JPH09147863A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH09147863A
JPH09147863A JP7329511A JP32951195A JPH09147863A JP H09147863 A JPH09147863 A JP H09147863A JP 7329511 A JP7329511 A JP 7329511A JP 32951195 A JP32951195 A JP 32951195A JP H09147863 A JPH09147863 A JP H09147863A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
electrolyte battery
positive electrode
lithium
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7329511A
Other languages
Japanese (ja)
Inventor
Mayumi Uehara
真弓 上原
Mikiya Yamazaki
幹也 山崎
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7329511A priority Critical patent/JPH09147863A/en
Publication of JPH09147863A publication Critical patent/JPH09147863A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide shelf life and an excellent charging-discharging cycle characteristic by adding Li6 CoO4 to a lithium transition metal composite oxide to be used as a positive electrode in a nonaqueous electrolyte battery. SOLUTION: In a nonaqueous electrolyte battery, a material capable of storing and releasing metallic lithium or a lithium ion is used as a negative electrode, and a lithium transition metal composite oxide capable of storing and releasing a lithium ion is used as a positive electrode. Li6 CoO4 is added in a range of 0.1 to 20 mole % to the lithium transition metal composite oxide to be used as this positive electrode. For example, a compound expressed by a formula: Lix Niy M1-y-z Oa is cited as the lithium transition metal composite oxide. In the formula, M represents one or more kinds selected from B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Cu, Zn, Ga, Ge, Zr, Nb, Ru, Ag, Ta, Bi, In, Mo and W, and (0<x<1.3, and 0.5<=y+z<=1, and 1.8<=a<=2.2) are realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0002】[0002]

【発明の属する技術分野】この発明は、負極に金属リチ
ウム又はリチウムイオンの吸蔵,放出が可能な材料を用
いると共に、正極にリチウムイオンの吸蔵,放出が可能
なリチウム遷移金属複合酸化物を用いた非水電解質電池
に係り、特に、その正極材料が改良されて充放電サイク
ル特性等が向上した非水電解質電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a material capable of occluding and releasing metallic lithium or lithium ions for the negative electrode and a lithium transition metal composite oxide capable of occluding and releasing lithium ions for the positive electrode. The present invention relates to a non-aqueous electrolyte battery, and more particularly to a non-aqueous electrolyte battery in which the positive electrode material is improved and the charge / discharge cycle characteristics and the like are improved.

【0003】[0003]

【従来の技術】近年、高出力,高エネルギー密度の新型
二次電池の1つとして、電解質に非水電解液等の非水電
解質を用い、リチウム等の酸化,還元を利用して放電及
び充電を行なうようにした非水電解質電池が利用される
ようになった。
2. Description of the Related Art In recent years, as one of new high-output and high-energy-density secondary batteries, a non-aqueous electrolyte such as a non-aqueous electrolyte is used as an electrolyte for discharging and charging by utilizing oxidation and reduction of lithium. The non-aqueous electrolyte battery adapted to do so has come to be used.

【0004】そして、このような非水電解質電池におけ
る正極や負極の材料としては、従来より様々な材料が使
用されており、その正極の材料としては、例えば、リチ
ウムイオンの吸蔵,放出が可能なLiTiO2 ,LiF
eO2 ,LiCoO2 ,LiNiO2 等の各種のリチウ
ム遷移金属複合酸化物が一般に使用されていた。
Various materials have been conventionally used as materials for the positive electrode and the negative electrode in such a non-aqueous electrolyte battery. As the material for the positive electrode, for example, lithium ions can be occluded and released. LiTiO 2 , LiF
Various lithium-transition metal composite oxides such as eO 2 , LiCoO 2 and LiNiO 2 have been commonly used.

【0005】しかし、上記のようなリチウム遷移金属複
合酸化物は一般に触媒作用が強く、これを正極材料に用
いた場合、上記のリチウム遷移金属複合酸化物が非水電
解質電池における非水電解液等と反応してこの非水電解
液等が分解され、ガス等が発生して、この非水電解質電
池における保存性や充放電サイクル特性が低下するとい
う問題があった。
However, the above lithium-transition metal composite oxide generally has a strong catalytic action, and when it is used as a positive electrode material, the above-mentioned lithium-transition metal composite oxide becomes a non-aqueous electrolytic solution in a non-aqueous electrolyte battery. There is a problem in that the non-aqueous electrolyte solution is decomposed to generate gas and the like, which deteriorates the storage stability and charge / discharge cycle characteristics of the non-aqueous electrolyte battery.

【0006】[0006]

【発明が解決しようとする課題】この発明は、負極に金
属リチウム又はリチウムイオンの吸蔵,放出が可能な材
料を用いると共に、正極にリチウムイオンの吸蔵,放出
が可能なリチウム遷移金属複合酸化物を用いた非水電解
質電池における上記のような問題を解決することを課題
とするものであり、上記のように正極材料にリチウム遷
移金属複合酸化物を用いた場合においても、この正極材
料と非水電解液等とが反応し、この非水電解液等が分解
されてガス等が発生するということがなく、保存性や充
放電サイクル特性に優れた非水電解質電池が得られるよ
うにすることを課題とするものである。
SUMMARY OF THE INVENTION The present invention uses a material capable of occluding and releasing lithium metal or lithium ions for the negative electrode and a lithium transition metal composite oxide capable of occluding and releasing lithium ions for the positive electrode. It is intended to solve the above problems in the non-aqueous electrolyte battery used, even when using a lithium transition metal composite oxide in the positive electrode material as described above, this positive electrode material and non-aqueous electrolyte It is necessary to obtain a non-aqueous electrolyte battery that has excellent storage stability and charge / discharge cycle characteristics without reacting with the electrolytic solution or the like and decomposing the non-aqueous electrolytic solution or the like to generate gas or the like. This is an issue.

【0007】[0007]

【課題を解決するための手段】この発明においては、上
記のような課題を解決するため、負極に金属リチウム又
はリチウムイオンの吸蔵,放出が可能な材料を用いると
共に、正極にリチウムイオンの吸蔵,放出が可能なリチ
ウム遷移金属複合酸化物を用いた非水電解質電池におい
て、上記の正極に使用するリチウム遷移金属複合酸化物
に対してLi6CoO4 を添加させるようにしたのであ
る。
In order to solve the above-mentioned problems, the present invention uses a material capable of absorbing and desorbing metallic lithium or lithium ions for the negative electrode, and a positive electrode for absorbing and desorbing lithium ions. In a non-aqueous electrolyte battery using a desorbable lithium transition metal composite oxide, Li 6 CoO 4 was added to the lithium transition metal composite oxide used for the positive electrode.

【0008】そして、この発明における非水電解質電池
のように、正極材料に使用するリチウム遷移金属複合酸
化物にLi6 CoO4 を添加させて、このLi6 CoO
4 を上記のリチウム遷移金属複合酸化物の表面に付着さ
せると、4.2V程度の充電ではこのLi6 CoO4
Li5 CoO4 まで充電されるだけで、Coの酸価数が
3を超えないため、このLi6 CoO4 が付着した部分
において、上記のリチウム遷移金属複合酸化物における
触媒作用が弱くなり、非水電解液等との接触による反応
が抑制され、非水電解質電池における保存性やサイクル
特性が向上されると共に、このLi6 CoO4 がリチウ
ムイオンの吸蔵,放出を行なうため、正極における特性
が低下して放電特性等が低下するということも少ない。
Then, as in the non-aqueous electrolyte battery according to the present invention, Li 6 CoO 4 is added to the lithium transition metal composite oxide used for the positive electrode material, and this Li 6 CoO is added.
When 4 is attached to the surface of the above lithium-transition metal composite oxide, the Li 6 CoO 4 is only charged to Li 5 CoO 4 at a charge of about 4.2 V, and the acid value of Co exceeds 3. Therefore, the catalytic action of the above-mentioned lithium-transition metal composite oxide is weakened in the portion to which the Li 6 CoO 4 is attached, the reaction due to contact with the non-aqueous electrolyte solution is suppressed, and the storage stability in the non-aqueous electrolyte battery is reduced. The cycle characteristics are improved and the Li 6 CoO 4 absorbs and desorbs lithium ions, so that the characteristics of the positive electrode and the discharge characteristics are less likely to deteriorate.

【0009】ここで、上記のようにLi6 CoO4 を添
加させるリチウム遷移金属複合酸化物としては、従来よ
りリチウムイオンの吸蔵,放出が可能な正極材料として
一般に使用されているものであれば良く、例えば、下記
の構造式(1)〜(3)で表わされるリチウム遷移金属
複合酸化物を用いることができ、特に、下記の構造式
(1)で示されるリチウム遷移金属複合酸化物に対して
Li6 CoO4 を添加させると、サイクル特性が非常に
優れた非水電解質電池が得られるようになる。 Lix Niy Coz M1-y-z Oa (1) [この構造式(1)中において、MはB,Na,Mg,
Al,Si,K,Ca,Sc,Ti,V,Cr,Mn,
Fe,Cu,Zn,Ga,Ge,Zr,Nb,Ru,A
g,Ta,Bi,In,Mo,Wの中から選ばれる少な
くとも1種の元素であり、x,y,z及びaは、0<x
<1.3、0.5≦y+z≦1、1.8≦a≦2.2で
あり、xは充放電によって変化する。] Lix Fey M1-y Oa (2) [この構造式(2)中において、MはB,Na,Mg,
Al,Si,K,Ca,Sc,Ti,V,Cr,Mn,
Cu,Zn,Ga,Ge,Zr,Nb,Ru,Ag,T
a,Bi,In,Mo,W,Co,Niの中から選ばれ
る少なくとも1種の元素であり、x,y及びaは、0<
x<2.6、1≦y≦2、3.6≦a≦4.4であり、
xは充放電によって変化する。] Lix Mny M2-y Oa (3) [この構造式(3)中において、MはB,Na,Mg,
Al,Si,K,Ca,Sc,V,Cr,Fe,Ti,
Cu,Zn,Ga,Ge,Zr,Nb,Ru,Ag,T
a,Bi,In,Mo,W,Co,Niの中から選ばれ
る少なくとも1種の元素であり、x,y及びaは、0<
x<1.3、0.5≦y≦1、1.8≦a≦2.2であ
り、xは充放電によって変化する。]
The lithium-transition metal composite oxide to which Li 6 CoO 4 is added as described above may be any one that has been conventionally used as a positive electrode material capable of absorbing and desorbing lithium ions. For example, a lithium transition metal composite oxide represented by the following structural formulas (1) to (3) can be used, and particularly for a lithium transition metal composite oxide represented by the following structural formula (1): Addition of Li 6 CoO 4 makes it possible to obtain a non-aqueous electrolyte battery having very excellent cycle characteristics. Lix Niy Coz M1-yz Oa (1) [In the structural formula (1), M is B, Na, Mg,
Al, Si, K, Ca, Sc, Ti, V, Cr, Mn,
Fe, Cu, Zn, Ga, Ge, Zr, Nb, Ru, A
At least one element selected from g, Ta, Bi, In, Mo and W, and x, y, z and a are 0 <x.
<1.3, 0.5 ≦ y + z ≦ 1, 1.8 ≦ a ≦ 2.2, and x changes depending on charge and discharge. ] Lix Fey M1-y Oa (2) [In this structural formula (2), M is B, Na, Mg,
Al, Si, K, Ca, Sc, Ti, V, Cr, Mn,
Cu, Zn, Ga, Ge, Zr, Nb, Ru, Ag, T
at least one element selected from a, Bi, In, Mo, W, Co and Ni, and x, y and a are 0 <
x <2.6, 1 ≦ y ≦ 2, 3.6 ≦ a ≦ 4.4,
x changes with charge and discharge. Lix Mny M2-y Oa (3) [In the structural formula (3), M is B, Na, Mg,
Al, Si, K, Ca, Sc, V, Cr, Fe, Ti,
Cu, Zn, Ga, Ge, Zr, Nb, Ru, Ag, T
at least one element selected from a, Bi, In, Mo, W, Co and Ni, and x, y and a are 0 <
x <1.3, 0.5 ≦ y ≦ 1, 1.8 ≦ a ≦ 2.2, and x changes due to charge / discharge. ]

【0010】そして、上記のようなリチウム遷移金属複
合酸化物に対してLi6 CoO4 を添加させるにあた
り、その添加量が少なすぎると、Li6 CoO4 が上記
のリチウム遷移金属複合酸化物に付着する部分が少な
く、上記のリチウム遷移金属複合酸化物と非水電解液等
が接触して反応するのを十分に抑制することができず、
保存性やサイクル特性を改善することができなくなる一
方、このLi6 CoO4 の添加量が多くなりすぎると、
このLi6 CoO4 における負荷特性が上記のリチウム
遷移金属複合酸化物に比べて悪く、大電流での放電特性
が悪くなるため、好ましくは、リチウム遷移金属複合酸
化物に対してLi6 CoO4 を0.1〜20mol%の
範囲で、より好ましくは、0.5〜10mol%の範囲
で添加させるようにする。
When Li 6 CoO 4 is added to the above-mentioned lithium-transition metal composite oxide in an excessively small amount, Li 6 CoO 4 adheres to the above-mentioned lithium-transition metal composite oxide. There are few parts to do, it is not possible to sufficiently suppress the reaction of the lithium transition metal composite oxide and the nonaqueous electrolytic solution in contact with each other,
While it becomes impossible to improve the storability and cycle characteristics, if the amount of addition of Li 6 CoO 4 becomes too large,
Since the load characteristics of this Li 6 CoO 4 are worse than that of the above lithium transition metal composite oxide and the discharge characteristics at large current are poor, it is preferable to add Li 6 CoO 4 to the lithium transition metal composite oxide. It is added in the range of 0.1 to 20 mol%, and more preferably in the range of 0.5 to 10 mol%.

【0011】また、この発明における非水電解質電池に
おいて、負極に使用する負極材料としては、上記のよう
に金属リチウムの他に、リチウムイオンの吸蔵,放出が
可能な材料を用いることができ、例えば、黒鉛,コーク
ス,有機物焼成体等の炭素材料や、Li−Al,Li−
In,Li−Sn,Li−Pb,Li−Bi,Li−G
a,Li−Sr,Li−Si,Li−Zn,Li−C
d,Li−Ca,Li−Ba等のリチウム合金を使用す
ることができる。
Further, in the non-aqueous electrolyte battery according to the present invention, as the negative electrode material used for the negative electrode, in addition to metallic lithium as described above, a material capable of inserting and extracting lithium ions can be used. , Carbon materials such as graphite, coke, and calcined organic matter, Li-Al, Li-
In, Li-Sn, Li-Pb, Li-Bi, Li-G
a, Li-Sr, Li-Si, Li-Zn, Li-C
Lithium alloys such as d, Li-Ca and Li-Ba can be used.

【0012】また、この発明における非水電解質電池に
おいて、その非水電解質としては、公知の非水電解液や
高分子固体電解質を使用することでき、非水電解液にお
ける溶媒としても公知のものを使用することができ、例
えば、プロピレンカーボネート、エチレンカーボネー
ト、γ−ブチロラクトン、ジメチルカーボネート、ジメ
チルスルホキシド、アセトニトリル、ブチレンカーボネ
ート、1,2−ジメトキシエタン、ジエチルカーボネー
ト等の有機溶媒を1種又は2種以上組み合わせて使用す
ることができ、またこの溶媒に溶解させる溶質として
も、公知のものを使用することができ、例えば、トリフ
ルオロメタンスルホン酸リチウムLiCF3SO3 ,ヘ
キサフルオロリン酸リチウムLiPF6 ,過塩素酸リチ
ウムLiClO4 ,テトラフルオロホウ酸リチウムLi
BF4 ,トリフルオロメタンスルホン酸イミドリチウム
LiN(CF3 SO22 等のリチウム化合物を使用す
ることができる。
Further, in the non-aqueous electrolyte battery of the present invention, a known non-aqueous electrolyte or polymer solid electrolyte can be used as the non-aqueous electrolyte, and a known solvent as the solvent in the non-aqueous electrolyte can be used. It is possible to use, for example, propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl carbonate, dimethylsulfoxide, acetonitrile, butylene carbonate, 1,2-dimethoxyethane, diethyl carbonate and the like organic solvent in combination of one kind or two or more kinds. Known solutes can be used as the solute to be dissolved in this solvent, and examples thereof include lithium trifluoromethanesulfonate LiCF 3 SO 3 , lithium hexafluorophosphate LiPF 6 , and perchloric acid. lithium LiClO 4, Te Rafuruorohou acid lithium (Li)
Lithium compounds such as BF 4 and trifluoromethanesulfonic acid imide lithium LiN (CF 3 SO 2 ) 2 can be used.

【0013】また、高分子固体電解質を使用する場合に
も、この高分子固体電解質を構成する高分子に公知のも
のを用いることができ、特に、リチウムイオンに対する
イオン導電性の高い高分子を使用することが好ましく、
例えば、ポリエチレンオキサイド,ポリプロピレンオキ
サイド,ポリエチレンイミン等が好適に使用され、また
この高分子に対して上記の溶質と共に、上記の溶媒を加
えてゲル状にして使用することも可能である。
Also, when a polymer solid electrolyte is used, a known polymer can be used as the polymer constituting the polymer solid electrolyte, and in particular, a polymer having a high ionic conductivity for lithium ions is used. Preferably
For example, polyethylene oxide, polypropylene oxide, polyethyleneimine and the like are preferably used, and it is also possible to add the above solvent to the polymer together with the above solvent to form a gel.

【0014】[0014]

【実施例】以下、この発明に係る非水電解質電池につい
て実験例を挙げて具体的に説明すると共に、この発明の
実施例に係る非水電解質電池が充放電サイクル特性等の
点で優れていることを明らかにする。なお、この発明に
おける非水電解質電池は、下記に示したものに限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することができるものである。
EXAMPLES The non-aqueous electrolyte battery according to the present invention will be specifically described below with reference to experimental examples, and the non-aqueous electrolyte battery according to the examples of the present invention is excellent in terms of charge / discharge cycle characteristics and the like. Make it clear. The non-aqueous electrolyte battery according to the present invention is not limited to the ones shown below, and can be implemented with appropriate modifications without departing from the scope of the invention.

【0015】(実験例1〜10)これらの実施例1〜1
0においては、下記のようにして作製した正極と負極を
用いると共に、下記のようにして調製した非水電解液を
用いて、図1に示すような直径が24.0mm,厚さが
3.0mmのコイン型になった非水電解質電池を得るよ
うにした。
Experimental Examples 1 to 10 These Examples 1 to 1
No. 0, the positive electrode and the negative electrode produced as described below were used, and the nonaqueous electrolytic solution prepared as described below was used to obtain a diameter of 24.0 mm and a thickness of 3. A 0 mm coin type non-aqueous electrolyte battery was obtained.

【0016】[正極の作製]正極を作製するにあたって
は、Li2 CO3 とMnO2 とをモル比1:4の割合に
なるようにして乳鉢内で混合させた後、この混合物を乾
燥空気雰囲気下において750℃で20時間熱処理し、
その後、これを石川式らいかい乳鉢中において粉砕し
て、LiMn24 の粉末を作製した。一方、Li2
とCoOとをモル比6:1の割合で混合した後、これを
600℃で熱処理してLi6 CoO4 を作製した。
[Preparation of Positive Electrode] To prepare a positive electrode, Li 2 CO 3 and MnO 2 were mixed in a mortar at a molar ratio of 1: 4, and this mixture was dried in an atmosphere of dry air. Heat treated at 750 ° C for 20 hours under
Then, this was crushed in an Ishikawa type raid mortar to prepare a LiMn 2 O 4 powder. On the other hand, Li 2 O
And CoO were mixed at a molar ratio of 6: 1 and then heat-treated at 600 ° C. to prepare Li 6 CoO 4 .

【0017】ここで、実験例1においては、正極材料と
して上記のLiMn24 の粉末だけを用いる一方、実
施例2〜10においては、正極材料としてLiMn2
4 の粉末に対して上記のLi6 CoO4 を下記の表1に
示す割合(mol%)で添加して混合させたものを使用
した。
[0017] Here, in the experimental example 1, while using only the powder of the above LiMn 2 O 4 as a cathode material, in Examples 2 to 10 are, LiMn 2 O as a positive electrode material
The above-mentioned Li 6 CoO 4 was added to the powder of 4 at the ratio (mol%) shown in Table 1 below and mixed.

【0018】そして、これらの正極材料と、導電剤であ
るアセチレンブラックと、結着剤であるポリフッ化ビニ
リデンとを重量比90:6:4の割合で混合して各正極
合剤を調製し、各正極合剤を2トン/cm2 の圧力で加
圧して直径20mmの円板状に成型した後、これを25
0℃で2時間熱処理して各正極を作製した。
Then, these positive electrode materials, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are mixed at a weight ratio of 90: 6: 4 to prepare each positive electrode mixture, After pressurizing each positive electrode mixture with a pressure of 2 ton / cm 2 to form a disk having a diameter of 20 mm,
Each positive electrode was manufactured by heat treatment at 0 ° C. for 2 hours.

【0019】[負極の作製]負極を作製するにあたって
は、所定厚みの金属リチウムの圧延板を直径20mmの
円板状に打ち抜いて負極を作製した。
[Production of Negative Electrode] In producing the negative electrode, a negative electrode was produced by punching out a rolled metal lithium plate having a predetermined thickness into a disk shape having a diameter of 20 mm.

【0020】[非水電解液の調製]非水電解液を調製す
るにあたっては、プロピレンカーボネートと1,2−ジ
メトキシエタンとを1:1の体積比で混合させた混合溶
媒を用い、この混合溶媒に過塩素酸リチウムLiClO
4 を1mol/lの割合で溶解させて非水電解液を調製
した。
[Preparation of Non-Aqueous Electrolyte] In preparing the non-aqueous electrolyte, a mixed solvent prepared by mixing propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1: 1 was used. Lithium perchlorate LiClO
4 was dissolved at a ratio of 1 mol / l to prepare a non-aqueous electrolytic solution.

【0021】[電池の作製]実験例1〜10の各非水電
解質電池を作製するにあたっては、図1に示すように、
上記のようにして作製した各正極1と負極2との間にそ
れぞれポリプロピレン製の微多孔膜(ヘキストセラニー
ズ社製,セルガード)で構成されたセパレータ3を挟み
込み、このセパレータ3に上記の非水電解液を含浸させ
て、これらを正極缶4aと負極缶4bとによって形成さ
れる電池ケース4内に収容させ、正極集電体5を介して
正極1を正極缶4aに接続させる一方、負極集電体6を
介して負極2を負極缶4bに接続させ、この正極缶4a
と負極缶4bとをポリプロピレン製の絶縁性パッキン7
により電気的に絶縁させて、各非水電解質電池を作製し
た。そして、各非水電解質電池の内部で生じた化学エネ
ルギーを正極缶4aと負極缶4bの両端子から電気エネ
ルギーとして外部へ取り出すようにした。
[Production of Battery] In producing each of the nonaqueous electrolyte batteries of Experimental Examples 1 to 10, as shown in FIG.
A separator 3 composed of a polypropylene microporous film (Hoechst Celanese Co., Ltd., Celgard) is sandwiched between each of the positive electrode 1 and the negative electrode 2 produced as described above. The electrolytic solution is impregnated and housed in a battery case 4 formed by a positive electrode can 4a and a negative electrode can 4b, and the positive electrode 1 is connected to the positive electrode can 4a through a positive electrode current collector 5, while the negative electrode collector 4a is connected. The negative electrode 2 is connected to the negative electrode can 4b through the electric body 6, and the positive electrode can 4a
Insulating packing 7 made of polypropylene for the negative electrode can 4b
To electrically insulate each nonaqueous electrolyte battery. Then, the chemical energy generated inside each non-aqueous electrolyte battery was taken out as electric energy from both terminals of the positive electrode can 4a and the negative electrode can 4b.

【0022】次に、上記の実験例1〜10の各非水電解
質電池について、それぞれ充電電流密度3mAで4.2
Vまで充電させた後、放電電流密度10mAで2.75
Vまで放電させる工程を1サイクルとする充放電サイク
ル試験を行ない、1サイクル目における各非水電解質電
池の放電容量を測定すると共に、150サイクル目にお
ける各非水電解質電池の放電容量を測定し、1サイクル
目の放電容量に対する150サイクル目の放電容量の劣
化率を求め、その結果を下記の表1に合わせて示した。 劣化率=100 ×(1サイクル目の放電容量−150サイクル 目の放電
容量)/1サイクル 目の放電容量
Next, with respect to each of the non-aqueous electrolyte batteries of Experimental Examples 1 to 10 described above, 4.2 at a charging current density of 3 mA.
After charging to V, 2.75 at a discharge current density of 10 mA
A charging / discharging cycle test in which the step of discharging to V is one cycle is performed, and the discharge capacity of each non-aqueous electrolyte battery in the first cycle is measured, and the discharge capacity of each non-aqueous electrolyte battery in the 150th cycle is measured, The deterioration rate of the discharge capacity at the 150th cycle with respect to the discharge capacity at the first cycle was determined, and the results are also shown in Table 1 below. Deterioration rate = 100 x (Discharge capacity at 1st cycle-Discharge capacity at 150th cycle) / Discharge capacity at 1st cycle

【0023】[0023]

【表1】 [Table 1]

【0024】この結果から明らかなように、正極活物質
であるLiMn24 に対して、Li6 CoO4 を0.
1〜20mol%の範囲で添加させた実験例3〜9の各
非水電解質電池は、その劣化率が24%以下で、Li6
CoO4 を添加しなかった実験例1の非水電解質電池
や、Li6 CoO4 の添加量が0.05mol%と非常
に少ない実験例2の非水電解質電池に比べて劣化率が低
くなって、サイクル特性が向上しており、また1サイク
ル目の放電容量も130mAh以上であり、Li6 Co
4 を20mol%より多く添加した実験例10の非水
電解質電池に比べて1サイクル目の放電容量が高く、放
電容量の低下が少なくなっており、特に、Li6 CoO
4 を0.5〜10mol%の範囲で添加させた実験例5
〜7の各非水電解質電池においては、その劣化率が15
%でかつ1サイクル目の放電容量が150mAh以上に
なっており、放電容量の低下を少なくしてサイクル特性
を十分に向上させることができた。
As is clear from this result, Li 6 CoO 4 was added to LiMn 2 O 4 as a positive electrode active material in an amount of 0.
Each of the nonaqueous electrolyte batteries of Experimental Examples 3 to 9 added in the range of 1 to 20 mol% had a deterioration rate of 24% or less, and Li 6
The deterioration rate was lower than that of the non-aqueous electrolyte battery of Experimental Example 1 in which CoO 4 was not added and the non-aqueous electrolyte battery of Experimental Example 2 in which the amount of Li 6 CoO 4 added was very small at 0.05 mol%. , has improved cycle characteristics and it is also 130mAh or more discharge capacity at the first cycle, Li 6 Co
Compared with the non-aqueous electrolyte battery of Experimental Example 10 in which O 4 was added in an amount of more than 20 mol%, the discharge capacity at the first cycle was high and the decrease in discharge capacity was small, and in particular Li 6 CoO
Experimental Example 5 in which 4 was added in the range of 0.5 to 10 mol%
In each of the nonaqueous electrolyte batteries No. 7 to No. 7, the deterioration rate is 15
%, And the discharge capacity in the first cycle was 150 mAh or more, and the decrease in discharge capacity was reduced and the cycle characteristics could be sufficiently improved.

【0025】(実験例11〜20)これらの実験例11
〜20の各非水電解質電池においては、正極を作製する
にあたり、Li2 CO3 とFe23 とをモル比1:1
の割合になるようにして乳鉢内で混合させた後、この混
合物を乾燥空気雰囲気下において850℃で20時間熱
処理し、その後、これを石川式らいかい乳鉢中において
粉砕して、LiFeO2 の粉末を作製した。
(Experimental Examples 11 to 20) These Experimental Examples 11
In each of the non-aqueous electrolyte batteries No. 20 to No. 20, Li 2 CO 3 and Fe 2 O 3 were used in a molar ratio of 1: 1 when producing the positive electrode.
The mixture was heat-treated at 850 ° C. for 20 hours in a dry air atmosphere, and then crushed in an Ishikawa-type Raikai mortar to obtain LiFeO 2 powder. Was produced.

【0026】そして、実験例11においては、正極材料
として上記のLiFeO2 粉末だけを用いる一方、実験
例12〜20においては、正極材料としてこのLiFe
2粉末に対して前記のLi6 CoO4 を下記の表2に
示す割合(mol%)で添加して混合させたものを使用
し、それ以外については、上記の実験例1〜10の場合
と同様にして各非水電解質電池を作製した。
Then, in Experimental Example 11, only the above-mentioned LiFeO 2 powder was used as the positive electrode material, while in Experimental Examples 12 to 20, this LiFe was used as the positive electrode material.
The above-mentioned Li 6 CoO 4 was added to and mixed with O 2 powder at the ratio (mol%) shown in Table 2 below. Each non-aqueous electrolyte battery was produced in the same manner as in.

【0027】次に、上記のようにして作製した実験例1
1〜20の各非水電解質電池についても、前記の場合と
同様にして、1サイクル目における各非水電解質電池の
放電容量を測定すると共に、150サイクル目における
各非水電解質電池の放電容量を測定し、1サイクル目の
放電容量に対する150サイクル目の放電容量の劣化率
を求め、その結果を下記の表2に合わせて示した。
Next, Experimental Example 1 produced as described above
For each of the nonaqueous electrolyte batteries 1 to 20, the discharge capacity of each nonaqueous electrolyte battery in the first cycle was measured and the discharge capacity of each nonaqueous electrolyte battery in the 150th cycle was measured in the same manner as described above. The deterioration rate of the discharge capacity at the 150th cycle relative to the discharge capacity at the first cycle was measured, and the results are shown in Table 2 below.

【0028】[0028]

【表2】 [Table 2]

【0029】この結果から明らかなように、正極活物質
にLiFeO2 を使用した場合においても、上記の実験
例1〜10の場合と同様に、前記のLi6 CoO4
0.1〜20mol%の範囲で添加させた実験例13〜
19の各非水電解質電池は、その劣化率が24%以下
で、Li6 CoO4 を添加しなかった実験例11の非水
電解質電池や、Li6 CoO4 の添加量が0.05mo
l%と非常に少ない実験例12の非水電解質電池に比べ
て劣化率が低くなって、サイクル特性が向上しており、
また1サイクル目の放電容量も130mAh以上で、L
6 CoO4 を20mol%より多く添加した実験例2
0の非水電解質電池に比べて1サイクル目の放電容量が
高く、放電容量の低下が少なくなっており、特にLi6
CoO4 を0.5〜10mol%の範囲で添加させた実
験例15〜17の各非水電解質電池においては、その劣
化率が15%でかつ1サイクル目の放電容量が140m
Ah以上になっており、放電容量の低下を少なくしてサ
イクル特性を十分に向上させることができた。
As is clear from these results, even when LiFeO 2 was used as the positive electrode active material, the Li 6 CoO 4 content was 0.1 to 20 mol% as in Experimental Examples 1 to 10 above. Experimental example 13 added in the range of
Each of the non-aqueous electrolyte batteries of 19 had a deterioration rate of 24% or less, and the non-aqueous electrolyte battery of Experimental Example 11 in which Li 6 CoO 4 was not added or the addition amount of Li 6 CoO 4 was 0.05 mo.
The deterioration rate is lower than that of the non-aqueous electrolyte battery of Experimental Example 12 which is very small as 1%, and cycle characteristics are improved.
In addition, the discharge capacity of the first cycle is 130 mAh or more,
Experimental Example 2 in which i 6 CoO 4 was added in an amount of more than 20 mol%
High discharge capacity in the first cycle as compared to the non-aqueous electrolyte battery of 0, a decrease in the discharge capacity has become less, especially Li 6
In each of the non-aqueous electrolyte batteries of Experimental Examples 15 to 17 to which CoO 4 was added in the range of 0.5 to 10 mol%, the deterioration rate was 15% and the discharge capacity at the first cycle was 140 m.
Since it was Ah or more, the decrease in discharge capacity was reduced and the cycle characteristics could be sufficiently improved.

【0030】(実験例21〜30)これらの実験例21
〜30の各非水電解質電池においては、正極を作製する
にあたり、LiOHとNi(OH)2 とCo(OH)2
とをモル比2:1:1の割合で乳鉢内で混合させた後、
この混合物を乾燥空気雰囲気下において750℃で20
時間熱処理し、その後、これを石川式らいかい乳鉢中に
おいて粉砕して、LiNi0.5 Co0.52 の粉末を作
製した。
(Experimental Examples 21 to 30) These Experimental Examples 21
In each of the nonaqueous electrolyte batteries No. 30 to No. 30, LiOH, Ni (OH) 2 and Co (OH) 2 were used to prepare the positive electrode.
After mixing and in a mortar in a molar ratio of 2: 1: 1,
This mixture was heated at 750 ° C. under a dry air atmosphere for 20 minutes.
And time heat treatment, after which it was triturated in Ishikawa automated mortar mortar to prepare a LiNi 0. Of 5 Co 0. 5 O 2 powder.

【0031】そして、実験例21においては、正極材料
として上記のLiNi0.5 Co0.52 粉末だけを用い
る一方、実験例22〜30においては、正極材料として
このLiNi0.5 Co0.52 粉末に対して前記のLi
6 CoO4 を下記の表3に示す割合(mol%)で添加
して混合させたものを使用し、それ以外については、上
記の各実験例の場合と同様にして各非水電解質電池を作
製した。
[0031] In Experimental Example 21, while using only LiNi 0. 5 Co 0. 5 O 2 powder above as a positive electrode material, in the experimental examples 22 to 30, the LiNi 0 as a positive electrode material. 5 Co 0 . the relative 5 O 2 powder Li
6 CoO 4 was added and mixed at the ratio (mol%) shown in Table 3 below, and other than that, each non-aqueous electrolyte battery was prepared in the same manner as in the above-mentioned experimental examples. did.

【0032】次に、上記のようにして作製した実験例2
1〜30の各非水電解質電池についても、前記の場合と
同様にして、1サイクル目における各非水電解質電池の
放電容量を測定すると共に、150サイクル目における
各非水電解質電池の放電容量を測定し、1サイクル目の
放電容量に対する150サイクル目の放電容量の劣化率
を求め、その結果を下記の表3に合わせて示した。
Next, Experimental Example 2 produced as described above
For each of the nonaqueous electrolyte batteries 1 to 30, the discharge capacity of each nonaqueous electrolyte battery in the first cycle was measured and the discharge capacity of each nonaqueous electrolyte battery in the 150th cycle was measured in the same manner as described above. The deterioration rate of the discharge capacity at the 150th cycle relative to the discharge capacity at the first cycle was measured, and the results are shown in Table 3 below.

【0033】[0033]

【表3】 [Table 3]

【0034】この結果から明らかなように、正極活物質
にLiNi0.5 Co0.52 を使用した場合において
も、前記の各実験例の場合と同様に、上記のLi6 Co
4 を0.1〜20mol%の範囲で添加させた実験例
23〜29の各非水電解質電池は、その劣化率が10%
以下で、Li6 CoO4 を添加しなかった実験例21の
非水電解質電池や、Li6 CoO4 の添加量が0.05
mol%と非常に少ない実験例22の非水電解質電池に
比べて劣化率が著しく低くなって、サイクル特性が大き
く向上しており、また1サイクル目の放電容量も145
mAh以上で、Li6 CoO4 を20mol%より多く
添加した実験例30の非水電解質電池に比べて、1サイ
クル目の放電容量がかなり高く、放電容量の低下もかな
り少なくなっていた。特に、Li6 CoO4 を0.5〜
10mol%の範囲で添加させた実験例25〜27の各
非水電解質電池においては、その劣化率が3%でかつ1
サイクル目の放電容量が160mAhになっており、正
極材料にLiMnO4 やLiFeO2 を用いた前記の各
実験例のものに比べても、放電容量の低下が少なく、サ
イクル特性をさらに向上させることができた。
As is apparent from this result, LiNi 0 in the positive electrode active material. 5 Co 0. 5 in the case of using O 2, as in the case of each of the experimental examples of the above-mentioned Li 6 Co
Each of the nonaqueous electrolyte batteries of Experimental Examples 23 to 29 to which O 4 was added in the range of 0.1 to 20 mol% had a deterioration rate of 10%.
In the following, the non-aqueous electrolyte battery of Experimental Example 21 in which Li 6 CoO 4 was not added and the addition amount of Li 6 CoO 4 was 0.05
Compared to the non-aqueous electrolyte battery of Experimental Example 22, which is extremely low at mol%, the deterioration rate is significantly lower, the cycle characteristics are greatly improved, and the discharge capacity at the first cycle is 145%.
Compared to the non-aqueous electrolyte battery of Experimental Example 30 in which Li 6 CoO 4 was added in an amount of mAh or more in an amount of more than 20 mol%, the discharge capacity at the first cycle was considerably high, and the decrease in discharge capacity was also considerably small. Particularly, Li 6 CoO 4 is 0.5 to
In each of the non-aqueous electrolyte batteries of Experimental Examples 25 to 27 added in the range of 10 mol%, the deterioration rate was 3% and 1
The discharge capacity at the cycle was 160 mAh, and the discharge capacity did not decrease much compared with the above-mentioned experimental examples using LiMnO 4 or LiFeO 2 as the positive electrode material, and the cycle characteristics could be further improved. did it.

【0035】(実験例31〜56)これらの実験例31
〜56の各非水電解質電池においては、正極材料とし
て、LiNi0.5 Co0.40.12 の構造式で示さ
れ、Mが下記の表4に示す元素になったものを用い、こ
れら正極材料としてそれぞれ前記のLi6 CoO4 を1
0mol%で添加して混合させたものを使用し、それ以
外については、上記の各実験例の場合と同様にして各非
水電解質電池を作製した。
(Experimental Examples 31 to 56) These Experimental Examples 31
In each non-aqueous electrolyte battery to 56, as a positive electrode material, shown LiNi 0. 5 Co 0. 4 M 0. Of 1 O 2 in the structural formula, what M is turned elements shown in Table 4 below The above Li 6 CoO 4 is used as the positive electrode material.
Each non-aqueous electrolyte battery was produced in the same manner as in each of the experimental examples described above, except that the mixture added at 0 mol% and mixed was used.

【0036】そして、上記のようにして作製した実験例
31〜56の各非水電解質電池についても、前記の場合
と同様にして、1サイクル目における各非水電解質電池
の放電容量を測定すると共に、150サイクル目におけ
る各非水電解質電池の放電容量を測定し、1サイクル目
の放電容量に対する150サイクル目の放電容量の劣化
率を求め、その結果を下記の表4に合わせて示した。
Then, for each of the nonaqueous electrolyte batteries of Experimental Examples 31 to 56 produced as described above, the discharge capacity of each nonaqueous electrolyte battery in the first cycle was measured in the same manner as described above. The discharge capacity of each non-aqueous electrolyte battery at the 150th cycle was measured, and the deterioration rate of the discharge capacity at the 150th cycle relative to the discharge capacity at the 1st cycle was determined. The results are also shown in Table 4 below.

【0037】[0037]

【表4】 [Table 4]

【0038】この結果から明らかなように、LiNi0.
5 Co0.40.12 で表わされ、Mが前記の表5に示
される元素からなる正極活物質を使用した場合において
も、正極活物質にLiNi0.5 Co0.52 を用いた前
記の実験例21〜30の場合と略同様に、Li6 CoO
4 を10mol%添加させた上記の各実験例の非水電解
質電池は、いずれもその劣化率が4%と低くなってお
り、また1サイクル目の放電容量も145mAh以上と
高く、放電容量の低下が少なく、サイクル特性に優れた
非水電解質電池が得られた。
As is clear from this result, LiNi 0 ..
5 Co 0. 4 M 0. 1 represented by O 2, in the case of using a positive electrode active material consisting of elements M are shown in Table 5 of the well, LiNi 0. 5 Co 0 in the positive electrode active material. 5 Almost the same as in the case of Experimental Examples 21 to 30 using O 2 , Li 6 CoO
In each of the above non-aqueous electrolyte batteries containing 10 mol% of 4 added thereto, the deterioration rate was low at 4%, and the discharge capacity at the first cycle was as high as 145 mAh or more, and the discharge capacity was lowered. And a non-aqueous electrolyte battery having excellent cycle characteristics was obtained.

【0039】(実験例57〜83)これらの実験例57
〜83の各非水電解質電池においては、正極材料とし
て、LiFe0.90.12 の構造式で示され、Mが下
記の表5に示す元素になったものを用い、これら正極材
料としてそれぞれ前記のLi6 CoO4 を10mol%
で添加して混合させたものを使用し、それ以外について
は、上記の各実験例の場合と同様にして各非水電解質電
池を作製した。
(Experimental Examples 57 to 83) These Experimental Examples 57
In each non-aqueous electrolyte battery to 83, as a positive electrode material, LiFe 0. 9 M 0. Indicated by 1 O 2 of the structural formula, used as the M becomes an element shown in Table 5 below, positive electrode The above-mentioned Li 6 CoO 4 was used as a material in an amount of 10 mol%
Each non-aqueous electrolyte battery was produced in the same manner as in each of the above-described experimental examples, except that the mixture added and mixed in was used.

【0040】そして、上記のようにして作製した実験例
57〜83の各非水電解質電池についても、前記の場合
と同様にして、1サイクル目における各非水電解質電池
の放電容量を測定すると共に、150サイクル目におけ
る各非水電解質電池の放電容量を測定し、1サイクル目
の放電容量に対する150サイクル目の放電容量の劣化
率を求め、その結果を下記の表5に合わせて示した。
The discharge capacities of the non-aqueous electrolyte batteries in the first cycle were measured in the same manner as in the case of the non-aqueous electrolyte batteries of Experimental Examples 57 to 83 produced as described above. The discharge capacity of each non-aqueous electrolyte battery at the 150th cycle was measured, and the deterioration rate of the discharge capacity at the 150th cycle with respect to the discharge capacity at the 1st cycle was determined. The results are also shown in Table 5 below.

【0041】[0041]

【表5】 [Table 5]

【0042】この結果から明らかなように、LiFe0.
90.12 で表わされ、Mが前記の表5に示される元
素からなる正極活物質を使用した場合においても、正極
活物質にLiFeO2 を用いた前記の実験例11〜20
の場合と略同様に、Li6 CoO4 を10mol%添加
させた上記の各実験例の非水電解質電池は、いずれも劣
化率が15%と低くなっており、また1サイクル目の放
電容量も130mAh以上と高くなり、放電容量の低下
が少なく、サイクル特性に優れた非水電解質電池が得ら
れた。
As is clear from this result, LiFe 0 ..
9 M 0. 1 represented by O 2, in the case of using a positive electrode active material consisting of elements M are shown in Table 5 of the well, the experimental examples using the LiFeO 2 as the positive electrode active material 11 to 20
In the same manner as in the above case, the non-aqueous electrolyte batteries of each of the above-described experimental examples in which 10 mol% of Li 6 CoO 4 was added had a low deterioration rate of 15%, and the discharge capacity at the first cycle was also low. It was as high as 130 mAh or more, a decrease in discharge capacity was small, and a non-aqueous electrolyte battery excellent in cycle characteristics was obtained.

【0043】(実験例84〜110)これらの実験例8
4〜110の各非水電解質電池においては、正極材料と
して、LiMn1.80.24 の構造式で示され、Mが
下記の表6に示す元素になったものを用い、これら正極
材料としてそれぞれ前記のLi6 CoO4 を10mol
%で添加して混合させたものを使用し、それ以外につい
ては、上記の各実験例の場合と同様にして各非水電解質
電池を作製した。
(Experimental Examples 84 to 110) These Experimental Examples 8
In each non-aqueous electrolyte battery of 4-110, as a positive electrode material, indicated by LiMn 1. 8 M 0. The structural formula of 2 O 4, using what M is turned elements shown in Table 6 below, these 10 mol of each of the above Li 6 CoO 4 was used as a positive electrode material.
The non-aqueous electrolyte battery was produced in the same manner as in the above-mentioned experimental examples except that the mixture was added and mixed in%.

【0044】そして、上記のようにして作製した実験例
84〜110の各非水電解質電池についても、前記の場
合と同様にして、1サイクル目における各非水電解質電
池の放電容量を測定すると共に、150サイクル目にお
ける各非水電解質電池の放電容量を測定し、1サイクル
目の放電容量に対する150サイクル目の放電容量の劣
化率を求め、その結果を下記の表6に合わせて示した。
The discharge capacities of the non-aqueous electrolyte batteries in the first cycle were measured in the same manner as in the case of the non-aqueous electrolyte batteries of Experimental Examples 84 to 110 produced as described above. The discharge capacity of each non-aqueous electrolyte battery at the 150th cycle was measured, and the deterioration rate of the discharge capacity at the 150th cycle relative to the discharge capacity at the 1st cycle was determined. The results are also shown in Table 6 below.

【0045】[0045]

【表6】 [Table 6]

【0046】この結果から明らかなように、LiMn1.
80.24 で表わされ、Mが前記の表6に示される元
素からなる正極活物質を使用した場合においても、正極
活物質にLiMn24 を用いた前記の実験例1〜10
の場合と略同様に、Li6 CoO4 を10mol%添加
させた上記の各実験例の非水電解質電池は、いずれも劣
化率が15%と低くなっており、また1サイクル目の放
電容量も150mAh以上と高くなり、放電容量の低下
が少なく、サイクル特性に優れた非水電解質電池が得ら
れた。
As is clear from this result, LiMn 1 .
8 M 0. 2 O is represented by 4, in the case of using the positive electrode active material consisting of elements M are shown in Table 6 of the well, experimental examples of the using LiMn 2 O 4 as the positive electrode active material 1 -10
In the same manner as in the above case, the non-aqueous electrolyte batteries of each of the above-described experimental examples in which 10 mol% of Li 6 CoO 4 was added had a low deterioration rate of 15%, and the discharge capacity at the first cycle was also low. It was as high as 150 mAh or more, a decrease in discharge capacity was small, and a non-aqueous electrolyte battery excellent in cycle characteristics was obtained.

【0047】[0047]

【発明の効果】以上詳述したように、この発明における
非水電解質電池においては、正極材料に使用するリチウ
ム遷移金属複合酸化物にLi6 CoO4 を添加させるよ
うにしたため、このLi6 CoO4 がリチウム遷移金属
複合酸化物の表面に付着し、これによりリチウム遷移金
属複合酸化物における触媒作用が弱くなって、非水電解
液等との接触による反応が抑制され、保存性やサイクル
特性に優れた非水電解質電池が得られるようになった。
As described above in detail, in the non-aqueous electrolyte battery in the present invention, since so as to addition of Li 6 CoO 4 lithium transition metal composite oxide used in the positive electrode material, the Li 6 CoO 4 Adheres to the surface of the lithium-transition metal composite oxide, which weakens the catalytic action of the lithium-transition metal composite oxide and suppresses the reaction due to contact with a non-aqueous electrolyte solution, which is excellent in storage stability and cycle characteristics. A non-aqueous electrolyte battery is now available.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各実験例における非水電解質電池の内部構造を
示した断面説明図である。
FIG. 1 is a cross-sectional explanatory view showing the internal structure of a non-aqueous electrolyte battery in each experimental example.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 Positive electrode 2 Negative electrode

フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内Front Page Continuation (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 負極に金属リチウム又はリチウムイオン
の吸蔵,放出が可能な材料を用いると共に、正極にリチ
ウムイオンの吸蔵,放出が可能なリチウム遷移金属複合
酸化物を用いた非水電解質電池において、上記の正極に
使用するリチウム遷移金属複合酸化物に対してLi6
oO4 を添加させたことを特徴とする非水電解質電池。
1. A non-aqueous electrolyte battery using a material capable of occluding and releasing metallic lithium or lithium ions for the negative electrode and a lithium transition metal composite oxide capable of occluding and releasing lithium ions for the positive electrode. Li 6 C is added to the lithium transition metal composite oxide used for the positive electrode.
A non-aqueous electrolyte battery containing oO 4 .
【請求項2】 請求項1に記載した非水電解質電池にお
いて、上記の正極に使用するリチウム遷移金属複合酸化
物が、下記の構造式(1)〜(3)の何れかのリチウム
遷移金属複合酸化物で構成されていることを特徴とする
非水電解質電池。 Lix Niy Coz M1-y-z Oa (1) [この構造式(1)中において、MはB,Na,Mg,
Al,Si,K,Ca,Sc,Ti,V,Cr,Mn,
Fe,Cu,Zn,Ga,Ge,Zr,Nb,Ru,A
g,Ta,Bi,In,Mo,Wの中から選ばれる少な
くとも1種の元素であり、x,y,z及びaは、0<x
<1.3、0.5≦y+z≦1、1.8≦a≦2.2で
あり、xは充放電によって変化する。] Lix Fey M1-y Oa (2) [この構造式(2)中において、MはB,Na,Mg,
Al,Si,K,Ca,Sc,Ti,V,Cr,Mn,
Cu,Zn,Ga,Ge,Zr,Nb,Ru,Ag,T
a,Bi,In,Mo,W,Co,Niの中から選ばれ
る少なくとも1種の元素であり、x,y及びaは、0<
x<1.3、0.5≦y≦1、1.8≦a≦2.2であ
り、xは充放電によって変化する。] Lix Mny M2-y Oa (3) [この構造式(3)中において、MはB,Na,Mg,
Al,Si,K,Ca,Sc,V,Cr,Fe,Ti,
Cu,Zn,Ga,Ge,Zr,Nb,Ru,Ag,T
a,Bi,In,Mo,W,Co,Niの中から選ばれ
る少なくとも1種の元素であり、x,y及びaは、0<
x<2.6、1≦y≦2、3.6≦a≦4.4であり、
xは充放電によって変化する。]
2. The non-aqueous electrolyte battery according to claim 1, wherein the lithium transition metal composite oxide used for the positive electrode is a lithium transition metal composite oxide represented by any one of the following structural formulas (1) to (3). A non-aqueous electrolyte battery comprising an oxide. Lix Niy Coz M1-yz Oa (1) [In the structural formula (1), M is B, Na, Mg,
Al, Si, K, Ca, Sc, Ti, V, Cr, Mn,
Fe, Cu, Zn, Ga, Ge, Zr, Nb, Ru, A
At least one element selected from g, Ta, Bi, In, Mo and W, and x, y, z and a are 0 <x.
<1.3, 0.5 ≦ y + z ≦ 1, 1.8 ≦ a ≦ 2.2, and x changes depending on charge and discharge. ] Lix Fey M1-y Oa (2) [In this structural formula (2), M is B, Na, Mg,
Al, Si, K, Ca, Sc, Ti, V, Cr, Mn,
Cu, Zn, Ga, Ge, Zr, Nb, Ru, Ag, T
at least one element selected from a, Bi, In, Mo, W, Co and Ni, and x, y and a are 0 <
x <1.3, 0.5 ≦ y ≦ 1, 1.8 ≦ a ≦ 2.2, and x changes due to charge / discharge. Lix Mny M2-y Oa (3) [In the structural formula (3), M is B, Na, Mg,
Al, Si, K, Ca, Sc, V, Cr, Fe, Ti,
Cu, Zn, Ga, Ge, Zr, Nb, Ru, Ag, T
at least one element selected from a, Bi, In, Mo, W, Co and Ni, and x, y and a are 0 <
x <2.6, 1 ≦ y ≦ 2, 3.6 ≦ a ≦ 4.4,
x changes with charge and discharge. ]
【請求項3】 請求項1又は請求項2に記載した非水電
解質電池において、上記の正極に使用するリチウム遷移
金属複合酸化物に対して、Li6 CoO4 を0.1〜2
0モル%の範囲で添加させたことを特徴とする非水電解
質電池。 【0001】
3. The non-aqueous electrolyte battery according to claim 1 or 2, wherein 0.1 to 2 of Li 6 CoO 4 is added to the lithium transition metal composite oxide used for the positive electrode.
A non-aqueous electrolyte battery which is added in an amount of 0 mol%. [0001]
JP7329511A 1995-11-24 1995-11-24 Nonaqueous electrolyte battery Pending JPH09147863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7329511A JPH09147863A (en) 1995-11-24 1995-11-24 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7329511A JPH09147863A (en) 1995-11-24 1995-11-24 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH09147863A true JPH09147863A (en) 1997-06-06

Family

ID=18222199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7329511A Pending JPH09147863A (en) 1995-11-24 1995-11-24 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH09147863A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113884A (en) * 1998-10-01 2000-04-21 Ngk Insulators Ltd Lithium secondary battery
EP1069075A1 (en) * 1999-07-14 2001-01-17 NBT GmbH Method for producing lithium spinell
JP2001345102A (en) * 2000-03-30 2001-12-14 Sony Corp Secondary battery
JP2002507313A (en) * 1997-06-27 2002-03-05 エルジー・ケミカル・リミテッド Lithium ion secondary battery and method of manufacturing the same
US6670076B1 (en) * 1997-06-19 2003-12-30 Tosoh Corporation Spinel-type lithium-manganese oxide containing heteroelements preparation process and use thereof
KR100681465B1 (en) * 2004-07-30 2007-02-09 주식회사 엘지화학 Electrode active material with high capacity and good cycleability and lithium secondary cell comprising the same
WO2015011884A1 (en) * 2013-07-25 2015-01-29 株式会社豊田自動織機 Positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US20150372304A1 (en) * 2013-01-31 2015-12-24 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2016091633A (en) * 2014-10-30 2016-05-23 住友金属鉱山株式会社 Substituent element select method, battery positive electrode material manufacturing method, and battery positive electrode material
US9692043B2 (en) 2013-03-27 2017-06-27 Tokyo University Of Science Educational Foundation Administrative Organization Active material for nonaqueous electrolyte energy storage device
KR20190064424A (en) * 2017-11-30 2019-06-10 주식회사 엘지화학 Additives for cathode, manufacturing method of the same, cathode including the same, and lithium recharegable battery including the same
US10403929B2 (en) 2017-11-30 2019-09-03 Lg Chem, Ltd. Additive for cathode, method for preparing the same, cathode including the same, and lithium secondary battery including the same
JP2022510983A (en) * 2018-11-30 2022-01-28 ポスコ Positive electrode additive for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery including it and lithium secondary battery containing it
WO2022255665A1 (en) * 2021-05-31 2022-12-08 주식회사 엘지에너지솔루션 Master batch comprising positive electrode active material and irreversible additive, and positive electrode slurry, for lithium secondary battery, containing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670076B1 (en) * 1997-06-19 2003-12-30 Tosoh Corporation Spinel-type lithium-manganese oxide containing heteroelements preparation process and use thereof
JP2002507313A (en) * 1997-06-27 2002-03-05 エルジー・ケミカル・リミテッド Lithium ion secondary battery and method of manufacturing the same
JP2000113884A (en) * 1998-10-01 2000-04-21 Ngk Insulators Ltd Lithium secondary battery
EP1069075A1 (en) * 1999-07-14 2001-01-17 NBT GmbH Method for producing lithium spinell
JP2001345102A (en) * 2000-03-30 2001-12-14 Sony Corp Secondary battery
KR100681465B1 (en) * 2004-07-30 2007-02-09 주식회사 엘지화학 Electrode active material with high capacity and good cycleability and lithium secondary cell comprising the same
US20150372304A1 (en) * 2013-01-31 2015-12-24 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US9692043B2 (en) 2013-03-27 2017-06-27 Tokyo University Of Science Educational Foundation Administrative Organization Active material for nonaqueous electrolyte energy storage device
WO2015011884A1 (en) * 2013-07-25 2015-01-29 株式会社豊田自動織機 Positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2016091633A (en) * 2014-10-30 2016-05-23 住友金属鉱山株式会社 Substituent element select method, battery positive electrode material manufacturing method, and battery positive electrode material
KR20190064424A (en) * 2017-11-30 2019-06-10 주식회사 엘지화학 Additives for cathode, manufacturing method of the same, cathode including the same, and lithium recharegable battery including the same
US10403929B2 (en) 2017-11-30 2019-09-03 Lg Chem, Ltd. Additive for cathode, method for preparing the same, cathode including the same, and lithium secondary battery including the same
JP2022510983A (en) * 2018-11-30 2022-01-28 ポスコ Positive electrode additive for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery including it and lithium secondary battery containing it
WO2022255665A1 (en) * 2021-05-31 2022-12-08 주식회사 엘지에너지솔루션 Master batch comprising positive electrode active material and irreversible additive, and positive electrode slurry, for lithium secondary battery, containing same

Similar Documents

Publication Publication Date Title
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
EP1022797A1 (en) Polymer electrolyte battery and polymer electrolyte
JP2013110134A (en) Nonaqueous electrolyte battery
JPH09330720A (en) Lithium battery
JPH1027626A (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JPH06342673A (en) Lithium secondary battery
JP3819663B2 (en) Lithium secondary battery charge / discharge method and lithium secondary battery
JP3717544B2 (en) Lithium secondary battery
JP3349399B2 (en) Lithium secondary battery
JP3197684B2 (en) Non-aqueous electrolyte secondary battery
JP4248258B2 (en) Lithium secondary battery
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JP2002025609A (en) Lithium secondary battery
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
JP2002170566A (en) Lithium secondary cell
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JPH0864246A (en) Sealed type nonaqueous electrolyte secondary battery
JP3188032B2 (en) Lithium secondary battery
JPH08171936A (en) Lithium secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JP2002025626A (en) Aging method for lithium secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery