JPH1171601A - Powder material and its production - Google Patents

Powder material and its production

Info

Publication number
JPH1171601A
JPH1171601A JP9247608A JP24760897A JPH1171601A JP H1171601 A JPH1171601 A JP H1171601A JP 9247608 A JP9247608 A JP 9247608A JP 24760897 A JP24760897 A JP 24760897A JP H1171601 A JPH1171601 A JP H1171601A
Authority
JP
Japan
Prior art keywords
particles
grain
silicon oxide
powder material
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9247608A
Other languages
Japanese (ja)
Inventor
Seirai Kuruma
声雷 車
Osamu Sakurai
修 桜井
Takuo Yasuda
拓夫 安田
Kazuo Shinozaki
和夫 篠崎
Koreyasu Mizutani
惟恭 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP9247608A priority Critical patent/JPH1171601A/en
Publication of JPH1171601A publication Critical patent/JPH1171601A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make a crystalline Pd grain difficult to be oxidized by coating the grain surface with amorphous silicon oxide by spraying a raw soln. prepared by dispersing the superfine grain of silicon oxide in an aq. Pd salt soln. into the droplets and passing the droplets through the three temp. regions in a reaction tube to be subjected to drying, pyrolyzing and crystallizing. SOLUTION: The droplet of a raw soln. prepared by dispersing the superfine grains of silicon oxide in an aq. Pd salt soln. generated by a mist generating part 10 is introduced into a heated reaction tube 12 by a carrier gas. The droplet is dried in a low-temp. heating furnace 13 of the reaction tube 12, and the solid grain of the dried mixture (PDO.xH2 O+SiO2 ) is produced by the hydrolysis of Pd(NO3 )2 and the pyrolysis of the formed Pd(OH)2 . The grain is then reheated in a medium-temp. heating furnace 14, and the PdO is partly decomposed into metallic Pd. The grain is further heated in a high-temp. heating furnace 15, the PdO is decomposed, and the composite grain in which the superfine crystal grains of Pd are dispersed in the superfine grain of SiO2 is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉体材料とその製
造方法に係り、特に、積層セラミックコンデンサにおけ
る内部電極用ペーストの構成材料として有用な粉体材料
とその製造方法に関するものである。
The present invention relates to a powder material and a method for producing the same, and more particularly to a powder material useful as a constituent material of a paste for an internal electrode in a multilayer ceramic capacitor and a method for producing the same.

【0002】[0002]

【従来の技術】近年、電子部品の軽薄短小化が進み、チ
ップ部品である積層セラミックコンデンサ(以下、ML
CCと略称する)に関しても小型化、高容量化の要求が
ますます高まりつつある。そして、MLCCの小型化と
高容量化を図る最も効果的な手法は誘電体層と内部電極
を薄くして多層化を図ることである。
2. Description of the Related Art In recent years, electronic components have become lighter and thinner and smaller, and multilayer ceramic capacitors (hereinafter, ML) as chip components have been developed.
(Hereinafter abbreviated as CC), there is an increasing demand for miniaturization and high capacity. The most effective way to reduce the size and increase the capacity of the MLCC is to reduce the thickness of the dielectric layer and the internal electrodes to achieve a multilayer structure.

【0003】ところで、この種のMLCCとして、例え
ば、図2(A)〜(B)に示すような構造のものが従来
知られている。すなわち、このMLCC(積層セラミッ
クコンデンサ)aは、複数の誘電体層bと内部電極cが
交互に積層されたコンデンサ本体dと、このコンデンサ
本体dの外側に設けられその一方が奇数番目の内部電極
c1群に接続され他方が偶数番目の内部電極c2群に接続さ
れた一対の外部電極e1、e2とでその主要部が構成されて
いるものである。
By the way, as this kind of MLCC, for example, one having a structure as shown in FIGS. 2A and 2B is conventionally known. That is, this MLCC (multilayer ceramic capacitor) a has a capacitor body d in which a plurality of dielectric layers b and internal electrodes c are alternately laminated, and one of the capacitor electrodes is provided outside the capacitor body d and one of them is an odd-numbered internal electrode.
The main part is constituted by a pair of external electrodes e1 and e2 connected to the group c1 and the other connected to the group of even-numbered internal electrodes c2.

【0004】そして、このMLCCは、従来、以下のよ
うにして製造されている。まず、粉末化されたチタン酸
バリウム(BaTiO3 )、鉛を含むペロブスカイト型
酸化物等の誘電体と、ポリビニルブチラール樹脂あるい
はブチルメタクリレートやメチルメタクリレート等のア
クリル系樹脂から成る有機バインダーを含む誘電体シー
ト(一般に、誘電体グリーンシートと称される)表面に
内部電極用ペーストをスクリーン印刷法にて製膜しかつ
乾燥させる。
The MLCC is conventionally manufactured as follows. First, a dielectric sheet containing powdered barium titanate (BaTiO 3 ), a dielectric material such as a perovskite oxide containing lead, and an organic binder made of polyvinyl butyral resin or an acrylic resin such as butyl methacrylate or methyl methacrylate. A paste for an internal electrode is formed on a surface (generally called a dielectric green sheet) by a screen printing method and dried.

【0005】次に、上記内部電極用ペーストが製膜され
た誘電体シートを所定の枚数重ね合せると共にこれ等を
熱圧着させた後、この熱圧着体を目的の大きさに切断す
る。続いて、上記誘電体シート内の有機バインダーや内
部電極用ペースト内の有機ビヒクル等のバーンアウト
(完全燃焼)と内部電極及び誘電体の同時焼結を目的と
して1300℃程度の条件で上記熱圧着体を焼成する。
[0005] Next, a predetermined number of dielectric sheets on which the above-mentioned internal electrode paste is formed are laminated and thermocompressed, and then the thermocompressed body is cut into a desired size. Subsequently, the thermocompression bonding is performed at about 1300 ° C. for the purpose of burnout (complete combustion) of the organic binder in the dielectric sheet or the organic vehicle in the internal electrode paste and simultaneous sintering of the internal electrode and the dielectric. Fire the body.

【0006】次に、この様にして得られた複数の誘電体
層と内部電極が交互に積層されかつ焼成された積層体
(コンデンサ本体)の両端を磨き、その一端側では奇数
番目の内部電極群の端面をまた他端側では偶数番目の内
部電極群の端面をそれぞれ露出させた後、その磨かれた
両端面にMLCCと外部のデバイスを結合させるための
一対の外部電極を取り付けて上記積層セラミックコンデ
ンサ(MLCC)が完成される。
Next, a plurality of dielectric layers and internal electrodes thus obtained are alternately laminated and polished at both ends of a fired laminated body (capacitor body), and odd-numbered internal electrodes are formed at one end thereof. After exposing the end face of the group and the end face of the even-numbered internal electrode group on the other end side, a pair of external electrodes for connecting the MLCC and an external device are attached to the polished end faces, and the above-described lamination is performed. The ceramic capacitor (MLCC) is completed.

【0007】ところで、上記誘電体シート表面上に製膜
される内部電極用ペーストとしては、従来、金属粉末と
有機ビヒクルを主成分とし必要に応じて粘度調整用の希
釈溶剤等が配合された組成物が適用されている。
[0007] By the way, as a paste for an internal electrode formed on the surface of the dielectric sheet, there has hitherto been used a composition comprising a metal powder and an organic vehicle as main components and, if necessary, a diluting solvent or the like for adjusting viscosity. Things have been applied.

【0008】そして、MLCCの内部電極に要求される
上記金属粉末の性質として、セラミック誘電体と反応し
ないこと、粉末自体が溶融しないこと、焼結時のセラミ
ック誘電体への拡散が少ないこと、及び、電気抵抗が小
さいこと等が挙げられる。
[0008] The properties of the metal powder required for the internal electrode of the MLCC are that it does not react with the ceramic dielectric, that the powder itself does not melt, that there is little diffusion into the ceramic dielectric during sintering, and that And low electrical resistance.

【0009】この様な観点から、上記金属粉末として、
Pd粉末等の貴金属粉末が従来適用されている。
From such a viewpoint, as the metal powder,
Noble metal powders such as Pd powder have been conventionally used.

【0010】[0010]

【発明が解決しようとする課題】ところで、上記MLC
Cの同時焼成(Cofiring)プロセスにおいて、Pd粒子
に起因した構造欠陥を生じ易い問題点があった。すなわ
ち、上記Pd粒子が金属粉末として適用された場合、焼
成中、Pd粒子は溶融せずかつセラミック誘電体との反
応も少ない特性を有するが、空気中で加熱されると酸化
して黒色の酸化物(PdO)になり、生成したPdOは
800℃付近で分解してPdに戻り、これ等一連の酸化
・還元反応により体積の膨張と収縮が起こる。
By the way, the above MLC
In the cofiring process of C, there was a problem that structural defects caused by Pd particles were apt to occur. That is, when the Pd particles are applied as a metal powder, the Pd particles do not melt and have little reaction with the ceramic dielectric during sintering. The resulting PdO is decomposed at around 800 ° C. and returns to Pd, and the series of oxidation and reduction reactions causes expansion and contraction of the volume.

【0011】すなわち、内部電極と誘電体の同時焼結
中、内部電極用ペーストの方では500〜800℃の間
にPdの酸化による約68%の体積膨張または約19%
の線膨張が起こり、そしてPdOの還元による同量の収
縮が発生すると共に、更に、900℃前後においてPd
の焼結による急激な収縮を引き起こす。
That is, during the simultaneous sintering of the internal electrode and the dielectric, the internal electrode paste has a volume expansion of about 68% or about 19% due to oxidation of Pd between 500 and 800 ° C.
And the same amount of shrinkage due to the reduction of PdO occurs, and at around 900 ° C., Pd
Causes rapid shrinkage due to sintering.

【0012】他方、誘電体層の膨張・収縮現象は、12
00〜1300℃付近の焼結による収縮のみである。
On the other hand, the expansion and contraction phenomenon of the dielectric layer is caused by 12
There is only shrinkage due to sintering around 00 to 1300 ° C.

【0013】従って、内部電極とセラミック誘電体の膨
張と収縮挙動が異なるため、セラミック誘電体と内部電
極の層間に引っ張り応力や圧縮応力が発生し、完成され
たMLCCにデラミネーション(Delamination,層間剥
離現象)やクラック等の構造欠陥が誘発され易い問題点
を有していた。
Therefore, since the expansion and contraction behaviors of the internal electrode and the ceramic dielectric are different, a tensile stress or a compressive stress is generated between the layers of the ceramic dielectric and the internal electrode, and the completed MLCC is delaminated. Phenomenon) and structural defects such as cracks are easily induced.

【0014】尚、MLCCのこの様な構造欠陥を防止す
るため、セラミック誘電体と同質の誘電体微粒子や粘土
鉱物、有機ペントナイト等を内部電極用ペースト内に添
加してPd粒子の過焼結を抑制する等の工夫も従来なさ
れているが、セラミック誘電体の特性や電極膜の連続性
に悪影響を及ぼす恐れがあるため未だ有効な防止方法と
はなり得ていない。
In order to prevent such structural defects of the MLCC, dielectric fine particles of the same quality as the ceramic dielectric, clay minerals, organic pentonite, etc. are added to the internal electrode paste to oversinter Pd particles. Although some measures have been conventionally taken, such as suppression of the effect, there is a possibility that the characteristics of the ceramic dielectric and the continuity of the electrode film may be adversely affected.

【0015】本発明はこの様な問題点に着目してなされ
たもので、その課題とするところは、金属粉末としての
上記Pd粒子に代えて、MLCCの上述した構造欠陥を
引き起こし難い内部電極用ペーストの構成材料に適用で
きる粉体材料とその製造方法を提供することにある。
The present invention has been made in view of such a problem, and an object of the present invention is to replace the above-mentioned Pd particles as a metal powder with an internal electrode for an MLCC which is unlikely to cause the above-mentioned structural defects. An object of the present invention is to provide a powder material applicable to a constituent material of a paste and a method for producing the same.

【0016】[0016]

【課題を解決するための手段】すなわち、請求項1に係
る粉体材料は、結晶性Pd粒子を芯材としこの外表面を
一様に被覆する非晶質酸化ケイ素の表面層とで構成され
ることを特徴とし、また、請求項2に係る粉体材料は、
酸化ケイ素微粒子のマトリックス中に複数の結晶性Pd
微粒子が均一に分散された複合粒子にて構成されること
を特徴とするものである。
That is, the powder material according to the first aspect comprises a crystalline Pd particle as a core material and a surface layer of amorphous silicon oxide which uniformly covers the outer surface thereof. Characterized in that, the powder material according to claim 2,
Multiple crystalline Pd in a matrix of silicon oxide fine particles
It is characterized by being composed of composite particles in which fine particles are uniformly dispersed.

【0017】そして、請求項1記載の粉体材料は、芯材
である結晶性Pd粒子の外表面が非晶質酸化ケイ素の表
面層で覆われており、また、請求項2記載の粉体材料
は、複数の結晶性Pd微粒子が酸化ケイ素微粒子のマト
リックス中に均一に分散された複合粒子で構成されてい
ることから、上記結晶性Pd粒子若しくは結晶性Pd微
粒子が酸化され難くなり、かつ、非晶質酸化ケイ素の表
面層並びに酸化ケイ素微粒子のマトリックスの作用によ
り結晶性Pd粒子若しくは結晶性Pd微粒子が表面改質
されてその分散性も改善される。
In the powder material according to the first aspect, the outer surface of the crystalline Pd particles as the core material is covered with a surface layer of amorphous silicon oxide. Since the material is composed of composite particles in which a plurality of crystalline Pd fine particles are uniformly dispersed in a matrix of silicon oxide fine particles, the crystalline Pd particles or the crystalline Pd fine particles are hardly oxidized, and The crystalline Pd particles or the crystalline Pd fine particles are surface-modified by the action of the surface layer of the amorphous silicon oxide and the matrix of the silicon oxide fine particles, and the dispersibility thereof is also improved.

【0018】そして、請求項1または請求項2記載の粉
体材料が内部電極用ペーストの金属粉末として適用され
た場合、その結晶性Pd粒子若しくは結晶性Pd微粒子
表面の酸化が上記表面層若しくはマトリックスの作用で
防止されることに伴い、Pdの酸化反応、PdOの還元
反応が起こる900℃未満における内部電極用ペースト
の膨張・収縮現象が抑制されるため、MLCCの構成層
である内部電極と誘電体層の膨張と収縮挙動を略一致さ
せることが可能となる。
When the powder material according to claim 1 or 2 is applied as a metal powder of an internal electrode paste, the oxidation of the surface of the crystalline Pd particles or the crystalline Pd fine particles is caused by the surface layer or the matrix. , The expansion and contraction of the internal electrode paste at a temperature of less than 900 ° C., at which the oxidation reaction of Pd and the reduction reaction of PdO occur, is suppressed. It becomes possible to make the expansion and contraction behavior of the body layer substantially coincide.

【0019】ところで、請求項1記載の粉体材料等を製
造する場合、これ等粉体材料と類似の構造を有する粉体
材料の製造方法として、従来、以下のような手法が知ら
れている。例えば、事前に調製されたAg粒子の表面に
CVD法によりSiO2 層を製膜したり、あるいは、事
前に調製されたコア粒子の表面に界面反応法やゾルゲル
法、機械混合法等によりコーティング層を形成する方法
等が報告されている。しかし、これ等の従来法はコア粒
子の調製とコーティング層の形成とを二段階に分けて行
う必要があり、その分、製造効率は余り良好でない方法
であった。そこで、請求項3と請求項4に係る発明は、
請求項1及び請求項2に係る粉体材料を噴霧熱分解法に
より一段階で製造してその効率を改善させた発明に関す
る。
In the meantime, in the case of producing the powder material according to the first aspect, the following method is conventionally known as a method for producing a powder material having a structure similar to the powder material. . For example, a SiO 2 layer is formed on a surface of a previously prepared Ag particle by a CVD method, or a coating layer is formed on a surface of a previously prepared core particle by an interface reaction method, a sol-gel method, a mechanical mixing method, or the like. And the like have been reported. However, in these conventional methods, the preparation of the core particles and the formation of the coating layer must be performed in two steps, and the production efficiency is not so good. Therefore, the invention according to claim 3 and claim 4
The present invention relates to an invention in which the powder material according to claim 1 and claim 2 is manufactured in one step by a spray pyrolysis method to improve the efficiency.

【0020】すなわち、請求項3に係る発明は、酸化ケ
イ素の超微粒子をPd塩の水溶液中に分散させて原料溶
液を調製し、かつ、この原料溶液を噴霧して液滴とした
後、低温、中温及び高温の3つの温度領域を有する反応
管内に上記液滴を搬入し、この反応管内において乾燥、
熱分解及び結晶化処理して請求項1又は2記載の粉体材
料を製造することを特徴とし、また、請求項4に係る発
明は、請求項3記載の発明に係る請求項1の粉体材料の
製造方法を前提とし、上記酸化ケイ素超微粒子のPdに
対する割合が10mass%、上記Pd塩の水溶液が0.5
mol/dm3 のPd(NO32 水溶液、及び、上記低温、
中温及び高温の3つの温度領域が300℃、600℃及
び1400℃であることを特徴とするものである。
That is, the invention according to claim 3 is to prepare a raw material solution by dispersing ultrafine particles of silicon oxide in an aqueous solution of a Pd salt, spray the raw material solution to form droplets, Transporting the droplets into a reaction tube having three temperature regions of medium temperature and high temperature, and drying in the reaction tube;
The powder material according to claim 1 or 2 is manufactured by a thermal decomposition and crystallization treatment, and the invention according to claim 4 is the powder according to claim 1 according to the invention according to claim 3 Assuming the method of producing the material, the ratio of the ultrafine silicon oxide particles to Pd is 10 mass%, and the aqueous solution of the Pd salt is 0.5 mass%.
mol / dm 3 Pd (NO 3 ) 2 aqueous solution
The three temperature ranges of medium temperature and high temperature are 300 ° C., 600 ° C., and 1400 ° C.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0022】図1は、本発明に係る粉体材料を噴霧熱分
解法により製造する際に適用される噴霧熱分解製造装置
の概略構成を示す説明図である。
FIG. 1 is an explanatory view showing a schematic configuration of a spray pyrolysis production apparatus applied when producing a powder material according to the present invention by a spray pyrolysis method.

【0023】すなわち、この噴霧熱分解製造装置1は、
ミスト発生部(超音波噴霧器、二流体ノズル、静電噴霧
器等)10と、空気、窒素等キャリアガス混合・供給系
11と、反応管12と、この反応管12の長さ方向に亘
り配置された低温加熱炉13、中温加熱炉14、高温加
熱炉15と、これ等加熱炉の温度制御・記録系(図示せ
ず)と、粉体材料の回収部(サイクロン、フィルタ、静
電集塵器等)16と、排気ガス処理部17とでその主要
部が構成されている。
That is, this spray pyrolysis production apparatus 1
A mist generator (ultrasonic atomizer, two-fluid nozzle, electrostatic atomizer, etc.) 10, a carrier gas mixing / supply system 11 such as air and nitrogen, a reaction tube 12, and a reaction tube 12 are arranged in the longitudinal direction. The low-temperature heating furnace 13, the medium-temperature heating furnace 14, the high-temperature heating furnace 15, the temperature control / recording system (not shown) of these heating furnaces, and the powder material recovery unit (cyclone, filter, electrostatic precipitator) Etc.) and the exhaust gas processing unit 17 constitute the main part.

【0024】以下、酸化ケイ素(SiO2 )の超微粒子
をPd塩であるPd(NO32 水溶液に分散させた原
料溶液から、請求項1及び請求項2に係る粉体材料を合
成する場合を例としてこれ等材料の生成機構を説明す
る。
In the following, the powder material according to claim 1 or 2 is synthesized from a raw material solution in which ultrafine particles of silicon oxide (SiO 2 ) are dispersed in an aqueous solution of Pd (NO 3 ) 2 as a Pd salt. The generation mechanism of these materials will be described as an example.

【0025】まず、ミスト発生部10によって発生した
液滴は加熱された反応管12内にキャリアガスによって
導入されると、低温加熱炉13に位置された反応管12
内において乾燥しかつPd(NO32 の加水分解や生
成されたPd(OH)2 等の熱分解等により各成分の原
料の乾燥混合物(PdO・xH2O+SiO2)の固体粒
子を作る。この固体粒子の中ではPdO・xH2OとS
iO2が均一に混合している。
First, when the droplets generated by the mist generating section 10 are introduced into the heated reaction tube 12 by the carrier gas, the reaction tube 12 located in the low-temperature heating furnace 13
Then, solid particles of a dry mixture (PdO.xH 2 O + SiO 2 ) of the raw materials of each component are produced by drying in the inside and hydrolyzing Pd (NO 3 ) 2 and thermal decomposition of generated Pd (OH) 2 and the like. Among these solid particles, PdO.xH 2 O and S
iO 2 is uniformly mixed.

【0026】次に、中温加熱炉14に位置された反応管
12内において更に加熱されると、温度の上昇に従って
粒子中のPdOの一部は分解されて金属(Pd)とな
る。
Next, when the reaction tube 12 is further heated in the reaction tube 12 located in the intermediate temperature heating furnace 14, part of PdO in the particles is decomposed into metal (Pd) as the temperature rises.

【0027】次に、高温加熱炉15に位置された反応管
12内において更に高温(700℃以上)で加熱される
とPdOが分解し、生成したナノオーダーのPd超微粒
結晶粒子がSiO2 の超微粒子から成るマトリックス中
に均一に分散した構造の複合粒子である粉体材料(請求
項2に係る材料)が得られる。この温度はPdの焼結温
度(約300℃)よりかなり高いので、生成したPd超
微粒結晶粒子が合体しながら成長し、粒子の中央に集ま
ることによってPdだけのコア(芯材)を形成する。一
方、SiO2 は焼結しないので粒子のマトリックスはほ
とんど収縮せず、複合粒子の粒径は変化しない。そし
て、上記高温加熱炉15の温度が請求項2に係る粉体材
料を得る温度条件より高く設定されあるいは高温加熱炉
15に位置された反応管12内に上記複合粒子が長時間
浮遊して存在するとPdの焼結が更に進み、複合粒子内
部での再配列によって中心部にあったSiO2 も粒子表
面に押し出され、Pdが粒子の真ん中に集まり、中実で
単結晶に近いコア粒子すなわち結晶性Pd粒子を芯材と
しこの外表面を一様に被覆する非晶質酸化ケイ素の表面
層とで構成された請求項1に係る粉体材料が得られる。
Next, when the PdO is heated at a higher temperature (700 ° C. or more) in the reaction tube 12 located in the high-temperature heating furnace 15, PdO is decomposed, and the generated nano-order Pd ultrafine crystal particles are formed of SiO 2 . A powder material (material according to claim 2), which is a composite particle having a structure uniformly dispersed in a matrix composed of ultrafine particles, is obtained. Since this temperature is much higher than the sintering temperature of Pd (about 300 ° C.), the generated ultrafine crystal grains of Pd grow while uniting, and gather at the center of the grains to form a Pd-only core. . On the other hand, since SiO 2 is not sintered, the particle matrix hardly shrinks, and the particle size of the composite particles does not change. Then, the temperature of the high-temperature heating furnace 15 is set higher than the temperature condition for obtaining the powder material according to claim 2, or the composite particles are suspended in the reaction tube 12 positioned in the high-temperature heating furnace 15 for a long time. Then, the sintering of Pd proceeds further, and the SiO 2 at the center is also pushed out to the particle surface by the rearrangement inside the composite particles, Pd gathers in the center of the particles, and the core particles, which are solid and close to a single crystal, that is, crystals, The powder material according to claim 1, comprising an amorphous Pt particle as a core material and a surface layer of amorphous silicon oxide uniformly covering the outer surface.

【0028】尚、この製造プロセスでは、生成されるP
d粒子の構造や結晶性は液滴/粒子の加熱条件(加熱温
度、加熱時間、加熱速度等)に影響されるので、目的と
する粉体材料に合わせた上記加熱条件の設定が重要であ
る。
In this manufacturing process, the generated P
Since the structure and crystallinity of the d-particles are affected by the droplet / particle heating conditions (heating temperature, heating time, heating rate, etc.), it is important to set the above-mentioned heating conditions according to the target powder material. .

【0029】[0029]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0030】[実施例1]Pdの原料はPd(NO3
2 (東洋化学工業製)を用い、SiO2 の原料は火炎中
加水分解法で合成したSiO2 超微粒子(純度99.9
%、和光純薬工業製)を用いた。
[Example 1] The raw material of Pd is Pd (NO 3 )
2 used (Toyo Chemical Industries, Ltd.), SiO 2 ultrafine particles (purity 99.9 of SiO 2 raw material synthesized in the flame hydrolysis method
%, Manufactured by Wako Pure Chemical Industries, Ltd.).

【0031】そして、SiO2 超微粒子をPdに対して
10mass%(質量%)の割合で0.5mol/dm3 のPd
(NO32 水溶液中に混合し、超音波で分散させて出
発溶液(原料溶液)を調製した。
Then, the SiO 2 ultrafine particles were added at a rate of 10 mass% (mass%) with respect to Pd to 0.5 mol / dm 3 of Pd.
A (NO 3 ) 2 aqueous solution was mixed and dispersed with ultrasonic waves to prepare a starting solution (raw material solution).

【0032】尚、原料に用いたSiO2 粒子は粒径20
nm前後の球状であり、実測した比表面積は184.7
2 /gである。XRD分析によりSiO2 粒子は非晶
質であり、TG−DTA測定より空気中1200℃まで
熱の出入りと重量変化はほとんどないことが分かった。
The SiO 2 particles used as the raw material had a particle size of 20.
nm, and the measured specific surface area was 184.7.
m 2 / g. XRD analysis showed that the SiO 2 particles were amorphous, and TG-DTA measurement showed that there was almost no change in heat and no change in weight up to 1200 ° C. in air.

【0033】次に、図1に示した噴霧熱分解製造装置に
上記出発溶液(原料溶液)を導入して、結晶性Pd粒子
を芯材としこの外表面を一様に被覆する非晶質酸化ケイ
素の表面層とで構成された粉体材料すなわちSiO2
覆Pd粒子を合成した。
Next, the starting solution (raw material solution) is introduced into the spray pyrolysis production apparatus shown in FIG. 1, and the amorphous Pd particles are used as a core material to uniformly coat the outer surface thereof. A powder material composed of a silicon surface layer, that is, SiO 2 -coated Pd particles was synthesized.

【0034】尚、上記噴霧熱分解製造装置において低温
加熱炉13である乾燥炉の温度は300℃、中温加熱炉
14である熱分解炉の温度は600℃、及び、高温加熱
炉15である結晶化炉の温度は1400℃にそれぞれ設
定されている。
The temperature of the drying furnace as the low-temperature heating furnace 13 is 300 ° C., the temperature of the pyrolysis furnace as the medium-temperature heating furnace 14 is 600 ° C., and the temperature of the high-temperature heating furnace 15 is the crystal. The temperature of the gasification furnace is set to 1400 ° C.

【0035】また、合成した粒子の形態は、電界放射型
走査型電子顕微鏡(FE−SEM;日立製作所製,S−
800)で観察した。また、粒子をエポキシ樹脂に包理
してミクロトーム(Reichert-Nissei製,Ultracut N)
で50〜80nmの厚さの薄片に切り、透過型電子顕微
鏡(TEM;日本電子製,JEM-200CX)で粒子の内部構
造を観察し、付属のエネルギー分散型X線分析装置(E
DS;Philips製,EDAX-PV9900)で組成分析を行った。
これ等の観察結果を以下の『結果』の欄において実施例
2並びに比較例の結果と共に詳細に説明する。
The form of the synthesized particles is determined by using a field emission scanning electron microscope (FE-SEM;
800). Also, the particles are wrapped in epoxy resin and a microtome (Reichert-Nissei, Ultracut N)
And cut into thin pieces having a thickness of 50 to 80 nm with a transmission electron microscope (TEM; manufactured by JEOL Ltd., JEM-200CX) to observe the internal structure of the particles. The attached energy dispersive X-ray analyzer (E
DS; EDAX-PV9900, manufactured by Philips).
The results of these observations will be described in detail in the following “Results” section together with the results of Example 2 and Comparative Example.

【0036】次に、粒子の比表面積はBET法(Microm
eritics製,Flowsorb II)で測定し、また、粒子の熱分
析(TG−DTA;理学電気製,TAS-200)は窒素中で
20K・min-1の加速速度で行った。
Next, the specific surface area of the particles is determined by the BET method (Microm
The thermal analysis of the particles (TG-DTA; TAS-200, manufactured by Rigaku Denki) was performed in nitrogen at an acceleration rate of 20 K · min −1 .

【0037】[実施例2]SiO2 超微粒子をPdに対
し1mass%(質量%)の割合で0.5mol/dm3 のPd
(NO32 水溶液中に混合して出発溶液(原料溶液)
を調製している点を除き実施例1と略同一の条件でSi
2 被覆Pd粒子を合成した。
Example 2 0.5 mol / dm 3 of Pd was added at a ratio of 1 mass% (mass%) of Pd to SiO 2 ultrafine particles.
(NO 3 ) 2 Starting solution mixed with an aqueous solution (raw material solution)
Under substantially the same conditions as in Example 1 except that
O 2 -coated Pd particles were synthesized.

【0038】[比較例]SiO2 超微粒子が無添加の
0.5mol/dm3 のPd(NO32 水溶液を出発溶液
(原料溶液)としている点を除き実施例1と略同一の条
件でPd粒子を合成した。
Comparative Example Under substantially the same conditions as in Example 1 except that a 0.5 mol / dm 3 aqueous solution of Pd (NO 3 ) 2 to which no ultrafine SiO 2 particles were added was used as a starting solution (raw material solution). Pd particles were synthesized.

【0039】『結果』合成された粒子のSEM写真と粒
子の薄片のTEM写真から以下のことが確認された。
[Results] From the SEM photograph of the synthesized particles and the TEM photograph of the flakes of the particles, the following was confirmed.

【0040】すなわち、SiO2 超微粒子が無添加の比
較例に係るPd粒子では表面は非常に平滑であるのと比
較すると、SEM写真から合成された実施例1に係る粒
子の表面に凹凸があり、SiO2 超微粒子で覆われてい
ることが分かる。粒子の薄片のTEM写真にはコントラ
ストの著しく異なる二相が観察された。
That is, when the surface of the Pd particle according to the comparative example to which no ultrafine SiO 2 particles were added was very smooth, the surface of the particle according to the example 1 synthesized from the SEM photograph had irregularities. It can be seen that the particles are covered with ultrafine SiO 2 particles. Two phases with significantly different contrast were observed in the TEM photograph of the flakes of the particles.

【0041】そして、TEM−EDS分析より、透明に
見える表面部にはSi元素が、粒子内部の不透明な部分
にはPdが検出された。また、電子線回折により表面部
は非晶質を示すブロードなリングパターンが、Pdの部
分は立方晶を示す回折パターンが認められた。試料のX
RDパターンには立方晶Pdの鋭いピークのみが認めら
れ、SiO2 に帰属されるピークは現れなかった。
From the TEM-EDS analysis, Si element was detected on the transparent surface, and Pd was detected on the opaque part inside the particle. Further, a broad ring pattern showing amorphous on the surface portion and a diffraction pattern showing cubic crystal on the Pd portion were recognized by electron beam diffraction. X of sample
Only a sharp peak of cubic Pd was observed in the RD pattern, and no peak attributed to SiO 2 appeared.

【0042】これ等の結果から、SiO2 超微粒子が1
0mass%添加された実施例1の場合、結晶性の高いPd
粒子のコア(芯材)と、厚さがほぼ均一なSiO2 の表
面層からなるマイクロカプセル粒子(粉体材料)が得ら
れることが確認された。
From these results, it was found that ultrafine SiO 2 particles
In the case of Example 1 in which 0 mass% is added, Pd having high crystallinity
It was confirmed that microcapsule particles (powder material) comprising a particle core (core material) and a surface layer of SiO 2 having a substantially uniform thickness were obtained.

【0043】計算では、添加量が10mass%の実施例1
と添加量が1mass%の実施例2の場合、SiO2 の体積
分率はそれぞれ約35%と5.2%で、0.5μmの球
状Pd粒子表面にはそれぞれ46nmと4.6nmの被
覆層が形成される。
In the calculation, Example 1 in which the amount of addition was 10 mass% was used.
In the case of Example 2 where the addition amount is 1 mass%, the volume fraction of SiO 2 is about 35% and 5.2%, respectively, and the coating layer of 46 nm and 4.6 nm respectively is formed on the surface of the 0.5 μm spherical Pd particle. Is formed.

【0044】粒子内部構造の観察ではSiO2 層がポー
ラスなので少し厚めに見えるが、添加量が1mass%の実
施例2の場合、SiO2 による被覆は若干不完全でPd
粒子の一部が露出していることが観察された。
In the observation of the internal structure of the particles, the SiO 2 layer is porous and looks slightly thicker, but in the case of Example 2 where the addition amount is 1 mass%, the coating with SiO 2 is slightly incomplete and Pd
It was observed that some of the particles were exposed.

【0045】また、EDS分析と電子線回折により、S
iO2 超微粒子の集まった表面層の中に少量の細かい球
状Pd超微粒子が混入することもあったが、逆にSiO
2 が内部のPd粒子中に存在することはなかった。
Further, by EDS analysis and electron diffraction, S
A small amount of fine spherical Pd ultra-fine particles sometimes mixed into the surface layer where the iO 2 ultra-fine particles were gathered.
2 was not present in the internal Pd particles.

【0046】そして、実施例1及び実施例2に係る粉体
材料(SiO2 被覆Pd粒子)を適用して内部電極用ペ
ーストを調製し、かつ、この内部電極用ペーストを用い
てMLCCを製造したところ、比較例のPd粒子が適用
された内部電極用ペーストを用いた場合に較べてデラミ
ネーションやクラック等の構造欠陥が少なかった。
Then, a paste for an internal electrode was prepared by applying the powder material (SiO 2 -coated Pd particles) according to Examples 1 and 2, and an MLCC was manufactured using the paste for an internal electrode. However, there were fewer structural defects such as delamination and cracks as compared with the case of using the internal electrode paste to which the Pd particles of the comparative example were applied.

【0047】[0047]

【発明の効果】請求項1記載の発明に係る粉体材料は、
芯材である結晶性Pd粒子の外表面が非晶質酸化ケイ素
の表面層で覆われており、また、請求項2記載の発明に
係る粉体材料は、複数の結晶性Pd微粒子が酸化ケイ素
微粒子のマトリックス中に均一に分散された複合粒子で
構成されていることから、上記結晶性Pd粒子若しくは
結晶性Pd微粒子が酸化され難くなり、かつ、非晶質酸
化ケイ素の表面層並びに酸化ケイ素微粒子のマトリック
スの作用により結晶性Pd粒子若しくは結晶性Pd微粒
子が表面改質されてその分散性も改善される。
The powder material according to the first aspect of the present invention is
The outer surface of the crystalline Pd particles as the core material is covered with a surface layer of amorphous silicon oxide, and the powder material according to the invention according to claim 2, wherein the plurality of crystalline Pd fine particles are silicon oxide. Since it is composed of composite particles uniformly dispersed in a matrix of fine particles, the crystalline Pd particles or the crystalline Pd fine particles are hardly oxidized, and a surface layer of amorphous silicon oxide and silicon oxide fine particles The surface of the crystalline Pd particles or crystalline Pd fine particles is modified by the action of the matrix described above, and the dispersibility thereof is also improved.

【0048】従って、これ等粉体材料が内部電極用ペー
ストの金属粉末として適用された場合、その結晶性Pd
粒子若しくは結晶性Pd微粒子表面の酸化が上記表面層
若しくはマトリックスの作用で防止されることに伴い、
Pdの酸化反応、PdOの還元反応が起こる900℃未
満における内部電極用ペーストの膨張・収縮現象が抑制
されるため、MLCCの構成層である内部電極と誘電体
層の膨張と収縮挙動を略一致させることが可能となる効
果を有する。
Therefore, when these powder materials are applied as the metal powder of the internal electrode paste, their crystalline Pd
With the oxidation of the surface of the particles or crystalline Pd fine particles being prevented by the action of the surface layer or matrix,
Since the expansion and shrinkage of the internal electrode paste is suppressed below 900 ° C where the oxidation reaction of Pd and the reduction reaction of PdO occur, the expansion and shrinkage behavior of the internal electrode and the dielectric layer, which are the constituent layers of the MLCC, almost match. This has the effect of being able to cause

【0049】また、請求項3及び請求項4記載の発明に
係る粉体材料の製造方法によれば、一段階で請求項1及
び請求項2に係る粉体材料を製造できるためその効率の
改善が図れる効果を有している。
Further, according to the method of manufacturing a powder material according to the third and fourth aspects of the present invention, the powder material according to the first and second aspects can be manufactured in one step, so that the efficiency is improved. This has the effect of achieving the following.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る粉体材料を製造するための噴霧熱
分解製造装置の概略構成を示す説明図。
FIG. 1 is an explanatory view showing a schematic configuration of a spray pyrolysis production apparatus for producing a powder material according to the present invention.

【図2】図2(A)は積層セラミックコンデンサの概略
斜視図であり、図2(B)は図2(A)の一部切欠断面
図である。
2 (A) is a schematic perspective view of a multilayer ceramic capacitor, and FIG. 2 (B) is a partially cutaway sectional view of FIG. 2 (A).

【符号の説明】[Explanation of symbols]

1 噴霧熱分解製造装置 10 ミスト発生部 11 キャリアガス混合・供給系 12 反応管 13 低温加熱炉 14 中温加熱炉 15 高温加熱炉 16 回収部 17 排気ガス処理部 DESCRIPTION OF SYMBOLS 1 Spray pyrolysis manufacturing apparatus 10 Mist generation part 11 Carrier gas mixing / supply system 12 Reaction tube 13 Low temperature heating furnace 14 Medium temperature heating furnace 15 High temperature heating furnace 16 Recovery part 17 Exhaust gas processing part

フロントページの続き (51)Int.Cl.6 識別記号 FI H01G 4/12 361 H01G 1/01 (72)発明者 篠崎 和夫 東京都稲城市大丸13−6 (72)発明者 水谷 惟恭 東京都品川区荏原7−16−12Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01G 4/12 361 H01G 1/01 (72) Inventor Kazuo Shinozaki 13-6 Daimaru, Inagi-shi, Tokyo (72) Inventor Nobutasu Mizutani Shinagawa-ku, Tokyo EBARA 7-16-12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】結晶性Pd粒子を芯材としこの外表面を一
様に被覆する非晶質酸化ケイ素の表面層とで構成される
ことを特徴とする粉体材料。
1. A powder material comprising a crystalline Pd particle as a core material and an amorphous silicon oxide surface layer uniformly covering the outer surface thereof.
【請求項2】酸化ケイ素微粒子のマトリックス中に複数
の結晶性Pd微粒子が均一に分散された複合粒子にて構
成されることを特徴とする粉体材料。
2. A powder material comprising a composite particle in which a plurality of crystalline Pd fine particles are uniformly dispersed in a matrix of silicon oxide fine particles.
【請求項3】酸化ケイ素の超微粒子をPd塩の水溶液中
に分散させて原料溶液を調製し、かつ、この原料溶液を
噴霧して液滴とした後、低温、中温及び高温の3つの温
度領域を有する反応管内に上記液滴を搬入し、この反応
管内において乾燥、熱分解及び結晶化処理して請求項1
又は2記載の粉体材料を製造することを特徴とする粉体
材料の製造方法。
3. A raw material solution is prepared by dispersing ultrafine particles of silicon oxide in an aqueous solution of a Pd salt, and the raw material solution is sprayed to form droplets. 2. The method according to claim 1, wherein the droplets are carried into a reaction tube having a region, and dried, thermally decomposed, and crystallized in the reaction tube.
Or a method for producing a powder material, characterized by producing the powder material according to 2.
【請求項4】上記酸化ケイ素超微粒子のPdに対する割
合が10mass%、上記Pd塩の水溶液が0.5mol/dm3
のPd(NO32 水溶液、及び、上記低温、中温及び
高温の3つの温度領域が300℃、600℃及び140
0℃であることを特徴とする請求項1記載の粉体材料を
製造する請求項3記載の製造方法。
4. The ratio of the ultrafine silicon oxide particles to Pd is 10 mass%, and the aqueous solution of the Pd salt is 0.5 mol / dm 3.
Pd (NO 3 ) 2 aqueous solution, and the three temperature ranges of low, medium and high temperatures of 300 ° C., 600 ° C. and 140 ° C.
The method according to claim 3, wherein the temperature is 0 ° C.
JP9247608A 1997-08-29 1997-08-29 Powder material and its production Pending JPH1171601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9247608A JPH1171601A (en) 1997-08-29 1997-08-29 Powder material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9247608A JPH1171601A (en) 1997-08-29 1997-08-29 Powder material and its production

Publications (1)

Publication Number Publication Date
JPH1171601A true JPH1171601A (en) 1999-03-16

Family

ID=17166045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9247608A Pending JPH1171601A (en) 1997-08-29 1997-08-29 Powder material and its production

Country Status (1)

Country Link
JP (1) JPH1171601A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100658113B1 (en) 2005-04-27 2006-12-14 한국기계연구원 A production process of Fe nano powder with silica coating by Chemical Vapor Condensation
KR100925150B1 (en) 2008-05-29 2009-11-05 한국세라믹기술원 Ultrasonic spray pyrolysis apparatus
US7615939B2 (en) 2003-03-17 2009-11-10 C&D Zodiac, Inc. Spectrally calibratable multi-element RGB LED light source
JP2010018466A (en) * 2008-07-09 2010-01-28 Japan Fine Ceramics Center Reaction chamber for spray thermal decomposition apparatus, and spray thermal decomposition apparatus
WO2018092664A1 (en) * 2016-11-16 2018-05-24 昭栄化学工業株式会社 Method for producing metal powder

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615939B2 (en) 2003-03-17 2009-11-10 C&D Zodiac, Inc. Spectrally calibratable multi-element RGB LED light source
KR100658113B1 (en) 2005-04-27 2006-12-14 한국기계연구원 A production process of Fe nano powder with silica coating by Chemical Vapor Condensation
KR100925150B1 (en) 2008-05-29 2009-11-05 한국세라믹기술원 Ultrasonic spray pyrolysis apparatus
JP2010018466A (en) * 2008-07-09 2010-01-28 Japan Fine Ceramics Center Reaction chamber for spray thermal decomposition apparatus, and spray thermal decomposition apparatus
CN109952168A (en) * 2016-11-16 2019-06-28 昭荣化学工业株式会社 Metal powder in manufacturing method
WO2018092665A1 (en) * 2016-11-16 2018-05-24 昭栄化学工業株式会社 Method for producing metal powder
WO2018092664A1 (en) * 2016-11-16 2018-05-24 昭栄化学工業株式会社 Method for producing metal powder
CN109982798A (en) * 2016-11-16 2019-07-05 昭荣化学工业株式会社 Metal powder in manufacturing method
JPWO2018092665A1 (en) * 2016-11-16 2019-10-17 昭栄化学工業株式会社 Method for producing metal powder
JPWO2018092664A1 (en) * 2016-11-16 2019-10-17 昭栄化学工業株式会社 Method for producing metal powder
CN109952168B (en) * 2016-11-16 2022-05-10 昭荣化学工业株式会社 Method for producing metal powder
US11426791B2 (en) 2016-11-16 2022-08-30 Shoei Chemical Inc. Method for producing metal powder
US11458536B2 (en) 2016-11-16 2022-10-04 Shoei Chemical Inc. Method for producing metal powder

Similar Documents

Publication Publication Date Title
JP3475749B2 (en) Nickel powder and method for producing the same
JPH0340109B2 (en)
JP2001023852A (en) Laminated ceramic electronic component
JP3137035B2 (en) Nickel powder and method for producing the same
KR100346660B1 (en) Nickel composite particle and production process therefor
JP2000063901A (en) Powder material, its production, thick film electrically conductive paste using the power material and laminated ceramic capacitor using the paste
JP2002025847A (en) Conductive paste and laminated ceramic electronic component
JP3042224B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH1171601A (en) Powder material and its production
JP4168773B2 (en) Method for producing nickel powder with excellent sinterability
EP0834368B1 (en) Nickel powder and process for preparing the same
KR100533623B1 (en) Manufacturing method of ceramic thick film
JP2987995B2 (en) Internal electrode paste and multilayer ceramic capacitor using the same
JP2019067827A (en) Laminate electronic component
JP4780272B2 (en) Composite conductive particle powder, conductive paint containing the composite conductive particle powder, and multilayer ceramic capacitor
JPH1116766A (en) Manufacture of laminated ceramic electronic component
JP2005142352A (en) Sheet for internal electrode and its manufacturing method
JP4364782B2 (en) Boron-based composite metal fine particles, method for producing the same, and conductive paste
JPH0645183A (en) Palladium paste and manufacture of multilayer chip capacitor
JP2006348387A (en) Production method of nickel composite particle
JP2005068531A (en) Metal powder production method
JP2001247901A (en) Surface-coated nickel powder
JP2002321970A (en) Method of manufacturing ceramic sintered compact and method of manufacturing laminated ceramic electronic component
JP2005142353A (en) Method of manufacturing sheet for internal electrode
JP2004217948A (en) Nickel powder and its producing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040622