を形成することがで
きる。
Since the inside of the furnace has a high thermal energy field sufficient to ignite the fuel gas, the combustion starts at the moment when the fuel gas and the high temperature air come into contact with each other, and proceeds while diffusing into the high temperature flow field. The combustion exhaust gas is discharged from the left to the right in the figure through the joint portion 11 in the front direction of the furnace. By supplying fuel from a large number of gas discharge ports distributed in the line direction by the device of the present invention, an arbitrary temperature combustion field can be formed in the width direction.

【0041】第3の発明装置においては、スキッドのサ
ポートパイプより燃料ガスを吐出させ燃焼を促進させる
方法を併用できる。また、第1から第3の発明装置を採
用するにあたり、従来の予熱帯、加熱帯、均熱帯からな
る連続加熱炉と組み合わせてもよい。たとえば、加熱
帯、均熱帯の部分を合わせたかたちで本発明装置を採用
し、コンパクトで温度均一性に優れた加熱炉により、よ
り高速にスラブ加熱を実現できる。
In the third invention device, a method of discharging fuel gas from the skid support pipe to promote combustion can be used together. When adopting the first to third invention devices, they may be combined with a conventional continuous heating furnace comprising a pre-tropical zone, a heating zone, and a soaking zone. For example, by adopting the device of the present invention in the form of combining the heating zone and the soaking zone, it is possible to realize slab heating at a higher speed with a compact heating furnace having excellent temperature uniformity.

【0042】[0042]

【実施例】(本発明例)図3に示すような本発明の連続
加熱装置により、厚さ250mm、幅1200mm、長さ9
000mmの鋼スラブを加熱した。ライン長手方向に7つ
の燃焼ゾーンZ1 ・・・Z7 を設け、仕切壁6、8に1
m毎に配備した燃料ガス吐出口7及び9からCOGを吹
き込んだ。高温燃焼用空気は、加熱炉立ち上げ初期の炉
温が低い時は、外部の熱風炉(図示せず)で発生させ、
炉温が800℃以上になった時点で蓄熱器16のライン
に切り替え、空気口1より燃焼排ガスを吸引しながら蓄
熱し、同時に燃焼空気を蓄熱器16を通して加熱して、
空気口2より吐出する。
(Example of the present invention) With a continuous heating device of the present invention as shown in FIG. 3, a thickness of 250 mm, a width of 1200 mm and a length of 9
A 000 mm steel slab was heated. Seven combustion zones Z 1 ... Z 7 are provided in the longitudinal direction of the line, and the partition walls 6 and 8 have 1
COG was blown from the fuel gas discharge ports 7 and 9 arranged every m. The high temperature combustion air is generated in an external hot air stove (not shown) when the furnace temperature is low at the beginning of the heating furnace startup,
When the furnace temperature reaches 800 ° C or higher, the line is switched to the heat storage unit 16 to store heat while sucking combustion exhaust gas from the air port 1, and at the same time heat combustion air through the heat storage unit 16,
Discharge from the air port 2.

【0043】装入時平均温度800℃の熱片を目標温度
1200℃(鋼片中央表面温度)まで加熱した。燃焼ゾ
ーンZ2 において温度検出器を炉幅方向に配置し、燃焼
ゾーン中心での炉温が1250℃に達した時の炉内雰囲
気温度を測定した結果、図5に示すような温度分布が計
測され、その温度偏差は約100度であった。また加熱
炉出口での鋼片表面の長手方向温度偏差が20度以下に
抑えられた。
A heating piece having an average temperature of 800 ° C. at the time of charging was heated to a target temperature of 1200 ° C. (the center surface temperature of the steel piece). In the combustion zone Z 2 , a temperature detector was arranged in the width direction of the furnace, and when the furnace temperature at the center of the combustion zone reached 1250 ° C., the temperature of the atmosphere inside the furnace was measured. As a result, the temperature distribution shown in FIG. 5 was measured. The temperature deviation was about 100 degrees. Further, the temperature deviation in the longitudinal direction on the surface of the billet at the outlet of the heating furnace was suppressed to 20 degrees or less.

【0044】(従来例)上記本発明例と同様の被加熱材
を、予熱帯、加熱帯、均熱帯からなる従来サイドバーナ
型連続加熱炉で加熱した結果、図6に示される様な温度
分布が計測され、加熱帯での炉幅方向の炉内雰囲気温度
偏差は300度以上で、加熱炉出口での鋼片表面の幅方
向温度偏差が40度以上あった。また、従来の軸流バー
ナ型連続加熱炉においても、図7に示される様な温度分
布が計測され、炉幅方向で200度以上の偏差が生じ、
炉長方向には約300度の温度偏差が生じた。
(Conventional Example) A material to be heated similar to the above-mentioned example of the present invention was heated in a conventional side-burner type continuous heating furnace consisting of a preheating zone, a heating zone and a soaking zone. As a result, the temperature distribution as shown in FIG. 6 was obtained. The temperature deviation in the furnace atmosphere in the width direction of the furnace in the heating zone was 300 degrees or more, and the temperature deviation in the width direction of the billet surface at the exit of the heating furnace was 40 degrees or more. Even in the conventional axial flow burner type continuous heating furnace, the temperature distribution as shown in FIG. 7 was measured, and a deviation of 200 degrees or more occurred in the furnace width direction.
A temperature deviation of about 300 degrees occurred in the furnace length direction.

【0045】[0045]

【発明の効果】本発明によれば、スラブやビレット等の
鋼片など金属材料を通過させて所定温度に加熱する連続
加熱炉において、従来のバーナタイプの加熱炉で生じて
いた炉幅方向での炉内雰囲気温度偏差を大幅に低減し、
鋼片を所定温度に低温度偏差で加熱することができる。
したがって、鋼片の温度均一化による品質向上、歩留ま
り向上、設備のコンパクト化による設備費削減、加熱時
間短縮等、多くの効果が達成できる。
According to the present invention, in a continuous heating furnace that heats metal materials such as steel slabs such as slabs and billets to a predetermined temperature in the furnace width direction that occurs in a conventional burner type heating furnace. It greatly reduces the temperature deviation in the furnace atmosphere of
The billet can be heated to a predetermined temperature with low temperature deviation.
Therefore, many effects such as quality improvement by uniform temperature of the steel slabs, yield improvement, equipment cost reduction by equipment compaction, and heating time reduction can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の例を示す斜視図である。FIG. 1 is a perspective view showing an example of a device of the present invention.

【図2】本発明装置の例を示す斜視図である。FIG. 2 is a perspective view showing an example of the device of the present invention.

【図3】本発明装置の例を示す斜視図である。FIG. 3 is a perspective view showing an example of the device of the present invention.

【図4】本発明装置の例を示す斜視図である。FIG. 4 is a perspective view showing an example of the device of the present invention.

【図5】従来の高温用ガスバーナの例を示す横断面図で
ある。
FIG. 5 is a cross-sectional view showing an example of a conventional high temperature gas burner.

【図6】従来のルーフ・ガスバーナの例を示す横断面図
である。
FIG. 6 is a cross-sectional view showing an example of a conventional roof gas burner.

【図7】本発明装置における燃焼ゾーンでの温度分布を
示す等温線図である。
FIG. 7 is an isotherm diagram showing a temperature distribution in a combustion zone in the device of the present invention.

【図8】従来型サイドバーナ加熱炉における燃焼ゾーン
での温度分布を示す等温線図である。
FIG. 8 is an isotherm diagram showing a temperature distribution in a combustion zone in a conventional side burner heating furnace.

【図9】従来型軸流バーナ加熱炉における燃焼ゾーンで
の温度分布を示す等温線図である。
FIG. 9 is an isotherm diagram showing a temperature distribution in a combustion zone in a conventional axial flow burner heating furnace.

【符号の説明】[Explanation of symbols]

1:上部燃焼用空気吐出口または排ガス吸引口 1’:上部燃焼用空気吐出口または排ガス吸引口(1と
対) 2:下部燃焼用空気吐出口または排ガス吸引口 3:スキッドパイプ 4:サポートパイプ 5:上部仕切壁 6:上部仕切壁の燃料ガス吐出口 7:下部仕切壁 8:下部仕切壁の燃料ガス吐出口 9:連続加熱炉 10:温度検出器 11:炉前連結部 12:ガス調整弁 13:天井部 14:天井部の燃料ガス吐出口 15:サポートパイプの燃料ガス吐出口 16:蓄熱器 17:空気導入管 18:ガス導入管 19:排ガス管 20:燃焼制御装置 21:ノーズ壁 22:熱風炉 23:サイドバーナ 24:軸流バーナ L:被加熱材通過ライン S:被加熱材 Z:上部燃焼ゾーン R:下部燃焼ゾーン
1: Upper combustion air discharge port or exhaust gas suction port 1 ': Upper combustion air discharge port or exhaust gas suction port (paired with 1) 2: Lower combustion air discharge port or exhaust gas suction port 3: Skid pipe 4: Support pipe 5: Upper partition wall 6: Fuel gas discharge port of upper partition wall 7: Lower partition wall 8: Fuel gas discharge port of lower partition wall 9: Continuous heating furnace 10: Temperature detector 11: Front connection part 12: Gas adjustment Valve 13: Ceiling part 14: Fuel gas discharge port 15 on the ceiling part: Fuel gas discharge port on the support pipe 16: Heat storage device 17: Air introduction pipe 18: Gas introduction pipe 19: Exhaust gas pipe 20: Combustion control device 21: Nose wall 22: Hot air stove 23: Side burner 24: Axial flow burner L: Heated material passage line S: Heated material Z: Upper combustion zone R: Lower combustion zone

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F23L 15/00 F23L 15/00 Z 15/02 15/02 F27B 9/10 F27B 9/10 9/36 9/36 (56)参考文献 特開 昭62−67111(JP,A) 特開 平3−153824(JP,A) 特開 平5−141869(JP,A) 特開 平5−180411(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 1/00 - 1/84 C21D 9/00 F27B 9/00 - 9/40 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI F23L 15/00 F23L 15/00 Z 15/02 15/02 F27B 9/10 F27B 9/10 9/36 9/36 (56) References JP 62-67111 (JP, A) JP 3-153824 (JP, A) JP 5-141869 (JP, A) JP 5-180411 (JP, A) (58) Survey Areas (Int.Cl. 7 , DB name) C21D 1/00-1/84 C21D 9/00 F27B 9/00-9/40

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被加熱材を通過させて所定温度に加熱す
る連続加熱炉において、前記加熱炉の被加熱材通過ライ
ン方向に、高温燃焼用空気吐出口を加熱炉の両側壁に対
向して設け、天井またはスキッドのサポートパイプいず
れか一方または双方に複数の燃料ガス吐出口を設けると
共に、前記対向して設けた1対以上の高温燃焼用空気吐
出口と該複数の燃料ガス吐出口とを一組とした各組によ
り炉内を被加熱材の通過ライン方向に区画して形成され
る燃焼ゾーン毎に燃焼制御を行う燃焼制御装置を設けた
ことを特徴とする連続加熱装置。
1. In a continuous heating furnace for passing a material to be heated to a predetermined temperature, a high temperature combustion air discharge port is opposed to both side walls of the heating furnace in the direction of the material passing line of the heating furnace. A plurality of fuel gas discharge ports are provided on either or both of the ceiling and the skid support pipe, and the one or more pairs of high temperature combustion air discharge ports and the plurality of fuel gas discharge ports provided facing each other are provided. A continuous heating device comprising a combustion control device for performing combustion control for each combustion zone formed by dividing the inside of the furnace in the passage line direction of the material to be heated by each set.
【請求項2】 上記各燃焼ゾーンの間に被加熱材通過ラ
イン上方または下方の一方または双方に仕切壁を設けた
ことを特徴とする請求項1に記載の連続加熱装置。
2. The continuous heating device according to claim 1, wherein a partition wall is provided above or below the material-to-be-heated passage or between both combustion zones.
【請求項3】 被加熱材を通過させて所定温度に加熱す
る連続加熱炉において、前記加熱炉の両側壁間の被加熱
材通過ライン上下に複数の仕切壁を設けて燃焼ゾーンを
形成し、該各燃焼ゾーンには、両側壁に対向して設けた
1対以上の高温燃焼用空気吐出口と、仕切壁に設けた複
数の燃料ガス吐出口を備えると共に、各燃焼ゾーン毎に
燃焼制御を行う燃焼制御装置を設けたことを特徴とする
連続加熱装置。
3. A continuous heating furnace for heating a material to be heated to a predetermined temperature, wherein a plurality of partition walls are provided above and below the material passing line between the side walls of the heating furnace to form a combustion zone, Each of the combustion zones is provided with one or more pairs of high-temperature combustion air discharge ports provided on opposite side walls and a plurality of fuel gas discharge ports provided on the partition wall, and combustion control is performed for each combustion zone. A continuous heating device characterized by being provided with a combustion control device.
【請求項4】 被加熱材を通過させて所定温度に加熱す
る連続加熱炉において、前記加熱炉のノーズ壁に複数の
高温燃焼用空気吐出口を設け、天井またはスキッドのサ
ポートパイプいずれか一方または双方に複数の燃料ガス
吐出口を設けたことを特徴とする連続加熱装置。
4. A continuous heating furnace for heating a material to be heated to a predetermined temperature by providing a plurality of high-temperature combustion air discharge ports on a nose wall of the heating furnace, and providing either a ceiling or a skid support pipe or A continuous heating device characterized in that a plurality of fuel gas discharge ports are provided on both sides.
JP28647294A 1994-11-21 1994-11-21 Continuous heating device Expired - Fee Related JP3419917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28647294A JP3419917B2 (en) 1994-11-21 1994-11-21 Continuous heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28647294A JP3419917B2 (en) 1994-11-21 1994-11-21 Continuous heating device

Publications (2)

Publication Number Publication Date
JPH08143949A JPH08143949A (en) 1996-06-04
JP3419917B2 true JP3419917B2 (en) 2003-06-23

Family

ID=17704842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28647294A Expired - Fee Related JP3419917B2 (en) 1994-11-21 1994-11-21 Continuous heating device

Country Status (1)

Country Link
JP (1) JP3419917B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002301A (en) * 2005-06-23 2007-01-11 Kobe Steel Ltd Heating method in heat-treating furnace
JP5938710B2 (en) * 2012-05-02 2016-06-22 パナソニックIpマネジメント株式会社 Continuous heating device
CN106403585B (en) * 2016-09-20 2019-02-12 佛山市荣冠玻璃建材有限公司 A kind of large cross-section tunnel kiln
CN110560493A (en) * 2019-09-10 2019-12-13 福建鼎信科技有限公司 Heating device for intermediate blank
CN117206458A (en) * 2023-11-08 2023-12-12 江苏锋拓精锻科技有限公司 Alloy material forging furnace

Also Published As

Publication number Publication date
JPH08143949A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
US2298149A (en) Continuous heating furnace
JP3419917B2 (en) Continuous heating device
US4444557A (en) Continuous combustion furnace
JPS5942057B2 (en) Method and device for heating workpieces, especially strips
JP3396922B2 (en) Continuous heating furnace and combustion method thereof
EP0453696B2 (en) A tunnel kiln
US2157221A (en) Continuous heating furnace
JP3845143B2 (en) Continuous heating method and apparatus
JPH08291327A (en) Continuous heating apparatus
JP3845194B2 (en) Heating operation method of steel for continuous hot rolling
JP3643137B2 (en) Continuous heating method
JPH08291328A (en) Continuous heating apparatus
JPH07233935A (en) Continuous heating equipment
JPH0437143B2 (en)
JP3814007B2 (en) Continuous heating method and apparatus
JP2000273530A (en) Continuous heating apparatus for steel material
JP3414942B2 (en) heating furnace
JP2001317875A (en) Continuous heating device for steel stock and heating method
JPS645964B2 (en)
JP2002155313A (en) Horizontal continuous heat treatment furnace for steel strip
JPH03153824A (en) Billet heating furnace
JP3602245B2 (en) Burner tile crack prevention method
JPS6335332B2 (en)
JPH11279649A (en) Device and method for heating steel slab
US3331594A (en) Method and apparatus for scale free heating of metals

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030318

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees