JPH113698A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JPH113698A
JPH113698A JP9171126A JP17112697A JPH113698A JP H113698 A JPH113698 A JP H113698A JP 9171126 A JP9171126 A JP 9171126A JP 17112697 A JP17112697 A JP 17112697A JP H113698 A JPH113698 A JP H113698A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
compound oxide
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9171126A
Other languages
Japanese (ja)
Inventor
Mikio Iwata
幹夫 岩田
Hideki Masuda
英樹 増田
Takao Fukunaga
福永  孝夫
Minoru Mizutani
実 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP9171126A priority Critical patent/JPH113698A/en
Publication of JPH113698A publication Critical patent/JPH113698A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery, which has high capacity and excellent cycle characteristic, at a low cost by using the positive electrode active material of the mixture of three kinds of lithium nickel compound oxide, lithium cobalt compound oxide and lithium manganese compound oxide. SOLUTION: Lithium nickel compound oxide is desirably included in the mixture of three kinds of material at 25 wt.% or more on a point of safety. Total content of lithium nickel compound oxide and lithium cobalt compound oxide is desirably set at 20 wt.% or more so as to improve the large current discharging capacity. In the case where the mean grain diameter of the lithium manganese compound oxide is expressed with (dm), and mean grain diameter close to the (dm) among each mean grain diameter of the lithium manganese compound oxide and the lithium cobalt compound oxide is expressed with (dnc), a desirable difference between (dm) and (dnc) is 0.5 μm or more. Fine charge is performed and quantity of the binder is reduced by giving a difference of grain diameter. With this structure, a positive electrode with a good balance of capacity, cycle characteristic and cost can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、リチウム化合物
を活物質とする正極を備えたリチウムイオン二次電池に
属する。
The present invention relates to a lithium ion secondary battery provided with a positive electrode using a lithium compound as an active material.

【0002】[0002]

【従来の技術】リチウムイオンを炭素などのホスト物質
(ここでホスト物質とは、リチウムイオンを吸蔵及び放
出できる物質をいう。)に吸蔵させたインターカレーシ
ョン化合物を負極材料とするリチウムイオン電池は、高
エネルギー密度を有し、且つ軽量であるうえ、金属リチ
ウムを使用していないので安全性が高い。従って、携帯
用無線電話、携帯用パソコン、携帯用ビデオカメラ等の
小型携帯電子機器用の電源として広範な利用が期待され
ている。
2. Description of the Related Art Lithium-ion batteries using an intercalation compound in which lithium ions are occluded in a host material such as carbon (here, a host material is a material that can occlude and release lithium ions) are used as a negative electrode material. It has high energy density, is lightweight, and has high safety because it does not use lithium metal. Therefore, it is expected to be widely used as a power source for small portable electronic devices such as portable radio telephones, portable personal computers, and portable video cameras.

【0003】リチウムイオン電池は、上記ホスト物質を
含む負極合剤を負極集電体に保持してなる負極板と、リ
チウムコバルト複合酸化物やリチウムニッケル複合酸化
物のようにリチウムイオンと可逆的に電気化学反応をす
る正極活物質を含む正極合剤を正極集電体に保持してな
る正極板と、電解質を保持するとともに負極板と正極板
との間に介在して両極の短絡を防止するセパレータとを
備えている。電解質は通常LiClO4、LiPF6等の
リチウム塩を溶解した非プロトン性の有機溶媒からなる
が、固体電解質でも良い。ただし、電解質が固体の場合
はセパレータは必須でない。
A lithium ion battery has a negative electrode plate in which a negative electrode mixture containing the above host material is held on a negative electrode current collector, and a reversible lithium ion such as a lithium cobalt composite oxide or a lithium nickel composite oxide. A positive electrode plate that holds a positive electrode mixture containing a positive electrode active material that undergoes an electrochemical reaction on a positive electrode current collector, and holds an electrolyte and intervenes between a negative electrode plate and a positive electrode plate to prevent a short circuit between both electrodes. And a separator. The electrolyte is usually made of an aprotic organic solvent in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved, but may be a solid electrolyte. However, when the electrolyte is solid, the separator is not essential.

【0004】[0004]

【発明が解決しようとする課題】正極活物質としては、
上記のリチウムコバルト複合酸化物及びリチウムニッケ
ル複合酸化物の他に、リチウムマンガン複合酸化物も知
られている。このうちリチウムコバルト複合酸化物は、
安定した放電電圧で高い放電容量を得ることができるう
えに、放電により電子伝導性が発現する(LiCoO2の導電
率は10-2S/cm)ため導電助剤は3%以下で十分性能を
発揮するが、高価である。リチウムニッケル複合酸化物
は、放電容量が最も大きいが、放電に伴って電圧が降下
するので、大電流性能に劣る。
As the positive electrode active material,
In addition to the above-described lithium cobalt composite oxide and lithium nickel composite oxide, a lithium manganese composite oxide is also known. Among them, lithium cobalt composite oxide is
A high discharge capacity can be obtained with a stable discharge voltage, and electron conductivity is exhibited by discharge (LiCoO 2 has a conductivity of 10 -2 S / cm). Demonstrates, but is expensive. The lithium-nickel composite oxide has the largest discharge capacity, but is inferior in large current performance because the voltage drops with discharge.

【0005】この点、リチウムマンガン複合酸化物は、
安価で、高温でも分解し難く安全である。従って、電気
自動車などの10Ah以上の容量が必要とされる電池に
有利である。しかし、リチウムマンガン複合酸化物は、
電子伝導性がリチウムコバルト複合酸化物のそれより2
桁以上低いので導電助剤としての炭素などを5%以上
(通常は10%)添加しなければならず、その結果、エ
ネルギー密度が低い。放電容量が小さい、特に大電流で
の放電容量が小さい等の欠点を有し、また充放電時の膨
張収縮による導電マトリックスの崩壊による抵抗増によ
り、サイクル特性の劣化が大きい。等の多くの課題を有
する。
In this regard, lithium manganese composite oxides
Inexpensive, hard to break down even at high temperatures, and safe. Therefore, it is advantageous for a battery requiring a capacity of 10 Ah or more, such as an electric vehicle. However, lithium manganese composite oxide is
Electron conductivity is 2 more than that of lithium cobalt composite oxide
Since it is lower than an order of magnitude, carbon or the like as a conductive additive must be added in an amount of 5% or more (usually 10%), and as a result, the energy density is low. It has disadvantages such as a small discharge capacity, particularly a small discharge capacity at a large current, and a large deterioration in cycle characteristics due to an increase in resistance due to collapse of a conductive matrix due to expansion and contraction during charging and discharging. And so on.

【0006】それ故、この発明の目的は、3種の複合酸
化物を混合使用することにより、リチウムマンガン複合
酸化物を基本とする安価かつ高容量でサイクル特性の優
れた正極活物質を備える電池を提供することにある。
Accordingly, an object of the present invention is to provide a low-cost, high-capacity, positive-electrode active material having excellent cycle characteristics based on a lithium-manganese composite oxide by mixing and using three types of composite oxides. Is to provide.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、この発明のリチウムイオン二次電池は、正極活物質
が、リチウムニッケル複合酸化物、リチウムコバルト複
合酸化物及びリチウムマンガン複合酸化物の3種混合物
からなることを特徴とする。
In order to achieve the above object, a lithium ion secondary battery according to the present invention is characterized in that the positive electrode active material comprises a lithium nickel composite oxide, a lithium cobalt composite oxide, and a lithium manganese composite oxide. It is characterized by comprising a mixture of three types.

【0008】この特徴を有することにより、リチウムコ
バルト複合酸化物の高容量と電子伝導性、リチウムニッ
ケル複合酸化物の高容量、リチウムマンガン複合酸化物
の低価格と導電助剤量の低減化が発現し、容量、サイク
ル、価格の全ての面でバランスのとれた正極を得ること
ができる。
By virtue of these features, the high capacity and electron conductivity of the lithium-cobalt composite oxide, the high capacity of the lithium-nickel composite oxide, the low price of the lithium-manganese composite oxide, and the reduction of the amount of the conductive additive are exhibited. In addition, it is possible to obtain a positive electrode that is balanced in all aspects of capacity, cycle, and price.

【0009】3種混合物中のリチウムマンガン複合酸化
物の含有量が25重量%未満であると実電池においてリ
チウムマンガン複合酸化物の安全性が発揮され難くなる
ので、25重量%以上が好ましい。また、リチウムニッ
ケル複合酸化物とリチウムコバルト複合酸化物との合計
含有量は20重量%以上が好ましい。これ以上であると
き、特に大電流放電容量が高くなるからである。
If the content of the lithium manganese composite oxide in the three-component mixture is less than 25% by weight, the safety of the lithium manganese composite oxide is hardly exhibited in an actual battery, so that the content is preferably 25% by weight or more. The total content of the lithium nickel composite oxide and the lithium cobalt composite oxide is preferably 20% by weight or more. This is because, when it is more than this, the large current discharge capacity becomes particularly high.

【0010】更にリチウムマンガン複合酸化物の平均粒
径をdm、リチウムニッケル複合酸化物及びリチウムコ
バルト複合酸化物の各平均粒径のうちdmに近い方の平
均粒径をdncとするとき、dmとdncとの差が0.
5μm以上であると好ましい。粒径に差をつけることに
より、最密に充填され、その結果結着剤を減らすことが
できるからである。
Further, when the average particle diameter of the lithium manganese composite oxide is dm and the average particle diameter closer to dm among the average particle diameters of the lithium nickel composite oxide and the lithium cobalt composite oxide is dnc, The difference from dnc is 0.
It is preferable that the thickness be 5 μm or more. This is because by providing a difference in the particle size, the particles can be packed most closely, and as a result, the binder can be reduced.

【0011】[0011]

【実施例】【Example】

[実施例1]これは、本発明のビーカー試験での実施例
である。平均粒径1μmの市販のLiMn24、同1.
5μmの市販のLiCoO2及び同0.7μmの市販の
LiNiO2を表1に示す割合で混合し、混合物91重
量部に結着剤であるポリフッ化ビニリデン6重量部と導
電剤であるアセチレンブラック3重量部を混合してN−
メチル−2−ピロリドンを適宜加えペースト状に調整し
た後、その合剤を厚さ20μmのアルミニウム箔の両面
に塗布し、乾燥し加圧することによって、正極板を作成
した。
[Example 1] This is an example of the beaker test of the present invention. Commercially available LiMn 2 O 4 having an average particle size of 1 μm;
5 μm of commercially available LiCoO 2 and 0.7 μm of commercially available LiNiO 2 were mixed in the proportions shown in Table 1, and 91 parts by weight of the mixture were mixed with 6 parts by weight of polyvinylidene fluoride as a binder and acetylene black 3 as a conductive agent. Parts by weight
After appropriately adding methyl-2-pyrrolidone to prepare a paste, the mixture was applied to both sides of a 20-μm-thick aluminum foil, dried and pressed to produce a positive electrode plate.

【0012】この正極板をLi金属からなる負極板とと
もに、LiClO4を1mol/l含むエチレンカーボ
ネート:ジエチルカーボネート=1:1(体積比)の混
合液からなる電解液に浸けた。
The positive electrode plate and the negative electrode plate made of Li metal were immersed in an electrolytic solution comprising a mixed solution of ethylene carbonate: diethyl carbonate = 1: 1 (volume ratio) containing 1 mol / l of LiClO 4 .

【0013】正極板に1mAで終止電圧4.1Vまでの
定電流充電した後、1mA(放電率0.2C)、5mA
(同1C)又は10mA(同2C)の定電流で終止電圧
3.0Vまで放電した。そのときの放電容量を表1に併
記するとともに図1に打点した。図1で縦軸が放電容
量、横軸が上記混合物中のLiCoO2及びLiNiO2
の合計重量比を示す。また、表1でNi欄、Co欄、
(Ni+Co)欄及びMn欄は、各々LiNiO2、L
iCoO2、(LiNiO2+LiCoO2)及びLiM
24の重量比を示す。
After the positive electrode plate is charged at a constant current of 1 mA to a cutoff voltage of 4.1 V, 1 mA (discharge rate 0.2 C), 5 mA
The battery was discharged to a final voltage of 3.0 V at a constant current of (1C) or 10 mA (2C). The discharge capacity at that time is also shown in Table 1 and plotted in FIG. In FIG. 1, the vertical axis represents the discharge capacity, and the horizontal axis represents LiCoO 2 and LiNiO 2 in the mixture.
Shows the total weight ratio. In Table 1, Ni column, Co column,
The (Ni + Co) column and the Mn column are LiNiO 2 and L, respectively.
iCoO 2 , (LiNiO 2 + LiCoO 2 ) and LiM
It shows the weight ratio of n 2 O 4 .

【0014】[0014]

【表1】 図1に見られるように、LiCoO2及びLiNiO2
合計含有量が40重量%以上で放電容量が高くなった。
特にLiCoO2の含有量が20重量%以上で放電率2
Cの高率放電特性が良かった。
[Table 1] As seen in FIG. 1, the discharge capacity was increased when the total content of LiCoO 2 and LiNiO 2 was 40% by weight or more.
In particular, when the LiCoO 2 content is 20% by weight or more, the discharge rate 2
The high rate discharge characteristics of C were good.

【0015】[実施例2]これは、本発明の実電池での
実施例である。正極板は、実施例1で作成したものを使
用した。負極板4は、厚さ20μmの銅箔からなる集電
体の両面に、ホスト物質としてのグラファイト(黒鉛)
86部と結着剤としてのポリフッ化ビニリデン14部と
を混合しペースト状に調製した合剤を塗布し、乾燥し加
圧することによって製作された。
[Embodiment 2] This is an embodiment of an actual battery of the present invention. The positive electrode plate used in Example 1 was used. The negative electrode plate 4 is made of graphite (graphite) as a host material on both surfaces of a current collector made of a copper foil having a thickness of 20 μm.
86 parts and 14 parts of polyvinylidene fluoride as a binder were mixed, and a mixture prepared in the form of a paste was applied, dried, and pressed to produce.

【0016】セパレータは、ポリエチレン微多孔膜であ
る。また、電解液は、LiPF6を1mol/l含むエ
チレンカーボネート:ジエチルカーボネート=1:1
(体積比)の混合液である。
The separator is a microporous polyethylene membrane. The electrolyte was ethylene carbonate: diethyl carbonate = 1: 1 containing 1 mol / l of LiPF 6.
(Volume ratio).

【0017】電池要素の各々の寸法は、正極板が厚さ2
00μm、幅175mmで、セパレータが厚さ35μ
m、幅200mmで、負極板が厚さ150μm、幅18
0mmとなっており、順に重ね合わせてポリエチレンの
巻芯を中心として、その周囲に長円渦状に巻いた後、電
池ケースに収納した。電池ケースは、直径66mm、高
さ220mmの円筒形で、材質はステンレス304であ
る。電池ケースの蓋上部には電解液注入用の孔が、底部
には安全弁が各々設けられている。電池の側面から釘を
貫通させたところ、正極活物質中のLiMn24含有量
が20重量%以下の電池で安全弁が作動した。30重量
%以上のものは作動しなかった。
The dimensions of each battery element are such that the positive electrode plate has a thickness of 2
00 μm, width 175 mm, separator 35 μm thick
m, width 200 mm, negative plate 150 μm thick, width 18
The length was 0 mm, and they were superposed in order and wound around the polyethylene core in an elliptical shape around the core, and then stored in a battery case. The battery case has a cylindrical shape with a diameter of 66 mm and a height of 220 mm, and is made of stainless steel 304. A hole for injecting an electrolyte is provided at the top of the lid of the battery case, and a safety valve is provided at the bottom. When a nail was penetrated from the side of the battery, the safety valve operated with a battery having a LiMn 2 O 4 content of 20% by weight or less in the positive electrode active material. Those above 30% by weight did not work.

【0018】[0018]

【発明の効果】安価で安全で高率放電容量の高い電池を
得ることができる。
According to the present invention, a battery which is inexpensive, safe and has a high discharge capacity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 LiCoO2及びLiNiO2の合計含有量と
放電容量との関係を測定したグラフである。
FIG. 1 is a graph showing the relationship between the total content of LiCoO 2 and LiNiO 2 and the discharge capacity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福永 孝夫 京都府京都市南区吉祥院西ノ庄猪之馬場町 1番地 日本電池株式会社内 (72)発明者 水谷 実 京都府京都市南区吉祥院西ノ庄猪之馬場町 1番地 日本電池株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takao Fukunaga 1st institution, Nishino-sho, Ino Babacho, Kichijo-in, Minami-ku, Kyoto, Kyoto (72) Inventor Minoru Mizutani Minoru Mizutani, Kichijo-in, Minami-ku, Kyoto, Kyoto No. 1 Ino Baba-cho, Nosho, Japan Battery Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】リチウム化合物を活物質とする正極を備え
たリチウムイオン電池において、活物質が、リチウムニ
ッケル複合酸化物、リチウムコバルト複合酸化物及びリ
チウムマンガン複合酸化物の3種混合物からなることを
特徴とするリチウムイオン二次電池。
1. A lithium ion battery provided with a positive electrode using a lithium compound as an active material, wherein the active material comprises a mixture of three kinds of lithium nickel composite oxide, lithium cobalt composite oxide and lithium manganese composite oxide. Characteristic lithium ion secondary battery.
【請求項2】3種混合物中のリチウムマンガン複合酸化
物の含有量が25%以上である請求項1に記載のリチウ
ムイオン二次電池。
2. The lithium ion secondary battery according to claim 1, wherein the content of the lithium manganese composite oxide in the three-component mixture is 25% or more.
【請求項3】3種混合物中のリチウムニッケル複合酸化
物とリチウムコバルト複合酸化物との合計含有量が20
重量%以上である請求項1に記載のリチウムイオン二次
電池。
3. The total content of lithium nickel composite oxide and lithium cobalt composite oxide in the three-component mixture is 20.
The lithium ion secondary battery according to claim 1, which is not less than% by weight.
【請求項4】3種混合物中のリチウムコバルト複合酸化
物の含有量が10重量%以上である請求項3に記載のリ
チウムイオン二次電池。
4. The lithium ion secondary battery according to claim 3, wherein the content of the lithium-cobalt composite oxide in the three-component mixture is 10% by weight or more.
【請求項5】リチウムマンガン複合酸化物の平均粒径を
dm、リチウムニッケル複合酸化物及びリチウムコバル
ト複合酸化物の各平均粒径のうちdmに近い方の平均粒
径をdncとするとき、dmとdncとの差が0.5μ
m以上である請求項1に記載のリチウムイオン二次電
池。
5. When the average particle diameter of the lithium manganese composite oxide is dm, and the average particle diameter of the lithium nickel composite oxide and the lithium cobalt composite oxide which is closer to dm is dnc. Is 0.5 μm.
The lithium ion secondary battery according to claim 1, which is at least m.
JP9171126A 1997-06-11 1997-06-11 Lithium ion secondary battery Withdrawn JPH113698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9171126A JPH113698A (en) 1997-06-11 1997-06-11 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9171126A JPH113698A (en) 1997-06-11 1997-06-11 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH113698A true JPH113698A (en) 1999-01-06

Family

ID=15917472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9171126A Withdrawn JPH113698A (en) 1997-06-11 1997-06-11 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH113698A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1174937A1 (en) * 1999-03-01 2002-01-23 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary cell
WO2009131897A1 (en) * 2008-04-24 2009-10-29 Boston -Power, Inc. Lithium-ion secondary battery
US8003241B2 (en) 2006-06-23 2011-08-23 Boston-Power, Inc. Lithium battery with external positive thermal coefficient layer
US8012615B2 (en) 2007-06-22 2011-09-06 Boston-Power, Inc. CID retention device for Li-ion cell
US8071233B2 (en) 2006-06-27 2011-12-06 Boston-Power, Inc. Integrated current-interrupt device for lithium-ion cells
US8642195B2 (en) 2008-12-19 2014-02-04 Boston-Power, Inc. Modular CID assembly for a lithium ion battery
US9166206B2 (en) 2008-04-24 2015-10-20 Boston-Power, Inc. Prismatic storage battery or cell with flexible recessed portion

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1174937A1 (en) * 1999-03-01 2002-01-23 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary cell
US6746800B1 (en) 1999-03-01 2004-06-08 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
EP1174937A4 (en) * 1999-03-01 2006-05-17 Sanyo Electric Co Nonaqueous electrolyte secondary cell
US8003241B2 (en) 2006-06-23 2011-08-23 Boston-Power, Inc. Lithium battery with external positive thermal coefficient layer
US8071233B2 (en) 2006-06-27 2011-12-06 Boston-Power, Inc. Integrated current-interrupt device for lithium-ion cells
US8012615B2 (en) 2007-06-22 2011-09-06 Boston-Power, Inc. CID retention device for Li-ion cell
WO2009131897A1 (en) * 2008-04-24 2009-10-29 Boston -Power, Inc. Lithium-ion secondary battery
US9166206B2 (en) 2008-04-24 2015-10-20 Boston-Power, Inc. Prismatic storage battery or cell with flexible recessed portion
US8642195B2 (en) 2008-12-19 2014-02-04 Boston-Power, Inc. Modular CID assembly for a lithium ion battery
US9293758B2 (en) 2008-12-19 2016-03-22 Boston-Power, Inc. Modular CID assembly for a lithium ion battery

Similar Documents

Publication Publication Date Title
US8101295B2 (en) Lithium secondary battery
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JP2000011996A (en) Nonaqueous electrolyte secondary battery
JPH1186854A (en) Lithium secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JPH05182689A (en) Nonaqueous electrolyte secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JPH10308207A (en) Non-aqueous electrolyte secondary battery
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JPH10208741A (en) Lithium secondary battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JPH11297311A (en) Negative electrode material for nonaqueous secondary battery
JPH113698A (en) Lithium ion secondary battery
JPH1154120A (en) Lithium ion secondary battery
JP2001143708A (en) Non-aqueous electrolyte secondary battery
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JPH1154122A (en) Lithium ion secondary battery
JP2000012029A (en) Nonaqueous electrolyte secondary battery
JP2002025626A (en) Aging method for lithium secondary battery
JP2000315504A (en) Non-aqueous electrolyte secondary battery
JPH08171934A (en) Lithium secondary battery
JP2000012026A (en) Nonaqueous electrolyte secondary battery
JP2730641B2 (en) Lithium secondary battery
JP2003217568A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH09171825A (en) Secondary battery having nonaqueous solvent

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050520