JP2000063901A - Powder material, its production, thick film electrically conductive paste using the power material and laminated ceramic capacitor using the paste - Google Patents

Powder material, its production, thick film electrically conductive paste using the power material and laminated ceramic capacitor using the paste

Info

Publication number
JP2000063901A
JP2000063901A JP10253220A JP25322098A JP2000063901A JP 2000063901 A JP2000063901 A JP 2000063901A JP 10253220 A JP10253220 A JP 10253220A JP 25322098 A JP25322098 A JP 25322098A JP 2000063901 A JP2000063901 A JP 2000063901A
Authority
JP
Japan
Prior art keywords
particles
powder material
powder
oxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10253220A
Other languages
Japanese (ja)
Inventor
Seirai Kuruma
声雷 車
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10253220A priority Critical patent/JP2000063901A/en
Publication of JP2000063901A publication Critical patent/JP2000063901A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a powder material applicable, e.g. to the structural material for paste for an internal electrode hardly easy to cause the structural defects of a laminated ceramic capacitor, to provide a method for producing it, to provide thick film electrically conductive paste using this powder material and to provide a laminated ceramic capacitor using this paste. SOLUTION: This powder material is composed of a core material composed of Ni particles and a surface layer composed of the oxide of one or more kinds selected from Al, Zr, Ti, Si, Pb, Fe, W, Mn, Bi, Nb, Ta, Mo, alkaline-earths and rare earth elements and covering the outer surface of the core material. Moreover, as for the method for producing this, a raw material soln. contg. an Ni compd. to form into Ni particles and the soluble salt or colloid of the components to form into the surface layer of the oxide is prepd., this raw material soln. is atomized into droplets, thereafter, the droplets are carried into a reaction tube by a carrier gas and are moreover passed through a heating region in the reaction tube to produce the powder material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、サブミクロンから
ミクロンサイズの粉体材料とその製造方法に係り、特
に、積層セラミックコンデンサにおける内部電極用ペー
ストの構成材料等として有用な粉体材料とその製造方法
およびこの粉体材料を用いた厚膜導電性ペーストとこの
ペーストを用いた積層セラミックコンデンサに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a submicron to micron size powder material and a method for manufacturing the same, and particularly to a powder material useful as a constituent material of an internal electrode paste in a multilayer ceramic capacitor and the manufacture thereof. The present invention relates to a method, a thick film conductive paste using this powder material, and a laminated ceramic capacitor using this paste.

【0002】[0002]

【従来の技術】近年、電子部品の軽薄短小化が進み、チ
ップ部品である積層セラミックコンデンサ(以下、ML
CCと略称する)に関しても小型化、高容量化の要求が
ますます高まりつつある。そして、MLCCの小型化と
高容量化を図る最も効果的な手法は誘電体層と内部電極
を薄くして多層化を図ることである。
2. Description of the Related Art In recent years, electronic parts have become lighter, thinner, shorter, and smaller, and chip parts, such as multilayer ceramic capacitors (hereinafter referred to as ML
Regarding CC), the demand for miniaturization and high capacity is increasing more and more. The most effective method for reducing the size and increasing the capacity of the MLCC is to reduce the thickness of the dielectric layer and the internal electrode to achieve a multilayer structure.

【0003】ところで、この種のMLCCとしては、例
えば、複数の誘電体層と内部電極が交互に積層されたコ
ンデンサ本体と、このコンデンサ本体の外側に設けられ
その一方が奇数番目の内部電極群に接続され他方が偶数
番目の内部電極群に接続された一対の外部電極とでその
主要部が構成されるものが知られている。
By the way, as this type of MLCC, for example, a capacitor body in which a plurality of dielectric layers and internal electrodes are alternately laminated, and one of which is provided on the outside of the capacitor body is an odd-numbered internal electrode group. It is known that a main part is composed of a pair of external electrodes that are connected and the other is connected to even-numbered internal electrode groups.

【0004】そして、このMLCCは、従来、以下のよ
うにして製造されている。
The MLCC is conventionally manufactured as follows.

【0005】まず、粉末化されたチタン酸バリウム(B
aTiO3 )や鉛を含むペロブスカイト型酸化物等の誘
電体と、ポリビニルブチラール樹脂あるいはブチルメタ
クリレートやメチルメタクリレート等のアクリル系樹脂
から成る有機バインダーを含む誘電体シート(一般に、
誘電体グリーンシートと称される)の表面に内部電極用
ペーストをスクリーン印刷法にて製膜しかつ乾燥させ
る。
First, powdered barium titanate (B
aTiO 3 ) or a dielectric such as perovskite type oxide containing lead and an organic binder made of polyvinyl butyral resin or an acrylic resin such as butyl methacrylate or methyl methacrylate (generally,
An internal electrode paste is formed on the surface of a dielectric green sheet) by a screen printing method and dried.

【0006】次に、上記内部電極用ペーストが製膜され
た誘電体シートを所定の枚数重ね合せかつこれ等を熱圧
着させた後、この熱圧着体を目的の大きさに切断する。
続いて、上記誘電体シート内の有機バインダーや内部電
極用ペースト内の有機ビヒクル等のバーンアウト(完全
燃焼)と内部電極および誘電体の同時焼結を目的として
上記熱圧着体を同時焼成(Cofiring)する。
Next, a predetermined number of dielectric sheets on which the above-mentioned internal electrode paste has been formed are superposed and thermocompression-bonded, and then the thermocompression-bonded body is cut into a desired size.
Subsequently, the thermocompression-bonded body is co-fired (cofiring) for the purpose of burnout (complete combustion) of the organic binder in the dielectric sheet or the organic vehicle in the internal electrode paste and simultaneous sintering of the internal electrode and the dielectric. ) Do.

【0007】次に、この様にして得られた複数の誘電体
層と内部電極が交互に積層されかつ焼成された積層体
(コンデンサ本体)の両端を磨き、その一端側では奇数
番目の内部電極群の端面をまた他端側では偶数番目の内
部電極群の端面をそれぞれ露出させた後、その磨かれた
両端面にMLCCと外部のデバイスを結合させるための
一対の外部電極を取り付けて上記積層セラミックコンデ
ンサ(MLCC)が完成されるものであった。
Next, both ends of the laminated body (capacitor body) obtained by alternately laminating a plurality of dielectric layers and internal electrodes thus obtained and fired are polished, and odd-numbered internal electrodes are formed on one end side thereof. After exposing the end faces of the group and the end faces of the even-numbered internal electrode group on the other end side, a pair of external electrodes for connecting the MLCC and an external device are attached to the polished both end faces, and the above-mentioned lamination is performed. The ceramic capacitor (MLCC) was completed.

【0008】ここで、上記誘電体シート表面上に製膜さ
れる内部電極用ペーストとしては、従来、ターピネオー
ルおよびエチルセルロース等から成る有機ビヒクルと金
属粉末を主成分とし、必要に応じて粘度調整用の希釈溶
剤等を配合した組成物が適用されている。そして、ML
CCの内部電極に要求される上記金属粉末の性質とし
て、セラミック誘電体と反応しないこと、粉末自体が溶
融しないこと、焼結時のセラミック誘電体への拡散が少
ないこと、および、電気抵抗が小さいこと等が挙げられ
る。この様な観点から内部電極用ペーストの金属粉末と
して、従来、Pd、Pt、Ag、Ag−Pd合金等の貴
金属粉末が適用されていた。
Here, the internal electrode paste formed on the surface of the dielectric sheet has heretofore been composed mainly of an organic vehicle composed of terpineol, ethyl cellulose and the like and a metal powder, and for adjusting the viscosity as necessary. A composition containing a diluent solvent or the like is applied. And ML
The properties of the above-mentioned metal powder required for the internal electrode of CC are that it does not react with the ceramic dielectric, the powder itself does not melt, there is little diffusion into the ceramic dielectric during sintering, and the electrical resistance is small. There are such things. From such a viewpoint, noble metal powders such as Pd, Pt, Ag, and Ag-Pd alloys have been conventionally used as the metal powders for the internal electrode paste.

【0009】しかし、最近のMLCCにおける誘電体層
と内部電極の積層数が増えるに伴い電極部におけるコス
トの負担が高くなり、これに対応してMLCCの製造コ
ストも割高となる弊害が顕著になってきた。
However, as the number of laminated dielectric layers and internal electrodes in the recent MLCCs increases, the cost burden on the electrode parts increases, and correspondingly, the manufacturing cost of the MLCCs becomes relatively expensive. Came.

【0010】このため、MLCCにおける低コスト化の
要求が高まり、広く利用されていたPd等貴金属の金属
粉末に代わって、近年、低廉なNi等卑金属の金属粉末
が利用されるようになってきた。
For this reason, the demand for cost reduction in MLCCs has increased, and in recent years, inexpensive metal powders of base metals such as Ni have come to be used in place of the widely used metal powders of precious metals such as Pd. .

【0011】[0011]

【発明が解決しようとする課題】ところで、MLCCに
おける内部電極と誘電体の同時焼成(Cofiring)プロセ
スにおいて、Ni粒子に起因した構造欠陥の発生が大き
な問題となっている。
By the way, in the simultaneous firing (Cofiring) process of the internal electrodes and the dielectric in the MLCC, the occurrence of structural defects due to Ni particles has become a serious problem.

【0012】すなわち、上記金属粉末としてNi粒子が
適用された場合、焼成中、Ni粒子は熔融せずかつセラ
ミック誘電体との反応も少ないが、空気中で加熱される
と酸化して膨張が起こり、かつ、高温条件下でNi粒子
の焼結に伴う急激な収縮を引き起こす。そして、Ni粒
子の焼結に伴う上記収縮が発生する温度は、セラミック
誘電体の焼結に伴う収縮が生ずる温度(1200〜13
00℃付近)に較べてかなり低いとされている。一方、
セラミック誘電体の膨張・収縮現象は1200〜130
0℃付近の焼結による収縮のみである。
That is, when Ni particles are applied as the above-mentioned metal powder, the Ni particles do not melt during firing and react less with the ceramic dielectric, but when heated in air, they oxidize and expand. In addition, it causes rapid shrinkage due to sintering of Ni particles under high temperature conditions. The temperature at which the shrinkage occurs due to the sintering of the Ni particles is the temperature at which the shrinkage occurs along with the sintering of the ceramic dielectric (1200 to 13).
It is said that the temperature is considerably lower than that at around 00 ° C. on the other hand,
The expansion / contraction phenomenon of ceramic dielectric is 1200-130
Only shrinkage due to sintering at around 0 ° C.

【0013】この様に内部電極とセラミック誘電体の膨
張と収縮挙動が異なるため、セラミック誘電体と内部電
極の層間に引っ張り応力や圧縮応力が発生し、完成され
たMLCCにデラミネーション(Delamination,層間剥
離現象)やクラック等の構造欠陥が誘発され易い問題点
を有していた。
Since the expansion and contraction behaviors of the internal electrode and the ceramic dielectric are different as described above, tensile stress and compressive stress are generated between the layers of the ceramic dielectric and the internal electrode, resulting in delamination (delamination) of the completed MLCC. There is a problem that structural defects such as peeling phenomenon) and cracks are easily induced.

【0014】尚、MLCCのこの様な構造欠陥を防止す
るため、セラミック誘電体と同質の誘電体微粒子や粘土
鉱物、有機ペントナイト等を内部電極用ペースト内に添
加してNi粒子の過焼結を抑制する等の工夫も従来なさ
れているが、これ等添加物粒子とNi粒子との分離に起
因した電極膜の途切れを生ずる恐れがあるため未だ有効
な防止方法とはなり得ていない。
In order to prevent such structural defects of the MLCC, dielectric fine particles of the same quality as the ceramic dielectric, clay minerals, organic pentonite, etc. are added to the internal electrode paste to over-sinter the Ni particles. Although measures such as suppressing the above have been made in the past, there is a possibility that the electrode film may be discontinued due to the separation of these additive particles and Ni particles, so that it is not yet an effective prevention method.

【0015】本発明はこの様な問題点に着目してなされ
たもので、その課題とするところは、MLCCの上述し
た構造欠陥を引き起こし難い内部電極用ペーストの構成
材料等に適用可能な粉体材料とその製造方法を提供する
ことにある。
The present invention has been made by paying attention to such a problem, and its problem is that the powder applicable to the constituent material of the internal electrode paste which is hard to cause the above-mentioned structural defects of MLCC. It is to provide a material and a manufacturing method thereof.

【0016】[0016]

【課題を解決するための手段】そこで、本発明者等はN
i粒子の耐酸化特性の向上と焼結特性を自在に制御でき
るようにするため、Ni粒子の表面や粒子内の粒界に上
記セラミック誘電体の種類に合わせた酸化物コーティン
グ層を設けた粉体材料を合成すると共にこの粉体材料を
用いて継続して実験を繰返した結果、上述した構造欠陥
を引き起こし難い粉体材料とその製造方法を見出だすに
至った。本発明はこの様な技術的検討を経て完成された
ものである。
Therefore, the present inventors have decided to use N
In order to improve the oxidation resistance of i-particles and to control the sintering characteristics freely, a powder in which an oxide coating layer is provided on the surface of Ni particles or at grain boundaries within the particles according to the type of the ceramic dielectric As a result of synthesizing the body material and continuing the experiment using this powder material, the inventors have found a powder material which is hard to cause the above-mentioned structural defects and a manufacturing method thereof. The present invention has been completed through such technical studies.

【0017】すなわち、請求項1に係る粉体材料は、N
i粒子から成る芯材と、Al、Zr、Ti、Si、P
b、Fe、W、Mn、Bi、Nb、Ta、Mo、アルカ
リ土類(Ca、Sr、Ba、Ra)および希土類元素
(Sc、Y、La、Ce、Pr、Nd、Pm、Sm、E
u、Gd、Tb、Dy、Ho、Er、Tm、Yb、L
u)から選ばれた一種以上の元素の酸化物から成り上記
芯材外表面の少なくとも一部を被覆する表面層とで構成
されることを特徴とし、請求項2に係る粉体材料は、N
i粒子から成る芯材と、Al、Zr、Ti、Si、P
b、Fe、W、Mn、Bi、Nb、Ta、Mo、アルカ
リ土類および希土類元素から選ばれた一種以上の元素の
酸化物から成りその一部が上記芯材内に入り込むと共に
芯材外表面の少なくとも一部を被覆する表面層とで構成
されることを特徴とし、また、請求項3に係る粉体材料
は、Al、Zr、Ti、Si、Pb、Fe、W、Mn、
Bi、Nb、Ta、Mo、アルカリ土類および希土類元
素から選ばれた一種以上の元素の酸化物から成る微粒子
のマトリックス中にNi微粒子が分散された複合粒子に
て構成されることを特徴とするものである。
That is, the powder material according to claim 1 is N
Core material consisting of i particles and Al, Zr, Ti, Si, P
b, Fe, W, Mn, Bi, Nb, Ta, Mo, alkaline earth (Ca, Sr, Ba, Ra) and rare earth elements (Sc, Y, La, Ce, Pr, Nd, Pm, Sm, E)
u, Gd, Tb, Dy, Ho, Er, Tm, Yb, L
and a surface layer made of an oxide of one or more elements selected from u) and covering at least a part of the outer surface of the core material.
Core material consisting of i particles and Al, Zr, Ti, Si, P
b, Fe, W, Mn, Bi, Nb, Ta, Mo, oxides of one or more elements selected from alkaline earth and rare earth elements, part of which enters the core material and the outer surface of the core material And a surface layer that covers at least a part of the powder material according to claim 3, and the powder material according to claim 3 is Al, Zr, Ti, Si, Pb, Fe, W, Mn,
A composite particle in which Ni fine particles are dispersed in a matrix of fine particles composed of oxides of one or more elements selected from Bi, Nb, Ta, Mo, alkaline earth elements and rare earth elements. It is a thing.

【0018】そして、請求項1〜請求項3に係る粉体材
料においては、Ni粒子の芯材と酸化物の表面層、並び
に、酸化物微粒子とこのマトリックス中に分散されたN
i微粒子が一体となっているので、例えばこの粉体材料
が内部電極用ペーストの金属粉末として適用された場
合、混練の過程でNi粒子若しくは微粒子と酸化物とが
分離することがなく上述した電極膜の途切れを生ずる恐
れがない。
In the powder material according to any one of claims 1 to 3, the core material of the Ni particles and the surface layer of the oxide, the oxide fine particles and the N dispersed in the matrix.
Since the i fine particles are integrated, for example, when this powder material is applied as the metal powder of the internal electrode paste, the Ni particles or the fine particles and the oxide are not separated during the kneading process, There is no risk of film breaks.

【0019】また、請求項1および請求項2に係る粉体
材料は、芯材であるNi粒子の外表面の少なくとも一部
が上記酸化物の表面層で覆われ、請求項3に係る粉体材
料は、Ni微粒子が上記酸化物微粒子のマトリックス中
に分散された複合粒子で構成されていることから、上記
Ni粒子若しくは微粒子が酸化され難くなり、かつ、上
記表面層並びにマトリックスの作用によりNi粒子若し
くは微粒子が表面改質されてその分散性も改善される。
Further, in the powder material according to claims 1 and 2, at least part of the outer surface of the Ni particles as the core material is covered with the surface layer of the oxide, and the powder according to claim 3 Since the material is composed of composite particles in which Ni fine particles are dispersed in the matrix of the oxide fine particles, the Ni particles or the fine particles are less likely to be oxidized, and the Ni particles are acted by the action of the surface layer and the matrix. Alternatively, the fine particles are surface-modified to improve their dispersibility.

【0020】更に、上記酸化物の表面層並びにマトリッ
クスの作用によりNi粒子若しくは微粒子の焼結温度が
高温化されるため、例えばこの粉体材料が内部電極用ペ
ーストの金属粉末として適用された場合、MLCCの構
成層である内部電極と誘電体層における同時焼成の際の
膨張と収縮挙動を略一致させることが可能となる。
Further, since the sintering temperature of Ni particles or fine particles is raised by the action of the surface layer and matrix of the above oxide, for example, when this powder material is applied as the metal powder of the internal electrode paste, It is possible to make the expansion and contraction behaviors of the internal electrodes, which are the constituent layers of the MLCC, and the dielectric layer during the simultaneous firing substantially match.

【0021】次に、Ni粒子の表面(請求項1)、Ni
粒子表面と粒子内部(請求項3)、粒子内の粒界(請求
項3)等に設けられる酸化物コーティング層については
単分子層以上ないとコーティング効果が少なく、また、
多過ぎるとNi粒子若しくは微粒子としての機能が失わ
れる。請求項4は、粉体全体に対する酸化物の占める好
適な割合について特定した発明に関する。他方、請求項
5は、MLCCの構成層である誘電体層の材料に合わせ
て酸化物の種類を特定した発明に関する。
Next, the surface of the Ni particles (claim 1) and Ni
Regarding the oxide coating layer provided on the surface of the particle, the inside of the particle (claim 3), the grain boundary within the particle (claim 3), etc., the coating effect is small unless the molecular layer is a monolayer or more.
If it is too large, the function as Ni particles or fine particles is lost. Claim 4 relates to the invention in which a suitable ratio of the oxide to the whole powder is specified. On the other hand, claim 5 relates to the invention in which the type of oxide is specified according to the material of the dielectric layer that is the constituent layer of the MLCC.

【0022】すなわち、請求項4に係る発明は、請求項
1〜3のいずれかに記載の発明に係る粉体材料を前提と
し、粉体全体に対する上記酸化物の占める体積の割合が
0.005%〜65%であることを特徴とし、また、請
求項5に係る発明は、請求項1〜4のいずれかに記載の
発明に係る粉体材料を前提とし、上記酸化物が、ペロブ
スカイト、ルチル、タングテンブロンズまたはパイロク
ロアであることを特徴とするものである。
That is, the invention according to claim 4 is based on the powder material according to any one of claims 1 to 3, and the volume ratio of the oxide to the entire powder is 0.005. % To 65%, and the invention according to claim 5 is based on the powder material according to any one of claims 1 to 4, wherein the oxide is perovskite or rutile. , Tung Ten Bronze or Pyrochlore.

【0023】ところで、請求項1に係る粉体材料等を製
造する場合、これ等粉体材料と類似の構造を有する粉体
材料の製造方法として、従来、以下のような手法が知ら
れている。例えば、事前に調製された金属粒子(コア粒
子)の表面にCVD法によりコーティング層を製膜した
り、あるいは、事前に調製されたコア粒子の表面に界面
反応法やゾルゲル法、機械混合法等によりコーティング
層を形成する方法等が挙げられる。しかし、これ等の従
来法はコア粒子の調製とコーティング層の形成とを二段
階に分けて行う必要があり、その分、製造効率は余り良
好でない方法であった。そこで、請求項6に係る発明
は、請求項1〜請求項5に係る粉体材料を噴霧熱分解法
により一段階で製造してその効率を改善させた発明に関
し、また、請求項7〜9に係る発明はその製造条件を特
定した発明に関する。
By the way, when the powder material or the like according to claim 1 is manufactured, the following method is conventionally known as a method for manufacturing a powder material having a structure similar to those of the powder material. . For example, a coating layer is formed on the surface of metal particles (core particles) prepared in advance by a CVD method, or an interface reaction method, a sol-gel method, a mechanical mixing method, etc. is formed on the surface of core particles prepared in advance. And a method of forming a coating layer. However, these conventional methods require that the preparation of the core particles and the formation of the coating layer be performed in two steps, and the production efficiency is not so good by that much. Therefore, the invention according to claim 6 relates to an invention in which the powder material according to claims 1 to 5 is manufactured in one step by a spray pyrolysis method to improve the efficiency, and claims 7 to 9 The invention according to (1) relates to an invention whose manufacturing conditions are specified.

【0024】すなわち、請求項6に係る発明は、請求項
1〜5のいずれかに記載の粉体材料を製造する方法を前
提とし、上記Ni粒子若しくはNi微粒子となるNi化
合物および上記酸化物の表面層若しくは微粒子となる成
分の可溶性塩またはコロイドを含む原料溶液を調製し、
かつ、この原料溶液を噴霧して液滴とした後、この液滴
を不活性ガスおよび/または還元性ガスで構成されるキ
ャリアガスにより反応管内に搬入すると共に反応管内の
加熱領域を通過させて上記粉体材料を製造することを特
徴とし、また、請求項7に係る発明は、請求項6記載の
粉体材料の製造方法を前提とし、上記原料溶液中のNi
イオン濃度が0.1〜5モル/リットルの範囲に設定さ
れていることを特徴とし、請求項8に係る発明は、請求
項6または7記載の粉体材料の製造方法を前提とし、上
記キャリアガスの流速が1〜5cm/sec の範囲に設定
されていることを特徴とし、請求項9に係る発明は、請
求項6〜8のいずれかに記載の粉体材料の製造方法を前
提とし、上記反応管が長さ方向に亘り少なくとも2つの
温度領域を有すると共に、液滴の乾燥を主目的とした第
1番目の温度領域における温度が100〜600℃に設
定され、第2番目以降の温度領域における最高温度が、
乾燥された上記液滴を金属Niまで熱分解あるいは還元
させる温度より100℃以上高くかつ金属Niの融点よ
りも低い温度に設定されていることを特徴とするもので
ある。
That is, the invention according to claim 6 is premised on the method for producing the powder material according to any one of claims 1 to 5, and comprises the Ni compound or the oxide to be the Ni particles or Ni particles. Prepare a raw material solution containing a soluble salt or colloid of the component to be the surface layer or fine particles,
Moreover, after spraying this raw material solution into droplets, the droplets are carried into the reaction tube by a carrier gas composed of an inert gas and / or a reducing gas and passed through a heating region in the reaction tube. The above-mentioned powder material is manufactured, and the invention according to claim 7 is premised on the method for manufacturing the powder material according to claim 6, and the Ni in the raw material solution is used.
The ion concentration is set in the range of 0.1 to 5 mol / liter, and the invention according to claim 8 is based on the method for producing a powder material according to claim 6 or 7, The gas flow rate is set in the range of 1 to 5 cm / sec, and the invention according to claim 9 is based on the method for producing a powder material according to any one of claims 6 to 8, The reaction tube has at least two temperature regions over the lengthwise direction, the temperature in the first temperature region mainly for the purpose of drying the droplets is set to 100 to 600 ° C., and the second and subsequent temperatures are set. The highest temperature in the region
It is characterized in that the temperature is set to 100 ° C. or more higher than the temperature at which the dried droplets are thermally decomposed or reduced to metallic Ni and lower than the melting point of metallic Ni.

【0025】次に、請求項10と請求項11に係る発明
は上記粉体材料の適用対象を特定した発明に関するもの
である。
Next, the inventions according to claims 10 and 11 relate to the invention in which the application target of the powder material is specified.

【0026】すなわち、請求項10に係る発明は、有機
ビヒクルと金属粉末を主成分とする厚膜導電性ペースト
を前提とし、上記金属粉末が、請求項1〜5のいずれか
に記載の粉体材料により構成されていることを特徴と
し、また、請求項11に係る発明は、複数の誘電体層と
内部電極とが交互に積層された積層セラミックコンデン
サを前提とし、上記内部電極が、請求項10記載の厚膜
導電性ペーストを用いて形成されていることを特徴とす
るものである。
That is, the invention according to claim 10 is premised on a thick film conductive paste containing an organic vehicle and a metal powder as main components, and the metal powder is the powder according to any one of claims 1 to 5. The invention according to claim 11 is based on a multilayer ceramic capacitor in which a plurality of dielectric layers and internal electrodes are alternately laminated, and the internal electrodes are defined by It is characterized in that it is formed by using the thick film conductive paste described in 10.

【0027】尚、本発明に係る粉体材料の適用対象は、
従来技術で例示したMLCCの内部電極用ペーストの金
属粉末や請求項10で特定した厚膜導電性ペースト等に
限定されることはなく、例えば、一般の塗料用の粉体、
一般の厚膜部品用の粉末等任意である。
The object to which the powder material according to the present invention is applied is
The invention is not limited to the metal powder of the internal electrode paste of MLCC exemplified in the prior art and the thick film conductive paste specified in claim 10, and for example, powder for general paint,
It is optional such as powder for general thick film parts.

【0028】[0028]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0029】図1は、本発明に係る粉体材料の製造方法
に適用される噴霧熱分解製造装置の概略構成を示す説明
図である。
FIG. 1 is an explanatory view showing a schematic configuration of a spray pyrolysis production apparatus applied to the method for producing a powder material according to the present invention.

【0030】すなわち、この噴霧熱分解製造装置1は、
ミスト発生部(超音波噴霧器、二流体ノズル、静電噴霧
器等)10と、キャリアガス混合・供給系11と、反応
管12と、この反応管12の長さ方向に亘り配置された
第1番目の加熱炉13並びに第2番目の加熱炉14と、
これ等加熱炉の温度制御・記録系(図示せず)と、金属
粉末材料の回収部(サイクロン、フィルタ、静電集塵器
等)16と、排気ガス処理部17とでその主要部が構成
されている。
That is, the spray pyrolysis production apparatus 1 is
Mist generator (ultrasonic atomizer, two-fluid nozzle, electrostatic atomizer, etc.) 10, carrier gas mixing / supply system 11, reaction tube 12, and the first one arranged along the length of the reaction tube 12. Heating furnace 13 and second heating furnace 14 of
A temperature control / recording system (not shown) of these heating furnaces, a metal powder material recovery unit (cyclone, filter, electrostatic precipitator, etc.) 16, and an exhaust gas processing unit 17 constitute the main part. Has been done.

【0031】以下、SiO2 等の酸化物微粒子がNi
(NO32 ・6H2Oの水溶液中に分散された原料溶
液より、酸化物とNi粒子から成る粉体材料を合成する
場合を例に挙げて粉体材料の生成機構を説明する。
Below, oxide fine particles such as SiO 2 are referred to as Ni.
(NO 3) from the raw material solution dispersed in an aqueous solution of 2 · 6H 2 O, explaining the generation mechanism of the powder material as an example a case of synthesizing the powder material made of an oxide of Ni particles.

【0032】まず、ミスト発生部10によって発生した
液滴は不活性ガスおよび/または還元性ガスで構成され
るキャリアガスによって反応管12内に導入されると、
液滴は乾燥して各原料成分の乾燥混合物の固体粒子を作
る。この粒子の中ではNiOと酸化物の超微粒子が均一
に混合されている。更に加熱されると温度の上昇に伴い
固体粒子中のNiOは還元されてNiになり、酸化物超
微粒子のマトリックス中にNiの一次微粒子が均一に分
散した構造となる。更に高温では、各粒子の中において
Niの焼結(すなわちNiの一次微粒子の合体や融合)
が進むに従い、Niが粒子の真ん中に集まり中実で単結
晶に近いコア粒子が形成される。
First, when the droplets generated by the mist generating section 10 are introduced into the reaction tube 12 by a carrier gas composed of an inert gas and / or a reducing gas,
The droplets are dried to form solid particles of a dry mixture of each ingredient. Among these particles, ultrafine particles of NiO and oxide are uniformly mixed. When further heated, NiO in the solid particles is reduced to Ni as the temperature rises, and the primary particles of Ni are uniformly dispersed in the matrix of the ultrafine oxide particles. At higher temperature, sintering of Ni in each particle (ie, coalescence or fusion of Ni primary particles)
As Ni progresses, Ni gathers in the center of the particle to form a solid core particle close to a single crystal.

【0033】一方、酸化物超微粒子はNiの焼結温度で
通常は焼結しないため、Niが真ん中に集まるにつれて
粒子の表面に押し出されてしまう。このプロセスにおい
て生成される粒子の構造や結晶性は、液滴/粒子の加熱
状況(加熱温度、加熱時間、加熱速度等)に影響され、
均一混合体のNiO/酸化物やNi/酸化物(請求項
3)またはNi粒子と酸化物コート(請求項1、請求項
2)等が得られる。
On the other hand, since the ultrafine oxide particles are not normally sintered at the sintering temperature of Ni, they are extruded on the surface of the particles as Ni is collected in the middle. The structure and crystallinity of the particles produced in this process are affected by the heating conditions (heating temperature, heating time, heating rate, etc.) of the droplets / particles,
A uniform mixture of NiO / oxide and Ni / oxide (claim 3) or Ni particles and oxide coat (claims 1 and 2) can be obtained.

【0034】そして、この噴霧熱分解法により理想的な
複合構造を有する粒子を合成するためには、各液滴/粒
子が加熱される温度やその昇温速度を精密に制御するこ
とを要する。また、この噴霧熱分解法において生成され
るNi粒子の粒径は上記液滴のNiイオン濃度に大きく
依存する。すなわち、Niイオン濃度が小さいと微細な
Ni粉が生成され、反対にNiイオン濃度が高過ぎると
生成されたNi粉の粒子径が大きくなり過ぎて粒子構造
の制御が非常に難しくなる。このため、原料溶液中のN
iイオン濃度を0.1モル/l〜5モル/lの範囲内に
設定することが望ましい(請求項7)。
In order to synthesize particles having an ideal composite structure by this spray pyrolysis method, it is necessary to precisely control the temperature at which each droplet / particle is heated and its temperature rising rate. The particle size of Ni particles generated in this spray pyrolysis method largely depends on the Ni ion concentration of the droplets. That is, if the Ni ion concentration is low, fine Ni powder is generated, and conversely, if the Ni ion concentration is too high, the particle diameter of the generated Ni powder becomes too large, which makes it very difficult to control the particle structure. Therefore, N in the raw material solution
It is desirable to set the i-ion concentration within a range of 0.1 mol / l to 5 mol / l (claim 7).

【0035】また、液滴/粒子の上記昇温速度は、反応
管の温度プロファイル及びキャリアガスの流速により決
定される。そして、キャリアガスの流速が速過ぎると合
成された粒子の加熱速度が速くなり、その分、加熱時間
が短くなることから原料の不完全反応により純度が低く
なり、かつ、急激な溶媒の蒸発により中空体や不規則な
粒子が生成される問題を生ずる。反対にキャリアガスの
流速が遅過ぎるとミスト(霧)の供給量は小さくなり粒
子を回収することが困難となる。そこで、液滴/粒子の
加熱領域における滞留時間を測定してキャリアガスの流
速条件を検討した結果、キャリアガスの流速については
1cm/sec 〜5cm/sec の範囲内に設定することが
望ましいことが確認された(請求項8)。すなわち、上
記流速が5cm/sec 以上であると熱分解反応が不十分
となり、かつ、Ni粒子内の焼結も不十分となるため不
純物を多く含んだ中空の粉末が合成されてしまう。反対
に、キャリアガスの流速が1cm/sec 以下であると粉
末材料の生産性が低下してしまい実用困難となる。尚、
上記キャリアガスは、使用する粉体原料の種類により、
不活性ガス(窒素、アルゴン、ヘリウム、二酸化炭素等
が例示される)、還元性ガス(水素、アンモニア、一酸
化炭素等が例示される)、または、これ等の混合ガスか
ら適宜選択される。
The temperature rising rate of the droplets / particles is determined by the temperature profile of the reaction tube and the flow rate of the carrier gas. Then, if the flow rate of the carrier gas is too fast, the heating rate of the synthesized particles will be high, and the heating time will be shortened accordingly, resulting in incomplete reaction of the raw materials resulting in low purity and rapid evaporation of the solvent. This creates the problem that hollow bodies and irregular particles are produced. On the other hand, if the flow rate of the carrier gas is too slow, the supply amount of mist (fog) becomes small and it becomes difficult to collect particles. Therefore, as a result of measuring the residence time of the droplets / particles in the heating region and examining the flow velocity condition of the carrier gas, it is preferable that the flow velocity of the carrier gas is set within the range of 1 cm / sec to 5 cm / sec. It was confirmed (Claim 8). That is, if the flow rate is 5 cm / sec or more, the thermal decomposition reaction becomes insufficient and the sintering inside the Ni particles becomes insufficient, so that a hollow powder containing a large amount of impurities is synthesized. On the other hand, if the flow rate of the carrier gas is 1 cm / sec or less, the productivity of the powder material is reduced, which makes practical use difficult. still,
The carrier gas, depending on the type of powder raw material used,
It is appropriately selected from an inert gas (eg, nitrogen, argon, helium, carbon dioxide, etc.), a reducing gas (eg, hydrogen, ammonia, carbon monoxide, etc.), or a mixed gas thereof.

【0036】次に、液滴/粒子の加熱領域でのキャリア
ガスの流速を1cm/sec 〜5cm/sec の範囲内に設
定した場合、上記反応管の温度プロファイルは反応管内
での液滴からNi粉末の生成が可能な条件なら基本的に
任意であるが、より特性の優れた粉体材料を得るには少
なくとも2つの温度領域を備えていることが好ましい。
すなわち、上記反応管を1つだけの温度領域で構成した
場合、単一の温度領域内で液滴の乾燥、再溶解、酸化物
生成、還元反応等が同時多発的に起こるため、粒子内部
に残存した水分が急激に膨張して粒子を破裂させたり、
未反応物が残存し易くなることがある。この様な場合、
反応管に少なくとも2つの温度領域を設けて第1番目と
第2番目の温度域に分け、液滴の乾燥プロセスと粉末の
生成プロセスを分離させることにより回避することが可
能となる。
Next, when the flow rate of the carrier gas in the droplet / particle heating region is set within the range of 1 cm / sec to 5 cm / sec, the temperature profile of the reaction tube is such that the temperature of the droplet in the reaction tube changes from Ni to Ni. It is basically arbitrary as long as it can generate powder, but it is preferable to have at least two temperature regions in order to obtain a powder material having more excellent characteristics.
That is, when the reaction tube is configured with only one temperature region, the drying, re-dissolution, oxide formation, reduction reaction, etc. of the droplets occur simultaneously within a single temperature region, so that inside the particle. The residual water expands rapidly and bursts the particles,
Unreacted substances may easily remain. In this case,
It is possible to avoid this by providing at least two temperature regions in the reaction tube and dividing them into a first temperature region and a second temperature region, and separating the droplet drying process and the powder generation process.

【0037】そして、液滴の乾燥を主目的とした第1番
目の温度領域における温度については100〜600℃
に設定し、また、第2番目以降の温度領域における最高
温度については乾燥された上記液滴を金属Niまで熱分
解あるいは還元させる温度より100℃以上高くかつ金
属Niの融点よりも低い温度に設定することにより、特
性の優れた粉体材料を得ることが可能となる(請求項
9)。
The temperature in the first temperature range for the purpose of drying the droplets is 100 to 600 ° C.
The maximum temperature in the second and subsequent temperature regions is set to 100 ° C. or more higher than the temperature at which the dried droplets are thermally decomposed or reduced to metallic Ni and lower than the melting point of metallic Ni. By doing so, it becomes possible to obtain a powder material having excellent characteristics (claim 9).

【0038】[0038]

【実施例】以下、本発明の実施例について具体的に説明
する。
EXAMPLES Examples of the present invention will be specifically described below.

【0039】[実施例1]第1番目の加熱炉13が30
0℃、第2番目の加熱炉14が600℃、第3番目の加
熱炉15が1200℃に設定された図2の噴霧熱分解製
造装置1を用いて以下の球状Ni粒子を合成した。
[Example 1] The first heating furnace 13 was 30
The following spherical Ni particles were synthesized using the spray pyrolysis production apparatus 1 of FIG. 2 in which the second heating furnace 14 was set to 0 ° C., the second heating furnace 14 was set to 600 ° C., and the third heating furnace 15 was set to 1200 ° C.

【0040】すなわち、粒子の緻密化のための添加剤を
含む0.5モル/リットルのNi(NO32 溶液に、
Niに対しCa量が1重量%になるようにCa(NO
32を混合して原料溶液を調製し、この原料溶液を超
音波噴霧し、かつ、得られた液滴を、水素と窒素の比率
が1対5でそのガス流速が3.0cm/sec のキャリア
ガスにより反応管12内に搬入して、表面にCaOが存
在している平均粒径約0.6μmの球状Ni粒子を合成
した。
That is, to a 0.5 mol / liter Ni (NO 3 ) 2 solution containing an additive for densifying the particles,
Ca (NO
3 ) 2 is mixed to prepare a raw material solution, and the raw material solution is ultrasonically sprayed, and the obtained droplets have a hydrogen to nitrogen ratio of 1: 5 and a gas flow rate of 3.0 cm / sec. Was carried into the reaction tube 12 by the carrier gas of No. 1 and spherical Ni particles having an average particle size of about 0.6 μm and having CaO present on the surface were synthesized.

【0041】そして、得られたこの球状Ni粒子につい
てTG−DTA、TMAの熱分析を行ったところ、Ca
Oが存在しない以下の比較例1に係る球状Ni粒子より
その酸化温度が約100℃高くなり、かつ、少量の水素
を含む窒素雰囲気中での焼結開始温度は比較例1に係る
球状Ni粒子より200℃高い800℃であった。
The spherical Ni particles thus obtained were subjected to thermal analysis of TG-DTA and TMA.
Oxidation temperature of the spherical Ni particles according to Comparative Example 1 is about 100 ° C. higher than that of the spherical Ni particles according to Comparative Example 1 below, and the sintering start temperature in the nitrogen atmosphere containing a small amount of hydrogen is the spherical Ni particles according to Comparative Example 1. It was 800 ° C., which was 200 ° C. higher than the above.

【0042】[実施例2]Caに代えて、Niに対し5
重量%のMgを適用して実施例1と同一の条件で球状N
i粒子の合成を行ったところ、MgとNiの化合物であ
るMgNiO2 を含有する平均粒径約0.8μmの球状
Ni粒子が得られた。
[Embodiment 2] 5 for Ni instead of Ca
Spherical N under the same conditions as in Example 1 except that wt% Mg was applied.
When i particles were synthesized, spherical Ni particles containing MgNiO 2 which is a compound of Mg and Ni and having an average particle diameter of about 0.8 μm were obtained.

【0043】そして、得られたこの球状Ni粒子につい
てTG−DTA、TMAの熱分析を行ったところ、比較
例1に係る球状Ni粒子とその酸化温度は略同じであっ
たが、少量の水素を含む窒素雰囲気中での焼結開始温度
は比較例1に係る球状Ni粒子より200℃高い800
℃となっていた。
Thermal analysis of TG-DTA and TMA was performed on the obtained spherical Ni particles, and it was found that the spherical Ni particles according to Comparative Example 1 had substantially the same oxidation temperature but a small amount of hydrogen. The sintering start temperature in the nitrogen atmosphere containing the same is 800 higher than that of the spherical Ni particles according to Comparative Example 1 by 800 ° C.
It was ℃.

【0044】[実施例3]Caに代えて、Niに対し5
重量%のZrを適用して実施例1と同一の条件で球状N
i粒子の合成を行ったところ、t−ZrO2 を含有する
平均粒径約0.7μmの球状Ni粒子が得られた。
[Example 3] 5 for Ni instead of Ca
Spherical N is applied under the same conditions as in Example 1 by applying Zr of wt%.
When i particles were synthesized, spherical Ni particles containing t-ZrO 2 and having an average particle size of about 0.7 μm were obtained.

【0045】そして、得られたこの球状Ni粒子につい
てTG−DTA、TMAの熱分析を行ったところ、比較
例1に係る球状Ni粒子とその酸化温度は同じであった
が、弱い還元性雰囲気中で加熱時の焼結開始温度は比較
例1に係る球状Ni粒子より100℃高い700℃とな
っていた。
Then, thermal analysis of TG-DTA and TMA was performed on the obtained spherical Ni particles, and it was found that the spherical Ni particles according to Comparative Example 1 had the same oxidation temperature but in a weak reducing atmosphere. The sintering start temperature during heating was 700 ° C., which was 100 ° C. higher than that of the spherical Ni particles according to Comparative Example 1.

【0046】[実施例4]実施例1で用いたCaに代え
て、Niに対しCeの量が0.5重量%となるようにC
e(NO32 を混合して原料溶液を調製し、かつ、こ
の原料溶液を超音波噴霧して実施例1と同一の条件で球
状Ni粒子の合成を行ったところ、表面にCeO2 を含
有する平均粒径約0.8μmの球状Ni粒子が得られ
た。
[Example 4] Instead of Ca used in Example 1, C was adjusted so that the amount of Ce was 0.5% by weight with respect to Ni.
When e (NO 3 ) 2 was mixed to prepare a raw material solution, and this raw material solution was ultrasonically sprayed to synthesize spherical Ni particles under the same conditions as in Example 1, CeO 2 was formed on the surface. Spherical Ni particles having an average particle size of about 0.8 μm were obtained.

【0047】そして、得られたこの球状Ni粒子につい
てTG−DTA、TMAの熱分析を行ったところ、この
粒子の耐酸化性が大きく向上し、600℃での酸化速度
は比較例1に係る球状Ni粒子に較べて一桁以上小さく
なり、かつ、微量の水素を含む窒素雰囲気中での焼結開
始温度は750℃となっていた。
Then, thermal analysis of TG-DTA and TMA was performed on the obtained spherical Ni particles, and as a result, the oxidation resistance of the particles was greatly improved, and the oxidation rate at 600 ° C. was the same as that of the spherical particles according to Comparative Example 1. It was smaller than that of Ni particles by one digit or more, and the sintering start temperature was 750 ° C. in a nitrogen atmosphere containing a trace amount of hydrogen.

【0048】[実施例5]実施例4のCeの添加方法に
代えて、自作したNi粉末を0.1モル/リットルのC
eO2 ゾル溶液に混入し、超音波をかけて30分間分散
しながらNi粒子の表面にCeO2 コートを行った。そ
して、この分散液をろ過して分離することによりCeO
2 コートの球状Ni粒子が得られた。
[Embodiment 5] Instead of the method of adding Ce in Embodiment 4, a self-made Ni powder was added with 0.1 mol / liter of C.
The surface of the Ni particles was coated with CeO 2 while being mixed with the eO 2 sol solution and dispersed by applying ultrasonic waves for 30 minutes. Then, CeO is obtained by filtering and separating this dispersion liquid.
Two coats of spherical Ni particles were obtained.

【0049】そして、得られたこの球状Ni粒子につい
てTG−DTA、TMAの熱分析を行ったところ、実施
例4に係る球状Ni粒子と同様に強い耐酸化性を示し
た。
When the obtained spherical Ni particles were subjected to thermal analysis of TG-DTA and TMA, they showed strong oxidation resistance like the spherical Ni particles according to Example 4.

【0050】[実施例6]実施例1で用いたCaに代え
て、Niに対し5重量%のAl(NO32 溶液をNi
(NO32 溶液に混入して原料溶液を調製し、この原
料溶液を超音波噴霧して実施例1と同一の条件で球状N
i粒子の合成を行ったところ、Al23を含有する平均
粒径約0.9μmの球状Ni粒子が得られた。
Example 6 Instead of Ca used in Example 1, a 5% by weight Al (NO 3 ) 2 solution with respect to Ni was added to Ni.
A raw material solution is prepared by mixing it with a (NO 3 ) 2 solution, and the raw material solution is ultrasonically sprayed to form spherical N under the same conditions as in Example 1.
When i particles were synthesized, spherical Ni particles containing Al 2 O 3 and having an average particle diameter of about 0.9 μm were obtained.

【0051】そして、得られたこの球状Ni粒子につい
てTG−DTA、TMAの熱分析を行ったところ、比較
例1に係る球状Ni粒子と較べて耐酸化性に大きな変化
はなかったが、少量の水素を含む窒素雰囲気中での焼結
開始温度は800℃となっていた。
When thermal analysis of TG-DTA and TMA was performed on the obtained spherical Ni particles, there was no significant change in oxidation resistance as compared with the spherical Ni particles according to Comparative Example 1, but a small amount. The sintering start temperature was 800 ° C. in a nitrogen atmosphere containing hydrogen.

【0052】[比較例1]粒子の緻密化のための添加剤
を含む0.5モル/リットルのNi(NO32溶液に
Ca(NO32 を混合せずに原料溶液を調製し、実施
例1と同一の条件により球状Ni粒子の合成を行ったと
ころ、平均粒径約0.7μmの球状Ni粒子が得られ
た。
Comparative Example 1 A raw material solution was prepared without mixing Ca (NO 3 ) 2 with a 0.5 mol / liter Ni (NO 3 ) 2 solution containing an additive for densifying particles. When spherical Ni particles were synthesized under the same conditions as in Example 1, spherical Ni particles having an average particle size of about 0.7 μm were obtained.

【0053】そして、得られたこの球状Ni粒子につい
てTG−DTA、TMAの熱分析を行ったところ、その
酸化開始温度は570℃であり、少量の水素を含む窒素
雰囲気中での焼結収縮は600℃前後から始まってい
た。
When thermal analysis of TG-DTA and TMA was performed on the obtained spherical Ni particles, the oxidation initiation temperature was 570 ° C., and sintering shrinkage in a nitrogen atmosphere containing a small amount of hydrogen was found. It started around 600 ° C.

【0054】[0054]

【表1】 [Table 1]

【0055】[実施例7]第1番目の加熱炉13が40
0℃、第2番目の加熱炉14が600℃、第3番目の加
熱炉15が1200℃に設定された図2の噴霧熱分解製
造装置1を用いて以下の球状Ni粒子を合成した。
[Embodiment 7] The first heating furnace 13 is 40
The following spherical Ni particles were synthesized using the spray pyrolysis production apparatus 1 of FIG. 2 in which the second heating furnace 14 was set to 0 ° C., the second heating furnace 14 was set to 600 ° C., and the third heating furnace 15 was set to 1200 ° C.

【0056】すなわち、0.5モル/リットルの硝酸ニ
ッケル溶液に、Niに対して1〜20重量%のBaTi
3 (ペロブスカイト)コロイド溶液を混合して原料溶
液を調製し、この原料溶液を超音波噴霧し、かつ、得ら
れた液滴を、水素と窒素の比率が1対5でそのガス流速
が2.0cm/sec のキャリアガスにより反応管12内
に搬入して、平均粒径約0.9μmのBaTiO3 −N
i複合粒子を合成した。尚、この複合粒子においてBa
TiO3 は表面に均一に分布することなくある程度の偏
りがあると共に、その一部は粒子内部に入っていた。
That is, in a 0.5 mol / liter nickel nitrate solution, 1 to 20% by weight of BaTi with respect to Ni was added.
A raw material solution is prepared by mixing an O 3 (perovskite) colloidal solution, the raw material solution is ultrasonically sprayed, and the obtained droplets have a hydrogen to nitrogen ratio of 1: 5 and a gas flow rate of 2 A carrier gas of 0.0 cm / sec was carried into the reaction tube 12, and BaTiO 3 —N having an average particle size of about 0.9 μm was used.
i-composite particles were synthesized. In this composite particle, Ba
TiO 3 was not evenly distributed on the surface but had a certain degree of unevenness, and part of it was inside the particles.

【0057】そして、得られたこの複合粒子についてT
G−DTA、TMAの熱分析を行ったところ、BaTi
3 を添加していない以下の比較例2に係る球状Ni粒
子よりその酸化温度が約10〜150℃高くなり、か
つ、少量の水素を含む窒素雰囲気中での焼結開始温度は
700〜1100℃以上となっていた。
Then, regarding the obtained composite particles, T
Thermal analysis of G-DTA and TMA revealed that BaTi
The oxidation temperature of the spherical Ni particles according to Comparative Example 2 below, to which O 3 is not added, is about 10 to 150 ° C. higher, and the sintering start temperature is 700 to 1100 in a nitrogen atmosphere containing a small amount of hydrogen. It was over ℃.

【0058】[実施例8]BaTiO3 (ペロブスカイ
ト)コロイド溶液に代えて、Niに対して1〜15重量
%のSiO2 コロイド溶液を適用して実施例7と同一の
条件により粉体材料の合成を行ったところ、結晶質のN
i粒子から成るコアとSiO2 から成る表面層を有する
平均粒径約1.0μmのSiO2 被覆Ni粒子が得られ
た。
[0058] [Example 8] BaTiO 3 (perovskite) instead of the colloidal solution, the synthesis of the powder material by the same conditions as in Example 7 by applying 1-15 wt% of SiO 2 colloidal solution against Ni Was performed, and crystalline N
The average particle size of about 1.0 .mu.m SiO 2 coated Ni particles having a surface layer comprising a core and a SiO 2 consisting of i particles were obtained.

【0059】得られたこのSiO2 被覆Ni粒子を超ミ
クロトームで薄片化した後、透過型電子顕微鏡(TE
M)で内球状部構造を観察したところ、この粒子は結晶
質のNi粒子から成るコアとアモルファスのSiO2
ら成る表面被覆層をもつ二層構造となっていた。
The obtained SiO 2 coated Ni particles were sliced with an ultramicrotome, and then the transmission electron microscope (TE
Observation of the inner spherical portion structure in M) revealed that the particles had a two-layer structure having a core made of crystalline Ni particles and a surface coating layer made of amorphous SiO 2 .

【0060】また、このSiO2 被覆Ni粒子の焼結開
始温度は600〜1000℃以上となっていた。
The sintering start temperature of the SiO 2 coated Ni particles was 600 to 1000 ° C. or higher.

【0061】[実施例9]BaTiO3 (ペロブスカイ
ト)コロイド溶液に代えて、Niに対して5重量%のT
iO2 (ルチル)コロイド溶液を適用して実施例7と同
一の条件により粉体材料の合成を行ったところ、平均粒
径約0.8μmの球状TiO2 被覆Ni粒子が得られ
た。
Example 9 Instead of the BaTiO 3 (perovskite) colloidal solution, T of 5% by weight with respect to Ni was used.
When a powder material was synthesized under the same conditions as in Example 7 by applying an iO 2 (rutile) colloidal solution, spherical TiO 2 -coated Ni particles having an average particle size of about 0.8 μm were obtained.

【0062】得られたTiO2 被覆Ni粒子を観察した
ところ、表面被覆層のTiO2 超微粒子がコアとなるN
i粒子表面でその半分が内部に入り込み、残りの半分が
露出していることが確認された。
When the obtained TiO 2 -coated Ni particles were observed, it was found that the TiO 2 ultrafine particles in the surface coating layer were the core N
It was confirmed that half of the i-particle surface entered inside and the other half was exposed.

【0063】このTiO2 被覆Ni粒子の酸化温度は比
較例2に係る球状Ni粒子と略同一であったが、焼結開
始温度は比較例2に係る球状Ni粒子より高い700℃
となっていた。
The oxidation temperature of the TiO 2 -coated Ni particles was substantially the same as that of the spherical Ni particles according to Comparative Example 2, but the sintering start temperature was 700 ° C. higher than that of the spherical Ni particles according to Comparative Example 2.
It was.

【0064】[実施例10]BaTiO3 (ペロブスカ
イト)コロイド溶液に代えて、Niに対して5重量%の
ZrO2 コロイド溶液を適用して実施例7と同一の条件
により粉体材料の合成を行ったところ、平均粒径約0.
8μmの球状ZrO2 被覆Ni粒子が得られた。
[Example 10] Instead of the BaTiO 3 (perovskite) colloid solution, a 5 wt% ZrO 2 colloid solution with respect to Ni was applied to synthesize a powder material under the same conditions as in Example 7. When found, the average particle size was about 0.
8 μm spherical ZrO 2 coated Ni particles were obtained.

【0065】このZrO2 被覆Ni粒子の酸化温度は比
較例2に係る球状Ni粒子と略同一であったが、焼結開
始温度は比較例2に係る球状Ni粒子より高い750℃
となっていた。
The oxidation temperature of the ZrO 2 coated Ni particles was almost the same as that of the spherical Ni particles according to Comparative Example 2, but the sintering start temperature was higher than that of the spherical Ni particles according to Comparative Example 750 ° C.
It was.

【0066】[比較例2]0.5モル/リットルの硝酸
ニッケル溶液にBaTiO3 (ペロブスカイト)コロイ
ド溶液を混合せずに原料溶液を調製し、実施例7と同一
の条件により粉体材料の合成を行ったところ、平均粒径
約0.7μmの単結晶に近いNi粒子が得られた。
Comparative Example 2 A raw material solution was prepared without mixing a BaTiO 3 (perovskite) colloidal solution with a 0.5 mol / liter nickel nitrate solution, and the powder material was synthesized under the same conditions as in Example 7. As a result, Ni particles close to a single crystal having an average particle size of about 0.7 μm were obtained.

【0067】そして、得られたこのNi粒子について熱
分析を行ったところ、その酸化開始温度は550℃前後
であり、焼結収縮は600℃前後から始まっていた。
When thermal analysis was performed on the obtained Ni particles, the oxidation start temperature was around 550 ° C. and the sintering shrinkage started around 600 ° C.

【0068】[0068]

【発明の効果】請求項1〜5に係る粉体材料によれば、
Ni粒子の芯材と酸化物の表面層、並びに、酸化物微粒
子とこのマトリックス中に分散されたNi微粒子が一体
となっているので、例えば、これ等粉体材料が内部電極
用ペーストの金属粉末として適用された場合、ペースト
製造中における混練の過程でNi粒子若しくは微粒子と
酸化物とが分離することがないため上述した電極膜の途
切れを起こさない効果を有する。
According to the powder materials according to claims 1 to 5,
Since the core material of Ni particles and the oxide surface layer, and the oxide fine particles and the Ni fine particles dispersed in this matrix are integrated, for example, these powder materials are metal powders of the paste for internal electrodes. When applied as, since the Ni particles or fine particles and the oxide are not separated during the kneading process during the paste production, it has the effect of not causing the above-mentioned discontinuity of the electrode film.

【0069】また、請求項1および請求項2に係る粉体
材料は芯材であるNi粒子の外表面の少なくとも一部が
上記酸化物の表面層で覆われ、請求項3に係る粉体材料
はNi微粒子が上記酸化物微粒子のマトリックス中に分
散された複合粒子で構成されているため、上記Ni粒子
若しくは微粒子が酸化され難くなり、かつ、上記表面層
並びにマトリックスの作用によりNi粒子若しくは微粒
子が表面改質されてその分散性も改善される効果を有す
る。
Further, in the powder material according to claims 1 and 2, at least a part of the outer surface of the Ni particles as the core material is covered with the surface layer of the oxide, and the powder material according to claim 3 Is composed of composite particles in which Ni fine particles are dispersed in a matrix of the above oxide fine particles, so that the above Ni particles or fine particles are less likely to be oxidized, and the Ni particles or fine particles are formed by the action of the surface layer and the matrix. It has the effect of being surface-modified to improve its dispersibility.

【0070】更に、上記酸化物の表面層並びにマトリッ
クスの作用によりNi粒子若しくは微粒子の焼結温度が
高温化されるため、例えば、これ等粉体材料が内部電極
用ペーストの金属粉末として適用された場合、MLCC
の構成層である内部電極と誘電体層における同時焼成の
プロセスにおいて膨張と収縮挙動を略一致させることが
可能となる効果を有する。
Further, since the sintering temperature of Ni particles or fine particles is raised by the action of the surface layer and matrix of the above oxide, for example, these powder materials were applied as the metal powder of the internal electrode paste. If MLCC
It has an effect that expansion and contraction behavior can be substantially matched in the process of simultaneous firing of the internal electrode and the dielectric layer, which are the constituent layers.

【0071】次に、請求項6〜請求項9に係る粉体材料
の製造方法によれば、一段階で請求項1〜5に係る粉体
材料を簡便に製造できるため製造効率の大幅な改善が図
れる効果を有する。
Next, according to the method for producing a powder material according to claims 6 to 9, the powder material according to claims 1 to 5 can be easily produced in one step, so that the production efficiency is greatly improved. There is an effect that can be achieved.

【0072】また、請求項10に係る厚膜導電性ペース
トによれば、金属粉末が請求項1〜5のいずれかに記載
の粉体材料により構成されているため、例えば、この厚
膜導電性ペーストが内部電極用ペーストとして適用され
た場合、ペースト内の金属粉末の分散性が改善されると
共に電極膜の上記途切れを起こさず、かつ、MLCCの
内部電極と誘電体層における同時焼成のプロセスにおい
て膨張と収縮挙動を略一致させることが可能となる効果
を有する。
According to the thick film conductive paste of the tenth aspect, since the metal powder is composed of the powder material according to any one of the first to fifth aspects, for example, this thick film conductive paste is used. When the paste is applied as the internal electrode paste, the dispersibility of the metal powder in the paste is improved and the above-mentioned discontinuity of the electrode film does not occur, and in the process of simultaneous firing in the internal electrode and the dielectric layer of the MLCC. It has an effect that the expansion and contraction behaviors can be substantially matched.

【0073】また、請求項11に係る積層セラミックコ
ンデンサによれば、内部電極が請求項10記載の厚膜導
電性ペーストを用いて形成されているため、電極膜の途
切れ、デラミネーション(Delamination,層間剥離現
象)、クラック等の構造欠陥を有し難い効果を有する。
Further, according to the multilayer ceramic capacitor of the eleventh aspect, since the internal electrodes are formed by using the thick film conductive paste of the tenth aspect, the electrode film is interrupted, the delamination (intercalation) is performed. It has an effect that it is difficult to have structural defects such as peeling phenomenon) and cracks.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る粉体材料の製造方法に適用される
噴霧熱分解製造装置の概略構成を示す説明図。
FIG. 1 is an explanatory diagram showing a schematic configuration of a spray pyrolysis production apparatus applied to a method for producing a powder material according to the present invention.

【図2】本発明に係る粉体材料の製造方法に適用される
他の噴霧熱分解製造装置の概略構成を示す説明図。
FIG. 2 is an explanatory view showing a schematic configuration of another spray pyrolysis production apparatus applied to the method for producing a powder material according to the present invention.

【符号の説明】[Explanation of symbols]

1 噴霧熱分解製造装置 10 ミスト発生部 11 不活性キャリアガス混合・供給系 12 反応管 13 加熱炉 14 加熱炉 16 回収部 17 排気ガス処理部 1 Spray pyrolysis production equipment 10 Mist generator 11 Inert carrier gas mixing / supply system 12 reaction tubes 13 heating furnace 14 heating furnace 16 Collection Department 17 Exhaust gas treatment section

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4E351 AA07 BB01 BB03 BB31 CC33 CC35 DD10 DD11 DD17 DD18 DD19 DD31 DD52 DD55 EE02 EE27 GG03 GG13 GG15 GG16 4K017 AA03 BA03 BB17 CA07 DA08 EB01 EJ01 FB05 4K018 BA04 BC17 BC20 BC28 BD04 KA33 KA39 5G301 DA10 DA33 DA40 DD01 DE01   ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4E351 AA07 BB01 BB03 BB31 CC33                       CC35 DD10 DD11 DD17 DD18                       DD19 DD31 DD52 DD55 EE02                       EE27 GG03 GG13 GG15 GG16                 4K017 AA03 BA03 BB17 CA07 DA08                       EB01 EJ01 FB05                 4K018 BA04 BC17 BC20 BC28 BD04                       KA33 KA39                 5G301 DA10 DA33 DA40 DD01 DE01

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】Ni粒子から成る芯材と、Al、Zr、T
i、Si、Pb、Fe、W、Mn、Bi、Nb、Ta、
Mo、アルカリ土類および希土類元素から選ばれた一種
以上の元素の酸化物から成り上記芯材外表面の少なくと
も一部を被覆する表面層とで構成されることを特徴とす
る粉体材料。
1. A core material comprising Ni particles and Al, Zr, T
i, Si, Pb, Fe, W, Mn, Bi, Nb, Ta,
A powder material comprising a surface layer which is composed of an oxide of one or more elements selected from Mo, alkaline earth elements and rare earth elements and which covers at least a part of the outer surface of the core material.
【請求項2】Ni粒子から成る芯材と、Al、Zr、T
i、Si、Pb、Fe、W、Mn、Bi、Nb、Ta、
Mo、アルカリ土類および希土類元素から選ばれた一種
以上の元素の酸化物から成りその一部が上記芯材内に入
り込むと共に芯材外表面の少なくとも一部を被覆する表
面層とで構成されることを特徴とする粉体材料。
2. A core material composed of Ni particles and Al, Zr, T
i, Si, Pb, Fe, W, Mn, Bi, Nb, Ta,
A surface layer composed of an oxide of one or more elements selected from Mo, alkaline earth elements and rare earth elements, a part of which enters the core material and covers at least a part of the outer surface of the core material. A powder material characterized by the above.
【請求項3】Al、Zr、Ti、Si、Pb、Fe、
W、Mn、Bi、Nb、Ta、Mo、アルカリ土類およ
び希土類元素から選ばれた一種以上の元素の酸化物から
成る微粒子のマトリックス中にNi微粒子が分散された
複合粒子にて構成されることを特徴とする粉体材料。
3. Al, Zr, Ti, Si, Pb, Fe,
A composite particle in which Ni fine particles are dispersed in a matrix of fine particles made of an oxide of one or more elements selected from W, Mn, Bi, Nb, Ta, Mo, alkaline earth elements and rare earth elements. Powder material characterized by.
【請求項4】粉体全体に対する上記酸化物の占める体積
の割合が0.005%〜65%であることを特徴とする
請求項1〜3のいずれかに記載の粉体材料。
4. The powder material according to claim 1, wherein the volume ratio of the oxide to the whole powder is 0.005% to 65%.
【請求項5】上記酸化物が、ペロブスカイト、ルチル、
タングテンブロンズまたはパイロクロアであることを特
徴とする請求項1〜4のいずれかに記載の粉体材料。
5. The above oxide is perovskite, rutile,
The powder material according to any one of claims 1 to 4, which is Tungten Bronze or Pyrochlore.
【請求項6】請求項1〜5のいずれかに記載の粉体材料
を製造する方法において、上記Ni粒子若しくはNi微
粒子となるNi化合物および上記酸化物の表面層若しく
は微粒子となる成分の可溶性塩またはコロイドを含む原
料溶液を調製し、かつ、この原料溶液を噴霧して液滴と
した後、この液滴を不活性ガスおよび/または還元性ガ
スで構成されるキャリアガスにより反応管内に搬入する
と共に反応管内の加熱領域を通過させて上記粉体材料を
製造することを特徴とする粉体材料の製造方法。
6. The method for producing a powder material according to claim 1, wherein a Ni compound that becomes the Ni particles or Ni fine particles and a soluble salt of a component that becomes the surface layer or fine particles of the oxide. Alternatively, a raw material solution containing a colloid is prepared, and the raw material solution is sprayed to form droplets, which are then carried into a reaction tube by a carrier gas composed of an inert gas and / or a reducing gas. A method for producing a powder material, characterized in that the above-mentioned powder material is produced by passing it through a heating region in a reaction tube.
【請求項7】上記原料溶液中のNiイオン濃度が0.1
〜5モル/リットルの範囲に設定されていることを特徴
とする請求項6記載の粉体材料の製造方法。
7. The Ni ion concentration in the raw material solution is 0.1.
7. The method for producing a powder material according to claim 6, wherein the amount is set in the range of 5 mol / liter.
【請求項8】上記キャリアガスの流速が1〜5cm/se
c の範囲に設定されていることを特徴とする請求項6ま
たは7記載の粉体材料の製造方法。
8. The flow rate of the carrier gas is 1 to 5 cm / se.
The method for producing a powder material according to claim 6 or 7, wherein the range is set to c.
【請求項9】上記反応管が長さ方向に亘り少なくとも2
つの温度領域を有すると共に、液滴の乾燥を主目的とし
た第1番目の温度領域における温度が100〜600℃
に設定され、第2番目以降の温度領域における最高温度
が、乾燥された上記液滴を金属Niまで熱分解あるいは
還元させる温度より100℃以上高くかつ金属Niの融
点よりも低い温度に設定されていることを特徴とする請
求項6〜8のいずれかに記載の粉体材料の製造方法。
9. The reaction tube has at least 2 tubes along its length.
In addition to having two temperature regions, the temperature in the first temperature region mainly for the purpose of drying droplets is 100 to 600 ° C.
And the maximum temperature in the second and subsequent temperature regions is set to be 100 ° C. or more higher than the temperature for thermally decomposing or reducing the dried droplets to metallic Ni and lower than the melting point of metallic Ni. The method for producing a powder material according to any one of claims 6 to 8, characterized in that:
【請求項10】有機ビヒクルと金属粉末を主成分とする
厚膜導電性ペーストにおいて、 上記金属粉末が、請求項1〜5のいずれかに記載の粉体
材料により構成されていることを特徴とする厚膜導電性
ペースト。
10. A thick film conductive paste containing an organic vehicle and a metal powder as main components, wherein the metal powder is composed of the powder material according to any one of claims 1 to 5. Thick film conductive paste.
【請求項11】複数の誘電体層と内部電極とが交互に積
層された積層セラミックコンデンサにおいて、 上記内部電極が、請求項10記載の厚膜導電性ペースト
を用いて形成されていることを特徴とする積層セラミッ
クコンデンサ。
11. A multilayer ceramic capacitor in which a plurality of dielectric layers and internal electrodes are alternately laminated, wherein the internal electrodes are formed by using the thick film conductive paste according to claim 10. And monolithic ceramic capacitors.
JP10253220A 1998-08-24 1998-08-24 Powder material, its production, thick film electrically conductive paste using the power material and laminated ceramic capacitor using the paste Pending JP2000063901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10253220A JP2000063901A (en) 1998-08-24 1998-08-24 Powder material, its production, thick film electrically conductive paste using the power material and laminated ceramic capacitor using the paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10253220A JP2000063901A (en) 1998-08-24 1998-08-24 Powder material, its production, thick film electrically conductive paste using the power material and laminated ceramic capacitor using the paste

Publications (1)

Publication Number Publication Date
JP2000063901A true JP2000063901A (en) 2000-02-29

Family

ID=17248243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10253220A Pending JP2000063901A (en) 1998-08-24 1998-08-24 Powder material, its production, thick film electrically conductive paste using the power material and laminated ceramic capacitor using the paste

Country Status (1)

Country Link
JP (1) JP2000063901A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270458A (en) * 2001-03-08 2002-09-20 Murata Mfg Co Ltd Ceramic layered capacitor
JP2002275511A (en) * 2001-03-15 2002-09-25 Murata Mfg Co Ltd Method for manufacturing metal powder, metal powder, conductive paste and laminated ceramic electronic parts
US6686045B2 (en) * 2001-01-31 2004-02-03 Shin-Etsu Chemical Co., Ltd. Composite fine particles, conductive paste, and conductive film
US6815045B2 (en) 2000-04-27 2004-11-09 Murata Manufacturing Co. Ltd Method for manufacturing a metal powder, a metal powder, an electroconductive paste using the same, and a multilayer ceramic electronic component using the same
US6827758B2 (en) 2001-05-30 2004-12-07 Tdk Corporation Method for manufacturing magnetic metal powder, and magnetic metal powder
JP2010103081A (en) * 2008-03-27 2010-05-06 Sekisui Chem Co Ltd Electroconductive fine particles, anisotropic electroconductive material and connecting structure
JP2010103080A (en) * 2008-03-27 2010-05-06 Sekisui Chem Co Ltd Electroconductive fine particles, anisotropic electroconductive material and connecting structure
KR101185276B1 (en) * 2011-11-23 2012-09-21 정명구 The furnace device
CN103722168A (en) * 2013-12-12 2014-04-16 内蒙古河西航天科技发展有限公司 Safe and environment-friendly aluminum powder and preparation method thereof
JP2015229622A (en) * 2014-06-06 2015-12-21 太平洋セメント株式会社 Production apparatus of hollow particle
KR101773938B1 (en) * 2013-04-05 2017-09-01 가부시키가이샤 무라타 세이사쿠쇼 Metal powder, method for producing same, conductive paste using metal powder, and multilayer ceramic electronic component
US20190106785A1 (en) * 2017-10-07 2019-04-11 Flosfia Inc. Method of forming film
WO2020090415A1 (en) * 2018-10-31 2020-05-07 昭栄化学工業株式会社 Ni paste and layered ceramic capacitor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815045B2 (en) 2000-04-27 2004-11-09 Murata Manufacturing Co. Ltd Method for manufacturing a metal powder, a metal powder, an electroconductive paste using the same, and a multilayer ceramic electronic component using the same
US6686045B2 (en) * 2001-01-31 2004-02-03 Shin-Etsu Chemical Co., Ltd. Composite fine particles, conductive paste, and conductive film
JP4691807B2 (en) * 2001-03-08 2011-06-01 株式会社村田製作所 Multilayer ceramic capacitor
JP2002270458A (en) * 2001-03-08 2002-09-20 Murata Mfg Co Ltd Ceramic layered capacitor
JP2002275511A (en) * 2001-03-15 2002-09-25 Murata Mfg Co Ltd Method for manufacturing metal powder, metal powder, conductive paste and laminated ceramic electronic parts
US6827758B2 (en) 2001-05-30 2004-12-07 Tdk Corporation Method for manufacturing magnetic metal powder, and magnetic metal powder
US7416795B2 (en) 2001-05-30 2008-08-26 Tdk Corporation Method for manufacturing magnetic metal powder, and magnetic metal powder
JP2010103081A (en) * 2008-03-27 2010-05-06 Sekisui Chem Co Ltd Electroconductive fine particles, anisotropic electroconductive material and connecting structure
JP2010103080A (en) * 2008-03-27 2010-05-06 Sekisui Chem Co Ltd Electroconductive fine particles, anisotropic electroconductive material and connecting structure
KR101185276B1 (en) * 2011-11-23 2012-09-21 정명구 The furnace device
KR101773938B1 (en) * 2013-04-05 2017-09-01 가부시키가이샤 무라타 세이사쿠쇼 Metal powder, method for producing same, conductive paste using metal powder, and multilayer ceramic electronic component
CN103722168A (en) * 2013-12-12 2014-04-16 内蒙古河西航天科技发展有限公司 Safe and environment-friendly aluminum powder and preparation method thereof
JP2015229622A (en) * 2014-06-06 2015-12-21 太平洋セメント株式会社 Production apparatus of hollow particle
US20190106785A1 (en) * 2017-10-07 2019-04-11 Flosfia Inc. Method of forming film
US10927458B2 (en) * 2017-10-07 2021-02-23 Flosfia Inc. Method of forming film
WO2020090415A1 (en) * 2018-10-31 2020-05-07 昭栄化学工業株式会社 Ni paste and layered ceramic capacitor
CN112955980A (en) * 2018-10-31 2021-06-11 昭荣化学工业株式会社 Ni paste and multilayer ceramic capacitor
CN112955980B (en) * 2018-10-31 2023-01-10 昭荣化学工业株式会社 Ni paste and multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
CN1087669C (en) Nickel powder and preparation process thereof
JP2000063901A (en) Powder material, its production, thick film electrically conductive paste using the power material and laminated ceramic capacitor using the paste
JP3137035B2 (en) Nickel powder and method for producing the same
JP5808889B2 (en) Method for producing core-shell particles
JPWO2017122689A1 (en) Nickel powder
US6403218B1 (en) Nickel composite particle and production process therefor
CN110310828A (en) Monolithic ceramic electronic component
JPH1180818A (en) Production of metal powder, and metal powder produced by the method
KR970004274B1 (en) Seramic capacitor
JPH08170112A (en) Production of metallic powder by spray thermal decomposition and apparatus therefor
EP0834368B1 (en) Nickel powder and process for preparing the same
JPH1171601A (en) Powder material and its production
JP2003313607A (en) Metal powder, its manufacturing process and conductive paste containing the same
JP3653447B2 (en) Coated metal powder and method for producing the same, coated metal powder paste and ceramic laminated part
JP5978371B2 (en) Core-shell particle and conductor-forming composition
JP5853574B2 (en) Method for producing nickel-coated dielectric particles
JP3772726B2 (en) Nickel powder manufacturing method, nickel powder, nickel paste, multilayer ceramic electronic parts
JP3746674B2 (en) Nickel powder and paste containing the powder
KR20070094166A (en) Preparation method of porous inorganic particle
JP2006348387A (en) Production method of nickel composite particle
JP2005068531A (en) Metal powder production method
JPH0645183A (en) Palladium paste and manufacture of multilayer chip capacitor
JPH08288607A (en) Manufacture of piezoelectric material and paste for forming conductor of piezoelectric material
JPH01236513A (en) Internal electrode paste for laminated ceramic body
JPH0262023A (en) Laminated capacitor element and its manufacture