JPS60226691A - Heater for heating furnace - Google Patents

Heater for heating furnace

Info

Publication number
JPS60226691A
JPS60226691A JP8463884A JP8463884A JPS60226691A JP S60226691 A JPS60226691 A JP S60226691A JP 8463884 A JP8463884 A JP 8463884A JP 8463884 A JP8463884 A JP 8463884A JP S60226691 A JPS60226691 A JP S60226691A
Authority
JP
Japan
Prior art keywords
furnace
burner
heating
combustion
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8463884A
Other languages
Japanese (ja)
Other versions
JPS639564B2 (en
Inventor
明 川端
後藤 小平
村中 清志
三宮 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8463884A priority Critical patent/JPS60226691A/en
Publication of JPS60226691A publication Critical patent/JPS60226691A/en
Publication of JPS639564B2 publication Critical patent/JPS639564B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Tunnel Furnaces (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えばスラブ、ビレット等の鋼材を目的の圧
延温度まで均一加熱する加熱炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a heating furnace that uniformly heats steel materials, such as slabs and billets, to a target rolling temperature.

(従来技術) 従来、この種の加熱炉は被加熱材の上、下面に直火バー
ナを配置した燃焼室を設け、装入側から抽出側に向って
被加熱材を搬送しながら加熱を行う直火燃焼方式が一般
に採用されていた。
(Prior art) Conventionally, this type of heating furnace has a combustion chamber with direct flame burners placed above and below the material to be heated, and heats the material while conveying it from the charging side to the extraction side. A direct combustion method was generally used.

この種の直火燃焼方式の加熱炉ではバーナから供給され
る燃料と燃焼用空気を直接炉内(燃焼室内)の自由空間
で混合燃焼させ、その燃焼ガスの揮炎放射、ガス放射及
び炉壁放射を利用して被加熱材の加熱を行うものである
が、一般にこの種の直火燃焼ではバーナから供給される
流体の噴出エネルギーを十分に大きくとってもその火炎
長は精々3〜4mにしかならず、加えて低負荷燃焼時に
はバーナ供給流体の噴出エネルギーも小さくなるため火
炎の直進性が低下し、浮力による火炎の斜上シ現象や炉
内ガス流れによる火炎の曲折現象が発生するという基本
的な問題を有していたため、最近の加熱炉のごとく炉の
大型化(炉巾で10〜15m、炉長で30〜50m)や
操業の多様化(950〜1250℃迄の広温度範囲で均
一加熱)に対しては従来の直火燃焼方式では十分に目的
を達することが難かしいという欠点を有している。
In this type of direct combustion heating furnace, the fuel supplied from the burner and the combustion air are mixed and burned directly in the free space inside the furnace (combustion chamber), and the combustion gas emits volatile flames, gas radiation, and burns on the furnace wall. Although radiation is used to heat the material to be heated, in general, in this type of direct combustion, even if the ejection energy of the fluid supplied from the burner is sufficiently large, the flame length is only 3 to 4 meters at most. In addition, during low-load combustion, the ejection energy of the burner supply fluid also decreases, which reduces the straightness of the flame, resulting in the fundamental problem of flame tilting due to buoyancy and flame bending due to gas flow in the furnace. As a result, it has become possible to increase the size of the furnace like recent heating furnaces (furnace width: 10 to 15 m, furnace length: 30 to 50 m) and diversify operations (uniform heating over a wide temperature range from 950 to 1250°C) However, the conventional direct combustion method has the disadvantage that it is difficult to fully achieve the objective.

又、最近は炉の大型化に伴い、被加熱材の搬送手段とし
て一般にウオーキングビーム方式を採用する傾向にある
が、このウオーキングビーム方式では被加熱材を断熱・
水冷構造の固定及び可動スキッドで支持、搬送する方式
のためこのスキッド直上にある被加熱材はスキッドパイ
プの影となるため(シャドウ効果)伝熱が阻害され、被
加熱材の他の部分に比べて加熱されにくいという欠点を
持っている。被加熱材の均一加熱のためには加熱初期の
段階でこのスキッドシャドウ部を局部的に集中加熱でき
る、いわゆるピーク温度を有した炉温分布を形成するこ
とが望ましいが、従来の直火式加熱炉では任意点即ちス
キッド部にピーク温度を作ることは一般的に不可能であ
る。
In addition, as furnaces have recently become larger, there has been a general trend to adopt a walking beam method as a means of transporting the heated material, but this walking beam method is designed to insulate and insulate the heated material.
Since the water-cooled structure is fixed and supported and transported by a movable skid, the material to be heated directly above the skid is in the shadow of the skid pipe (shadow effect), which impedes heat transfer and compared to other parts of the material to be heated. It has the disadvantage of being difficult to heat. In order to uniformly heat the material to be heated, it is desirable to form a furnace temperature distribution with a so-called peak temperature that can locally heat the skid shadow area in the early stage of heating. In a furnace, it is generally impossible to create a peak temperature at any point, ie, at the skid section.

一方、この種の直火式加熱炉では燃焼室のバーナ配置方
法によシサイドバーナ、軸流バーナ、ルーフバーナの三
方式があることが一般的に知られている。特開昭57−
32321のごときサイドバーナ方式は炉の両側壁部に
バーナを配置する構造である。この方式は炉構造がシン
プルで設備費が比較的安価であシ、一般に炉長方向は比
較的均一な炉温分布が得られ易いが、炉巾方向について
は火炎の舞上シや曲折のため均一な炉温分布が得られに
くいという欠点を有している。
On the other hand, it is generally known that in this type of direct-fired heating furnace, there are three types of burner arrangement methods in the combustion chamber: side burners, axial flow burners, and roof burners. Japanese Unexamined Patent Publication 1987-
The side burner type, such as No. 32321, has a structure in which burners are placed on both side walls of the furnace. This method has a simple furnace structure and relatively low equipment cost, and it is generally easy to obtain a relatively uniform furnace temperature distribution in the furnace length direction. It has the disadvantage that it is difficult to obtain a uniform furnace temperature distribution.

これに対して特開昭57−82424のごとき軸流バー
ナ方式は炉の長手方向にバーナを配置する構造のため、
サイドバーナ方式の場合とは逆に一般に炉巾方向は比較
的均一な炉温分布が得易いが炉長方向については均一な
炉温分布が得難いという欠点を有しておシ、なおかつ、
設備的にはバーナを取付けるため、炉長方向に2〜3m
の長さの仕切壁(以下仕切部と称す)を炉巾方向全体に
わたって設ける必要があシ、炉床利用率が悪くかつ設備
費が高いという欠点を有している。
On the other hand, the axial flow burner method such as JP-A-57-82424 has a structure in which the burner is arranged in the longitudinal direction of the furnace.
Contrary to the side burner method, it generally has the disadvantage that it is easy to obtain a relatively uniform furnace temperature distribution in the furnace width direction, but it is difficult to obtain a uniform furnace temperature distribution in the furnace length direction.
In terms of equipment, in order to install the burner, the length of the furnace is 2 to 3 m.
It is necessary to provide a partition wall (hereinafter referred to as a partition part) with a length of 100 mm across the whole width of the hearth, which has the drawbacks of poor hearth utilization and high equipment costs.

一方ルーフバーナ方式はその性格上、上部燃焼室の天井
炉壁にバーナを配置する構造のため、炉 □巾及び炉長
方向の全面にわたって比較的均一な炉温分布が得られる
という特徴を有しているが、他の三方式に比べてバーナ
本数が多くなるため一般に設備費が高く、かつバーナ配
置の性格上、上部燃焼室のみしか適用できないという欠
点がある。
On the other hand, the roof burner method has a structure in which the burner is placed on the ceiling furnace wall of the upper combustion chamber, so it has the characteristic that a relatively uniform furnace temperature distribution can be obtained over the entire width and length of the furnace. However, since the number of burners is larger than the other three methods, the equipment cost is generally higher, and due to the nature of the burner arrangement, it has the disadvantage that it can only be applied to the upper combustion chamber.

以上のように従来の加熱装置は炉の大型化や操業の多様
化を満足させるには基本的な欠点を有している。
As described above, conventional heating devices have fundamental drawbacks in meeting the needs of larger furnaces and diversification of operations.

(発明の目的) 本発明は上記従来の直火燃焼方式の欠点である被加熱材
の均一加熱の困難性を解消することに改善の主眼をおき
、結果として被加熱材の偏熱防止による加熱能力の向上
、品質の向上および炉内での被加熱材への伝熱効率の向
上を図ることを目的とする。
(Objective of the Invention) The present invention focuses on improving the difficulty of uniformly heating the material to be heated, which is a drawback of the conventional direct combustion method, and as a result, heating by preventing uneven heat of the material to be heated is achieved. The purpose is to improve capacity, quality, and heat transfer efficiency to the heated materials in the furnace.

(発明の構成作用) 本発明は、装入側に煙道を配設した複数の燃焼帯をもつ
加熱炉において、装入側の1つまたは複数の下部燃焼帯
の炉壁に被加熱材の進行方向と同方向にガス噴出口を向
けて複数個の軸流バーナを配設し、前記燃焼帯よしも抽
出側寄シ01つまだは複数の下部燃焼帯の炉壁側には被
加熱材の進行方向と直角方向にガス噴出口を向けて複数
個のサイドバーナを配設し、該軸流バーナおよびサイド
バーナのガス噴出側にはバーナ軸方向に両端を開放した
熱放射管を配設したことケ特徴とする鋼材加熱炉の加熱
装置である。
(Configuration and Effect of the Invention) The present invention provides a heating furnace having a plurality of combustion zones with a flue arranged on the charging side, in which a material to be heated is placed on the furnace wall of one or more lower combustion zones on the charging side. A plurality of axial flow burners are arranged with the gas jet ports facing in the same direction as the traveling direction, and the material to be heated is placed on the furnace wall side of the combustion zone, the extraction side side, and the lower combustion zone. A plurality of side burners are arranged with the gas ejection ports facing perpendicular to the traveling direction of the burner, and heat radiation tubes with both ends open in the burner axial direction are arranged on the gas ejection side of the axial flow burner and the side burner. This is a heating device for a steel heating furnace with the following features.

(発明の実施例) 以下本発明の実施例を従来例と共に説明する。(Example of the invention) Embodiments of the present invention will be described below together with conventional examples.

第1図は従来の直火燃焼方式の最も一般的な鋼材加熱炉
の縦断面図の例を示すものでおる。1は耐火断熱性と気
密性を有した炉壁、2は炉壁1の天井部の炉長方向と炉
巾方向に複数個配置されたルーフバーナ、3は各燃焼帯
の下部炉壁に炉巾方向に配置された細流バーナであり、
4は加熱炉内を各燃焼帯に仕切るための仕切壁、5は被
加熱材即ち鋼材、6は予熱帯、7は加熱帯、8は均熱帯
である。9は鋼材5を支持するだめの固定スキッド、1
0は鋼材を搬送するための可動スキッドであ)水冷パイ
プの外面は断熱構造となっている。鋼材5は、固定スキ
ッド9及び可動スキッド10によって装入側の予熱帯6
から、抽出側の均熱帯8に向って搬送される間に加熱さ
れる。
FIG. 1 shows an example of a vertical cross-sectional view of the most common conventional direct-fire combustion type steel heating furnace. 1 is a furnace wall with fireproof insulation and airtightness, 2 is a plurality of roof burners arranged in the furnace length direction and furnace width direction on the ceiling of the furnace wall 1, and 3 is a furnace width installed on the lower furnace wall of each combustion zone. a trickle burner arranged in the direction of
4 is a partition wall for partitioning the inside of the heating furnace into each combustion zone; 5 is a material to be heated, that is, steel; 6 is a preheating zone; 7 is a heating zone; and 8 is a soaking zone. 9 is a fixed skid for supporting the steel material 5, 1
0 is a movable skid for conveying steel materials) The outer surface of the water-cooled pipe has a heat-insulating structure. The steel material 5 is transferred to a preheating zone 6 on the charging side by a fixed skid 9 and a movable skid 10.
From there, it is heated while being transported to a soaking zone 8 on the extraction side.

又図中の破線による矢印はルーフバーナ2からの燃焼ガ
ス流れを、実線による矢印は軸流バーナ3からの燃焼ガ
ス流れを示したものである。燃焼ガスは均熱帯から加熱
帯へ、加熱帯から予熱帯へ向って流れ、最終的には煙道
13から炉外へ排出される。通常、軸流バーナを配置す
る方向はバーナからの燃焼ガスが図に示すように煙道に
向って即ち、鋼材の搬送方向とは逆向きに流れるように
なっている。
Further, the broken line arrows in the figure indicate the flow of combustion gas from the roof burner 2, and the solid line arrows indicate the flow of combustion gas from the axial burner 3. The combustion gas flows from the soaking zone to the heating zone, from the heating zone to the preheating zone, and is finally discharged from the flue 13 to the outside of the furnace. Usually, the axial burner is arranged so that the combustion gas from the burner flows toward the flue as shown in the figure, that is, in the opposite direction to the conveying direction of the steel material.

第2図〜第4図は本発明にかかわる鋼材加熱炉の一実施
例を示す。この実施例においては、軸流バーナ3および
サイドバーナ3′の炉内側先端部に耐熱性と熱伝導性の
良好な円筒状の熱放射管11を設けたことに主たる特徴
がちシ、軸流バーナ3およびサイドバーナ3′からの燃
焼ガスは円筒状の熱放射管11を通った後炉内側開放端
よシ炉内に放出され炉の装入側に配設された煙道に向っ
て流れるようになっている。
FIGS. 2 to 4 show an embodiment of a steel heating furnace according to the present invention. The main feature of this embodiment is that a cylindrical heat radiating tube 11 with good heat resistance and thermal conductivity is provided at the inner end of the axial burner 3 and the side burner 3'. 3 and the side burner 3' pass through a cylindrical heat radiation tube 11, and then are released into the furnace through the open end inside the furnace and flow toward a flue disposed on the charging side of the furnace. It has become.

図中12は熱放射管を支持する架台である。In the figure, 12 is a pedestal that supports the heat radiation tube.

つぎに本実施例における鋼材の加熱操作について説明す
る。加熱炉内に装入された鋼材5は固定スキッド9およ
び可動スキッド10によって装入側の予熱帯6から抽出
側に向い上面はルーフバーナ2により下面は軸流バーナ
3またはサイドバーナ3′によシ加熱されながら加熱帯
7、均熱帯8へと搬送される。
Next, the heating operation of the steel material in this example will be explained. The steel material 5 charged into the heating furnace is moved from the preheating zone 6 on the charging side to the extraction side by a fixed skid 9 and a movable skid 10. It is transported to a heating zone 7 and a soaking zone 8 while being heated.

予熱帯6、加熱帯7の下部の加熱装置は細流バーナ3と
円筒状の熱放射管11で構成されておシ、軸流バーナ3
から供給された燃料と燃焼用空気は円筒状の熱放射管1
1内で混合し、ここで燃焼が行なわれるようになってい
るので、従来の直火燃焼方式に比し、浮力や炉内ガス流
の影響を受けることなく、燃焼量の多少に関係なく安定
した均一な炉温分布を確保することが可能である。
The heating device below the preheating zone 6 and the heating zone 7 is composed of a trickle burner 3 and a cylindrical heat radiation tube 11, and an axial burner 3.
The fuel and combustion air supplied from the cylindrical heat radiating tube 1
1, and combustion takes place there, so compared to conventional direct-fire combustion methods, it is not affected by buoyancy or gas flow in the furnace, and is stable regardless of the amount of combustion. It is possible to ensure a uniform furnace temperature distribution.

また、細流バーナ3からの燃焼ガスは熱放射管11を加
熱し、この熱放射管11からの輻射伝熱で鋼材を加熱す
るに加えて、熱放射管11から炉内に放出され進行方向
を360°転換し炉内を再度抽出側に向って流れる燃焼
ガスのガス輻射伝熱によシ、鋼材を加熱するようになっ
ておシ、炉壁からの輻射伝熱による加熱については従来
炉と略同条件であるので、従来炉に比し伝熱効率を向上
することができる。
In addition, the combustion gas from the trickle burner 3 heats the heat radiation tube 11, and in addition to heating the steel material by radiation heat transfer from the heat radiation tube 11, it is also discharged from the heat radiation tube 11 into the furnace and changes the direction of movement. The steel material is now heated by gas radiation heat transfer of the combustion gas that undergoes a 360° turn and flows through the furnace toward the extraction side again.The heating by radiation heat transfer from the furnace wall is different from that of conventional furnaces. Since the conditions are substantially the same, the heat transfer efficiency can be improved compared to the conventional furnace.

また固定スキッド9と可動スキッド10の間のいわゆる
スキッドシャドウ部においては、鋼材5が加熱されにく
いが熱放射管11が第3図に示すようにスキッドの直下
に配置されておシ、鋼材5と熱放射管11の間隔を適尚
に保つことによシ、鋼材5を均一に加熱することができ
る。
Furthermore, in the so-called skid shadow area between the fixed skid 9 and the movable skid 10, the steel material 5 is not easily heated, but a heat radiation tube 11 is placed directly under the skid as shown in FIG. By maintaining appropriate spacing between the heat radiating tubes 11, the steel material 5 can be heated uniformly.

均熱帯8の下部ではサイドバーナ3′と熱放射管11に
よシ鋼材5を加熱するようになっておシ、予熱帯6、加
熱帯7で得られるような顕著な伝熱効率の改善効果はな
いが、加熱帯7との間の下部に仕切部を有しないので炉
床利用率即ち加熱能力を向上させることができる。
In the lower part of the soaking zone 8, the side burner 3' and the heat radiation tube 11 are used to heat the steel material 5, and the remarkable improvement in heat transfer efficiency that can be obtained in the preheating zone 6 and the heating zone 7 is not achieved. However, since there is no partition at the lower part between the heating zone 7 and the heating zone 7, the utilization rate of the hearth, that is, the heating capacity can be improved.

更に炉温分布の安定性、均一性については予熱帯、加熱
帯と同様、従来炉に比し大巾に改善することができる。
Furthermore, the stability and uniformity of the furnace temperature distribution, as well as the pre-heating zone and the heating zone, can be greatly improved compared to conventional furnaces.

また鋼材5の抽出ピッチが不安定な場合においては、均
熱帯近傍に仕切部がある場合、この仕切部に長時間滞溜
した鋼材は他の鋼材と昇熱度が異なるため抽出温度不安
定の原因になるが、本発明においては前述のように均熱
帯近傍に仕切部を有しないため抽出温度を安定すること
ができる。装入側の仕切部については、そこで鋼材の昇
温度が不均一になっても加熱帯で加熱されるため抽出温
度への影響は殆んどない。
In addition, if the extraction pitch of the steel material 5 is unstable, if there is a partition near the soaking zone, the steel that has accumulated in this partition for a long time will have a different heating temperature than other steel materials, which may cause the extraction temperature to become unstable. However, in the present invention, as described above, since there is no partition near the soaking zone, the extraction temperature can be stabilized. As for the partition on the charging side, even if the temperature rise of the steel material becomes uneven there, it will be heated in the heating zone, so there will be almost no effect on the extraction temperature.

以上述べたように本発明の加熱装置を有する加熱炉は、
従来炉に比し鋼材を均一な温度に効率良く、かつ安定し
て焼土げることができるものである。
As described above, the heating furnace having the heating device of the present invention is
Compared to conventional furnaces, this furnace can burn steel materials at a uniform temperature more efficiently and stably.

次に、本発明の加熱装置を燃焼実験炉(高1.8×巾3
.0×長6.4 m )に採用した結果について述べる
。実験は、本発明の効果を確認するため炉巾方向に1.
7mのピッチで燃焼量150万Kcal/Hのバーナを
2本取付け、被加熱材5による奪熱を模擬するため天井
炉壁には水冷奪熱管を配し、燃料としてはコークス炉ガ
ス、燃焼用空気としては300℃の熱風を用い空気比1
,61の共通条件のもとで、従来の直火燃焼方式と本考
案の燃焼方式の比較を行った結果を第5図から第7図に
示す。
Next, the heating device of the present invention was installed in a combustion experimental furnace (height 1.8 x width 3
.. The following describes the results obtained by adopting the method (0 × length 6.4 m). In the experiment, 1.
Two burners with a combustion rate of 1.5 million Kcal/H were installed at a pitch of 7 m, and water-cooled heat-absorbing pipes were placed on the ceiling furnace wall to simulate heat removal by the heated material 5, and coke oven gas was used as the fuel for combustion. As the air, hot air of 300℃ is used and the air ratio is 1.
, 61, the results of a comparison between the conventional direct flame combustion method and the combustion method of the present invention are shown in FIGS. 5 to 7.

第5図は従来の直火燃焼方式の一例として、実炉でのバ
ーナ軸方向の温度分布特性が最も優れているとの評価が
高いガス二流式バーナの炉温分布の測定例である。
FIG. 5 shows a measurement example of the furnace temperature distribution of a gas two-flow burner, which is highly rated as having the best temperature distribution characteristics in the burner axial direction in an actual furnace, as an example of a conventional direct-fire combustion method.

第6図は円筒状熱放射管11を使用した場合の炉温分布
の測定例であシ、バーナとしてはノズルミックスタイプ
を使用、熱放射管11としては500φのSiCチュー
ブを4.3mの長さで使用した結果である。
Figure 6 shows an example of measuring the furnace temperature distribution when a cylindrical heat radiation tube 11 is used.A nozzle mix type is used as the burner, and the heat radiation tube 11 is a 4.3m long SiC tube of 500φ. This is the result of using it.

第5図及び第6図は横軸にバーナからの距離を、縦軸に
は炉温をバーナ長方向の各断面での測定温度(T) 8
ECとバーナ長方向の平均温度(T)ffEとの差で示
したものであシ、燃焼量20〜100%の範囲で実験し
た結果を図中の斜線範囲で表示したものである。この結
果、従来の直火燃焼方式ではバーナから約1.5mの所
に火炎のピーク温度があり、それよシ先では急速に炉温
の低下がみられる。すなわち軸流バーナとして用いた場
合は炉長方向の、サイドバーナとして用いた場合は炉巾
方向の温度分布に問題点を有していることを示している
In Figures 5 and 6, the horizontal axis represents the distance from the burner, and the vertical axis represents the furnace temperature (T).8
It is shown as the difference between EC and the average temperature (T)ffE in the burner length direction, and the results of experiments in the range of combustion amount of 20 to 100% are shown in the shaded range in the figure. As a result, in the conventional direct combustion method, the flame temperature reaches its peak approximately 1.5 m from the burner, and the furnace temperature drops rapidly beyond that point. In other words, this shows that there is a problem with the temperature distribution in the furnace length direction when used as an axial burner, and in the furnace width direction when used as a side burner.

これに対して、熱放射管燃焼方式では燃焼量にほとんど
関係なくバーナ軸方向に対して略均−な炉温分布が得ら
れている。また、第7図は直火燃焼方式と熱放射管燃焼
方式の被加熱材への伝熱量の比較を行った実験結果の例
を示した図であシ、バーナ軸方向と排ガスの流れの関係
は、第2図の予熱帯、加熱帯を擬して実験炉のバーナ取
付面と排ガス煙道設置面とは同一側面炉壁として実験し
ている。第7図において縦軸は熱放射管燃焼方式と直火
燃焼方式の伝熱量の比である。この図から明らかなよう
に熱放射管燃焼方式は直火燃焼方式に比べ約20%伝熱
量が多い。これは熱放射管からの固体輻射によシ伝熱が
促進されるためである。
On the other hand, in the heat radiation tube combustion method, a substantially uniform furnace temperature distribution in the burner axial direction is obtained almost regardless of the combustion amount. In addition, Figure 7 is a diagram showing an example of the results of an experiment comparing the amount of heat transferred to the heated material between the direct flame combustion method and the heat radiation tube combustion method, and shows the relationship between the burner axial direction and the flow of exhaust gas. In this experiment, the burner mounting surface and the flue gas flue installation surface of the experimental furnace were set to be on the same side of the furnace wall, simulating the pre-heating zone and heating zone shown in Figure 2. In FIG. 7, the vertical axis represents the ratio of heat transfer between the heat radiation tube combustion method and the direct flame combustion method. As is clear from this figure, the amount of heat transferred by the heat radiation tube combustion method is approximately 20% higher than that by the direct flame combustion method. This is because heat transfer is promoted by solid radiation from the heat radiation tube.

(発明の効果) 以上述べたように本発明の加熱設備を備えた加熱炉は、
従来の直火燃焼炉の問題点であっだ被熱物の均一・安定
加熱を実現し、さらに伝熱効率を改善するものであり、
装入側に近い燃焼帯下部はガス噴出口を被加熱材進行方
に向けた軸流バーナ方式、抽出側に近い燃焼帯下部は、
ガス噴出口を被熱物進行と直角方向に向けたサイドバー
ナ方式を採用し、該バーナのガス噴出側には両端を開放
した熱放射管を配設することを特徴としておシ、従来の
直火加熱方式と比べて、 0円筒状熱放射管内燃焼のため浮力や炉内ガス流れの影
響を受けることが少なく、燃焼量に関係なく略一定の炉
温分布の確保が可能でア)、低温加熱に適している。
(Effects of the Invention) As described above, the heating furnace equipped with the heating equipment of the present invention has
It achieves uniform and stable heating of the heated object, which was a problem with conventional direct-fired combustion furnaces, and further improves heat transfer efficiency.
The lower part of the combustion zone near the charging side uses an axial flow burner system with the gas outlet facing the direction of progress of the heated material, and the lower part of the combustion zone near the extraction side uses the
It adopts a side burner method in which the gas outlet is oriented perpendicular to the progress of the heated object, and a heat radiation tube with both ends open is installed on the gas outlet side of the burner. Compared to the fire heating method, since combustion occurs within a cylindrical heat radiation tube, it is less affected by buoyancy and gas flow in the furnace, and it is possible to maintain an almost constant furnace temperature distribution regardless of the amount of combustion. Suitable for heating.

■軸流バーナ部では、円筒状熱放射管からの固体輻射伝
熱によシ伝熱量の増加即ち加熱能力の向上が可能である
(2) In the axial burner section, it is possible to increase the amount of heat transfer, that is, improve the heating capacity, by solid radiation heat transfer from the cylindrical heat radiation tube.

■抽出側の下部燃焼帯には仕切部がないため、炉床利用
率が高く、従って同一炉長の従来の軸流バーナ炉に比し
て加熱能力の向上が可能であシ、また仕切部の存在によ
る抽出温度の乱れが非常に小さい。
■Since there is no partition in the lower combustion zone on the extraction side, the hearth utilization rate is high, and therefore the heating capacity can be improved compared to a conventional axial burner furnace with the same furnace length. The disturbance in the extraction temperature due to the presence of is very small.

以上のような特長を有した加熱炉である。This heating furnace has the above-mentioned features.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の代表的な直火燃焼方式の鋼材加熱炉の縦
断面を示す図、第2図は本発明の加熱装置を備えた鋼材
加熱炉の一例の縦断面を示す図、第3図は第2図のI−
I線における横断面図、第4図は第2図の■−■線にお
ける横断面図、第5図は従来の直火燃焼方式における炉
内温度分布の実験炉での測定例、第6図は本発明の円筒
状熱放射管を用いた場合の炉内温度分布の実験炉での測
定例、第7図は直火燃焼方式と本発明の円筒状熱 ゛放
射管を用いた場合の被熱材への伝熱量比の実験炉での測
定例を示す図である。 1:炉壁 2:ルーフバーナ 3:軸流バーナ3/:サ
イドバーナ 4:仕切壁 5:被加熱材(鋼材) 6:
予熱帯 7:加熱帯 8:均熱帯9:固定スキッド 1
0:可動スキッド 11:円筒状熱放射管 12:熱放
射管の架台 13:煙道出願人 新日本製鐵株式会社 代理人弁理士 青 柳 稔 第5図 バーすが5の距離(m) 第6図 00 特開昭GO−226G91(6) 第7図 ; 旦5o■L七工二口」 燻ス力量(%)
FIG. 1 is a vertical cross-sectional view of a typical conventional direct-fire combustion type steel heating furnace, FIG. 2 is a vertical cross-sectional view of an example of a steel heating furnace equipped with the heating device of the present invention, and FIG. The figure is I- in Figure 2.
Figure 4 is a cross-sectional view taken along line I, Figure 4 is a cross-sectional view taken along line ■-■ in Figure 2, Figure 5 is an example of measuring the temperature distribution inside the furnace in a conventional direct-fire combustion method, and Figure 6 is a cross-sectional view taken along line I. Figure 7 shows an example of measuring the temperature distribution inside the furnace in an experimental furnace when using the cylindrical heat radiating tube of the present invention. FIG. 3 is a diagram showing an example of measurement of the ratio of heat transfer to a heating material in an experimental furnace. 1: Furnace wall 2: Roof burner 3: Axial burner 3/: Side burner 4: Partition wall 5: Material to be heated (steel material) 6:
Pre-heating zone 7: Heating zone 8: Soaking zone 9: Fixed skid 1
0: Movable skid 11: Cylindrical heat radiating tube 12: Frame of heat radiating tube 13: Flue applicant Minoru Aoyanagi, patent attorney representing Nippon Steel Corporation Figure 5 Distance of bar frame 5 (m) No. 6 Figure 00 JP-A-Sho GO-226G91 (6) Figure 7; Dan 5 o ■ L 7 kou 2 mouths” Smoking ability (%)

Claims (1)

【特許請求の範囲】[Claims] 装入側に煙道を配設した複数の燃焼帯をもつ加熱炉にお
いて、該加熱炉の装入側に近い1つまたは複数の下部燃
焼帯の炉壁に被加熱材の進行方向と同方向にガス噴出口
を向けて複数個の軸流バーナを配設し、前記燃焼帯よシ
も抽出側寄シの1つまたは複数の下部燃焼帯の炉壁側に
は被加熱材の進行方向と直角方向にガス噴出口を向けて
複数個のサイドバーナを配設し、該軸流バーナおよびサ
イドバーナのガス噴出側にはバーナ軸方向に両端を開放
した熱放射管を配設したことを特徴とする加熱炉の加熱
装置。
In a heating furnace having a plurality of combustion zones with a flue arranged on the charging side, the furnace wall of one or more lower combustion zones near the charging side of the heating furnace is provided with a flame in the same direction as the traveling direction of the material to be heated. A plurality of axial flow burners are arranged with gas jet ports facing toward the furnace wall side of the combustion zone and one or more lower combustion zones on the extraction side. A plurality of side burners are arranged with gas ejection ports facing in a right angle direction, and heat radiation tubes with both ends open in the burner axial direction are arranged on the gas ejection side of the axial flow burner and the side burner. A heating device for a heating furnace.
JP8463884A 1984-04-26 1984-04-26 Heater for heating furnace Granted JPS60226691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8463884A JPS60226691A (en) 1984-04-26 1984-04-26 Heater for heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8463884A JPS60226691A (en) 1984-04-26 1984-04-26 Heater for heating furnace

Publications (2)

Publication Number Publication Date
JPS60226691A true JPS60226691A (en) 1985-11-11
JPS639564B2 JPS639564B2 (en) 1988-02-29

Family

ID=13836230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8463884A Granted JPS60226691A (en) 1984-04-26 1984-04-26 Heater for heating furnace

Country Status (1)

Country Link
JP (1) JPS60226691A (en)

Also Published As

Publication number Publication date
JPS639564B2 (en) 1988-02-29

Similar Documents

Publication Publication Date Title
US6334770B1 (en) Fluid-fuel furnace burner for iron and steel products
US4469314A (en) Metal heating furnace
US2298149A (en) Continuous heating furnace
US4388068A (en) Metal heating furnace
JPS60226691A (en) Heater for heating furnace
JPS6036586Y2 (en) steel heating furnace
EP0849555B1 (en) Furnace for firing a glasslined product
JP3149666B2 (en) Radiant heating device and combustion method thereof
JPS6038659Y2 (en) steel heating furnace
JPH0125870Y2 (en)
US1785583A (en) Combustion chamber
JPS6036587Y2 (en) Heating equipment in steel heating furnaces
JPH0213011B2 (en)
JPH0828830A (en) High temperature air burner
JPS639563B2 (en)
JPH0375609B2 (en)
JPH1025515A (en) Continuous type heating furnace
SU1214725A1 (en) Tube furnace
JPS6215232Y2 (en)
SU1211294A1 (en) Blast furnace air stove
SU907374A1 (en) Method of equalizing temperature field in tunnel furnace
JPS6319313Y2 (en)
US2930599A (en) Apparatus for heating metal work
JPS632432Y2 (en)
JPH0587726B2 (en)