JPH1186854A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH1186854A
JPH1186854A JP9246472A JP24647297A JPH1186854A JP H1186854 A JPH1186854 A JP H1186854A JP 9246472 A JP9246472 A JP 9246472A JP 24647297 A JP24647297 A JP 24647297A JP H1186854 A JPH1186854 A JP H1186854A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
secondary battery
electrode material
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9246472A
Other languages
Japanese (ja)
Inventor
Junya Kaneda
潤也 金田
Seiji Takeuchi
瀞士 武内
Hidetoshi Honbou
英利 本棒
Tadashi Muranaka
村中  廉
Masatoshi Inagaki
正寿 稲垣
Hideyo Kodama
英世 児玉
Yasuhisa Aono
泰久 青野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9246472A priority Critical patent/JPH1186854A/en
Publication of JPH1186854A publication Critical patent/JPH1186854A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode active material suppressed for collapse and having a high capacity and a long life by forming the negative active material bearing the charging/discharging of a negative electrode material with grains containing the phase storing lithium and the phase storing no lithium. SOLUTION: In a negative electrode material, the phase-storing lithium is made of one of 3B, 4B, 5B group elements, and it is preferably made of one of Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi. The phase-storing lithium is the phase of an inter-metallic compound made of at least one kind of element among Al, Ga, In, Si, Ge, Sn, Pb, Sb, Bi. The phase which stores no lithium is preferably a phase made of one of 4A, 5A, 6A group elements and at least one kind of element from among Mn, Fe, Co, Ni, Cu.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系電解液二次
電池に係わり、特に、高電圧,高エネルギー密度,高充
放電容量,長サイクル寿命の充放電特性を有し、かつ安
全性の高いリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having charge / discharge characteristics of high voltage, high energy density, high charge / discharge capacity, long cycle life, and safety. Related to high lithium secondary batteries.

【0002】[0002]

【従来の技術】電子機器の分野では、機器を携帯使用す
る要望の高まりと共に、機器の小型軽量化が進んでい
る。このため、高エネルギー密度を有す電池、特に二次
電池の開発が要求されている。この要求を満たす二次電
池の候補としてリチウム二次電池がある。リチウム二次
電池は、ニッケルカドニウム電池,鉛蓄電池,ニッケル
水素電池に比べ、高電圧,高エネルギー密度を有し、し
かも軽量である。
2. Description of the Related Art In the field of electronic equipment, the demand for portable use of equipment has been increasing and the size and weight of the equipment have been reduced. For this reason, development of a battery having a high energy density, particularly a secondary battery, is required. A lithium secondary battery is a candidate for a secondary battery that satisfies this requirement. Lithium secondary batteries have higher voltage, higher energy density, and are lighter in weight than nickel cadmium batteries, lead storage batteries, and nickel hydrogen batteries.

【0003】しかし、負極活物質としてリチウム金属を
用いたリチウム二次電池では、充電時に負極表面にリチ
ウムがデンドライト析出し、正極との内部短絡や電解液
に対し負活性化するために、電池の寿命や安全性の点で
問題である。また、リチウム金属を使用することの危険
性を回避するために、Li−PbやLi−Al等のリチ
ウム合金を負極活物質に用いたリチウム二次電池が開発
されている。しかし、このリチウム二次電池において
も、デンドライト析出や微粉化の問題があり、十分な電
池寿命を得られていない。
However, in a lithium secondary battery using lithium metal as a negative electrode active material, lithium dendrite precipitates on the surface of the negative electrode during charging, and internal short-circuit with the positive electrode and negative activation with respect to the electrolytic solution occur. It is a problem in terms of life and safety. Further, in order to avoid the danger of using lithium metal, a lithium secondary battery using a lithium alloy such as Li-Pb or Li-Al as a negative electrode active material has been developed. However, this lithium secondary battery also has problems of dendrite precipitation and pulverization, and a sufficient battery life has not been obtained.

【0004】現在では、負極活物質に黒鉛を用いたリチ
ウム二次電池が開発され、実用化に至っている。これ
は、リチウムイオンを黒鉛のC面間に挿入,離脱させる
反応により、リチウムイオンを吸蔵,放出しており、化
学的に活性な金属リチウムに比べれば安定であり、ま
た、リチウムのデンドライト析出もない。このため、サ
イクル寿命も長くなり、安全性も向上した。
At present, lithium secondary batteries using graphite as a negative electrode active material have been developed and have been put to practical use. This is because lithium ions are inserted and desorbed from the C-plane of graphite by the reaction of inserting and removing lithium ions, and are more stable than chemically active metallic lithium. Absent. For this reason, the cycle life was extended and the safety was improved.

【0005】[0005]

【発明が解決しようとする課題】黒鉛を負極活物質に用
いた場合は、約300mAh/gの放電容量である。黒
鉛の重量密度が2.2g/cm3であるために体積容量密度
はリチウム金属に比べ小さく、また黒鉛負極活物質を負
極集電体に塗布した負極シートではさらに体積容量密度
が小さくなる。この問題を解決するために、負極活物質
に重量密度の大きな金属系無機材料を用いることが有効
である。
When graphite is used as the negative electrode active material, the discharge capacity is about 300 mAh / g. Since the weight density of graphite is 2.2 g / cm 3 , the volume capacity density is smaller than that of lithium metal, and the volume capacity density is further reduced in a negative electrode sheet in which a graphite negative electrode active material is applied to a negative electrode current collector. In order to solve this problem, it is effective to use a metal-based inorganic material having a large weight density as the negative electrode active material.

【0006】特開平8−124568 号公報は、Al,Zn,
Sn,Pbから選択される少なくとも1種類の金属とN
i,Co,Cu,Ti,Feから選択される少なくとも
1種類の金属とを合金化した金属粉末を負極に用いた二
次電池である。酸あるいはアルカリ溶液によりAl,Z
n,Sn,Pbを選択的にエッチングすることで、上記
合金の比表面積を大きくすることができるので、電解液
との接触面積が増加し、負極へのリチウムイオンの拡散
を容易にすることができるとされている。また、同時に
リチウムのデンドライト成長を抑制できるとされてい
る。しかし、Liを吸蔵できるAl,Zn,Sn,Pb
をLiを吸蔵できないNi,Co,Cu,Ti,Feと
合金化した場合には、材料内部にLiを吸蔵できなくな
るため、実質的に負極材料としての役割を果たさない。
JP-A-8-124568 discloses Al, Zn,
At least one metal selected from Sn and Pb and N
This is a secondary battery in which a metal powder obtained by alloying at least one metal selected from i, Co, Cu, Ti, and Fe is used for a negative electrode. Al, Z by acid or alkali solution
By selectively etching n, Sn, and Pb, the specific surface area of the alloy can be increased, so that the contact area with the electrolytic solution increases, and the diffusion of lithium ions to the negative electrode can be facilitated. It is possible. At the same time, it is said that dendrite growth of lithium can be suppressed. However, Al, Zn, Sn, Pb which can occlude Li
Is alloyed with Ni, Co, Cu, Ti, and Fe, which cannot occlude Li, so that Li cannot be occluded inside the material, and thus does not substantially function as a negative electrode material.

【0007】特開平8−255610 号公報では、リチウムと
合金を形成する金属とリチウムと合金を形成しにくい金
属のクラッド材を負極として用いることにより、リチウ
ムと合金を形成する金属のみから構成された負極と比
べ、充放電の繰り返しに伴う膨張収縮による負極の破壊
を抑制できる。これにより、充放電効率の低下が抑えら
れ、高エネルギー密度で長寿命のリチウム二次電池が実
現できるとされている。しかし、上記のようなクラッド
材の場合、Liと合金を形成する金属層が充放電に伴い
膨張収縮を繰り返し、一方のLiと合金を形成しない金
属層との間に応力を発生することから、破壊は避けるこ
とができず、実際に負極材料として用いることは不可能
である。
In Japanese Patent Application Laid-Open No. 8-255610, a metal which forms an alloy with lithium and a clad material of a metal which is unlikely to form an alloy with lithium are used as a negative electrode, thereby being constituted only by a metal which forms an alloy with lithium. As compared with the negative electrode, the destruction of the negative electrode due to expansion and contraction due to repeated charging and discharging can be suppressed. Thereby, it is said that a decrease in charge / discharge efficiency is suppressed, and a lithium secondary battery having a high energy density and a long life can be realized. However, in the case of the clad material as described above, the metal layer forming an alloy with Li repeatedly expands and contracts with charge and discharge, and a stress is generated between one Li and a metal layer not forming an alloy. Destruction cannot be avoided, and it is impossible to actually use it as a negative electrode material.

【0008】そこで、本発明は、充放電の繰り返しによ
る負極活物質の崩壊を抑制し、高容量,長寿命で、充放
電速度の違いによる容量および寿命の劣化が少ないリチ
ウム二次電池用負極活物質を提供すると共に、この負極
活物質を用いることにより、充放電容量が大きく、エネ
ルギー密度が高く、サイクル寿命の長いリチウム二次電
池を提供することを目的とする。
Accordingly, the present invention provides a negative electrode active material for a lithium secondary battery which suppresses the collapse of the negative electrode active material due to repetition of charge / discharge, has a high capacity and a long life, and has little deterioration in capacity and life due to a difference in charge / discharge rate. It is another object of the present invention to provide a lithium secondary battery having a large charge / discharge capacity, a high energy density, and a long cycle life by providing a material and using the negative electrode active material.

【0009】[0009]

【課題を解決するための手段】発明者らは、金属系負極
材料の劣化原因が、充放電の際に発生する構造変化、す
なわち負極材料の崩壊にあることに着目し、金属系負極
材料の崩壊を抑制する方法を見出し、優れた特性を有す
リチウム二次電池用負極材料およびリチウム二次電池を
発明するに至った。
The inventors of the present invention have focused on the fact that the cause of deterioration of a metal-based negative electrode material is a structural change that occurs during charging and discharging, that is, the collapse of the negative-electrode material. They found a method of suppressing the collapse, and came to invent a negative electrode material for a lithium secondary battery and a lithium secondary battery having excellent characteristics.

【0010】充放電によりLiを吸蔵,放出することの
出来るSi粒子を負極活物質とした場合には、不可逆容
量が約75%と非常に大きく、また充放電サイクル特性
も著しく悪いが、粉末焼結法でSiとCuの粒子を複合
化させた粉末を作製し、同様な充放電試験を実施した結
果、不可逆容量が約20%となり、充放電サイクル特性
も改善された。このことから、充放電時にリチウムイオ
ンを吸蔵,放出するリチウム二次電池用負極材料におい
て、前記負極材料の充放電を担う負極活物質が材料組織
上2相以上を含む粒子で構成されていることにより、そ
の充放電特性が著しく改善されることを見出した。Si
単独で粒子を形成している場合には、充放電によりSi
粒子が崩壊して充放電に寄与しなくなるために、充放電
特性が劣化すると考えられる。
When Si particles capable of occluding and releasing Li by charge and discharge are used as the negative electrode active material, the irreversible capacity is as large as about 75% and the charge and discharge cycle characteristics are extremely poor. A powder in which Si and Cu particles were compounded by the sintering method was produced, and a similar charge / discharge test was performed. As a result, the irreversible capacity was about 20%, and the charge / discharge cycle characteristics were also improved. Accordingly, in the negative electrode material for a lithium secondary battery that inserts and discharges lithium ions during charge and discharge, the negative electrode active material that performs charge and discharge of the negative electrode material is composed of particles containing two or more phases in the material structure. As a result, it was found that the charge / discharge characteristics were significantly improved. Si
When particles are formed alone, Si is charged and discharged.
It is considered that the charge / discharge characteristics are degraded because the particles collapse and do not contribute to charge / discharge.

【0011】一方、SiとCuを複合化して2相からな
る粒子では、実質的に充放電に寄与しないCuがSiと
結合していることにより、充放電によるSi相の崩壊を
抑制し、充放電特性が改善されたと考えられる。したが
って、Cuのような充放電に寄与しない相と、Siのよ
うに充放電を担う相とから成る粒子を負極材料に用いる
ことで、充放電特性に優れるリチウム二次電池を提供す
ることができる。Siと同様に充放電によりLiを吸
蔵,放出することができる元素は、3B,4B,5Bに
属し、Al,Ga,In,Si,Ge,Sn,Pb,S
b,Biである。特に、Al,Si,Sn,Pbを用い
ることによりリチウム二次電池の充放電特性が飛躍的に
向上する。また、これらのLiを吸蔵することができる
元素は、不可避的不純物元素が含有されている場合でも
その吸蔵特性が保持される範囲内であれば、充放電特性
を劣化させる原因とはならない。したがって、異なる元
素が添加されている場合でも充放電において問題はな
い。
On the other hand, in the case of particles consisting of two phases formed by compounding Si and Cu, Cu that does not substantially contribute to charge and discharge is bonded to Si, so that the collapse of the Si phase due to charge and discharge is suppressed, and It is considered that the discharge characteristics were improved. Therefore, by using particles composed of a phase that does not contribute to charge and discharge, such as Cu, and a phase that performs charge and discharge, such as Si, as a negative electrode material, a lithium secondary battery having excellent charge and discharge characteristics can be provided. . Like Si, the elements capable of inserting and extracting Li by charging and discharging belong to 3B, 4B, and 5B, and include Al, Ga, In, Si, Ge, Sn, Pb, and S.
b, Bi. In particular, by using Al, Si, Sn, and Pb, the charge / discharge characteristics of the lithium secondary battery are dramatically improved. In addition, these elements that can occlude Li do not cause deterioration of the charge / discharge characteristics as long as the occlusion characteristics are maintained even when the inevitable impurity elements are contained. Therefore, there is no problem in charging and discharging even when different elements are added.

【0012】Liの吸蔵,放出は、上記金属元素単体だ
けでなく、ある種の金属間化合物でも可能である。その
金属間化合物とは、主にAl,Ga,In,Si,G
e,Sn,Pb,Sb,Biのうちの少なくとも1種類
を構成元素の一つとする金属間化合物である。これらの
金属間化合物は、充放電容量は大きいものの、サイクル
寿命が短く、そのものだけでは実用化できない。そこ
で、Liを吸蔵できない金属と複合化させることを試み
た。金属間化合物としてNiSi2 を用いた。この粒子
は、400mAh/gを超える初期放電容量をもつが、
充放電寿命が短い。そこで、粉末焼結法によりCuと複
合化し、NiSi2 とCuの2相をもつ粒子を作製し
た。
The occlusion and release of Li can be performed not only by the above-mentioned metal element alone but also by a certain kind of intermetallic compound. The intermetallic compounds are mainly Al, Ga, In, Si, G
It is an intermetallic compound containing at least one of e, Sn, Pb, Sb, and Bi as one of the constituent elements. These intermetallic compounds have a large charge / discharge capacity, but have a short cycle life, and cannot be put to practical use by themselves. Therefore, an attempt was made to form a composite with a metal that cannot store Li. NiSi 2 was used as an intermetallic compound. These particles have an initial discharge capacity of more than 400 mAh / g,
Short charge / discharge life. Therefore, the particles were composited with Cu by a powder sintering method to produce particles having two phases of NiSi 2 and Cu.

【0013】この粒子を用いて充放電試験を実施する
と、容量が350mAh/g以下に低下したが充放電寿
命が長くなった。つまり、Cuとの複合化により充放電
特性が改善された。黒鉛系負極材料の放電容量は約30
0mAh/gであるが、NiSi2は重量密度が黒鉛の2倍
以上であるので、負極シートを形成したときの実質的な
体積容量密度は、黒鉛系負極材料に比べ1.5 倍以上で
ある。したがって、Al,Ga,In,Si,Ge,S
n,Pb,Sb,Biのうちの少なくとも1種類を構成
元素の一つとする金属間化合物もLiを吸蔵しない金属
と複合化することにより、その充放電特性が向上する。
When a charge / discharge test was carried out using these particles, the capacity was reduced to 350 mAh / g or less, but the charge / discharge life was prolonged. That is, the charge and discharge characteristics were improved by complexing with Cu. The discharge capacity of graphite-based anode material is about 30
Although it is 0 mAh / g, since the weight density of NiSi 2 is twice or more that of graphite, the substantial volume capacity density when the negative electrode sheet is formed is 1.5 times or more as compared with the graphite-based negative electrode material. . Therefore, Al, Ga, In, Si, Ge, S
An intermetallic compound containing at least one of n, Pb, Sb, and Bi as one of the constituent elements is also compounded with a metal that does not occlude Li, thereby improving the charge / discharge characteristics.

【0014】Liを吸蔵しない金属は、主に4A,5
A,6A族に属する金属元素およびMn,Fe,Co,
Ni,Cuである。これらの金属は、充放電電流を印加
しても内部にLiを吸蔵することはない。したがって、
充放電の際もLiの吸蔵,放出に伴う膨張収縮がなく、
その構造が崩壊することはない。これらの金属を上記の
Liを吸蔵することができる金属と複合化すると、その
構造を安定させ、充放電特性の劣化を抑えることができ
る。
Metals that do not occlude Li are mainly 4A, 5
A, a metal element belonging to Group 6A and Mn, Fe, Co,
Ni and Cu. These metals do not occlude Li inside even when a charge / discharge current is applied. Therefore,
During charging and discharging, there is no expansion and contraction due to occlusion and release of Li.
Its structure does not collapse. When these metals are combined with the above-mentioned metals capable of occluding Li, the structure can be stabilized and deterioration of charge / discharge characteristics can be suppressed.

【0015】特に、Liを吸蔵することができる相とL
iを吸蔵しない相が共存する粒子を負極材に用いると、
クラッド材と異なり、充放電の際のLiを吸蔵すること
ができる相の膨張収縮を緩和し、しかも構造を安定に保
つことができる。また、4A,5A,6A族に属する金
属元素およびMn,Fe,Co,Ni,Cuで構成され
るLiを吸蔵しない相は、これらの金属単体でもまた合
金でもよい。前記のようにCuとSiを複合化するとそ
の充放電特性を改善,向上させることができた。
In particular, the phase capable of occluding Li and L
When particles containing a phase that does not occlude i are used for the negative electrode material,
Unlike the cladding material, the expansion and contraction of the phase capable of occluding Li during charge and discharge can be reduced, and the structure can be kept stable. The phase that does not occlude the metal elements belonging to the 4A, 5A, and 6A groups and Li composed of Mn, Fe, Co, Ni, and Cu may be a single metal or an alloy of these metals. When Cu and Si were combined as described above, the charge / discharge characteristics could be improved and improved.

【0016】これと同様にCu−Ni合金とSiを複合
化してもCuとSiの複合体と同様に充放電特性を改善
することができる。したがって、Liを吸蔵しない相
は、4A,5A,6A族元素およびMn,Fe,Co,
Ni,Cuの少なくとも1種類の元素で構成される相で
なければならない。特に、電解液中での安定性を考慮す
ると、Cr,Fe,Co,Ni,Cuおよびこれらの元
素を主要構成元素とする合金が好ましい。
Similarly, even when a Cu—Ni alloy and Si are compounded, the charge / discharge characteristics can be improved as in the case of the composite of Cu and Si. Therefore, the phases that do not occlude Li are group 4A, 5A, 6A elements and Mn, Fe, Co,
It must be a phase composed of at least one element of Ni and Cu. Particularly, considering stability in an electrolytic solution, Cr, Fe, Co, Ni, Cu and alloys containing these elements as main constituent elements are preferable.

【0017】Liを吸蔵することができる相とLiを吸
蔵しない相とが共存する粒子は、その粒径は100μm
以下であることが好ましい。特に、Li電池用負極を作
製するときの塗布性や、充放電特性から40μm以下が
特に好ましい。
Particles in which a phase capable of occluding Li and a phase not occluding Li coexist are 100 μm in size.
The following is preferred. In particular, the thickness is preferably 40 μm or less from the viewpoint of applicability when preparing a negative electrode for a Li battery and charge / discharge characteristics.

【0018】Liを吸蔵することができる相とLiを吸
蔵しない相は、応力緩和の点で互いにできるだけ微細に
混合されている状態が好ましい。このことにより、容量
が比較的大きい値で安定に保持され、サイクル寿命が長
くなる。
The phase capable of occluding Li and the phase not occluding Li are preferably mixed with each other as finely as possible in terms of stress relaxation. As a result, the capacity is stably maintained at a relatively large value, and the cycle life is extended.

【0019】上記のようなLiを吸蔵することができる
相とLiを吸蔵しない相が共存する粒子を用いて負極を
作製するとき、粒子自体の導電性が良いので導電材を用
いる必要はないが、充放電に伴う導電性低下を補うため
に導電材を混合して負極を形成することもできる。この
ときの導電材は、炭素粉末でも金属粉末を用いても導電
性が良好で電解液との反応性が弱いものであれば特に問
題はない。
When a negative electrode is manufactured using particles having a phase capable of occluding Li and a phase not occluding Li as described above, the particles themselves have good conductivity, so that it is not necessary to use a conductive material. Alternatively, a negative electrode can be formed by mixing a conductive material to compensate for a decrease in conductivity due to charge and discharge. The conductive material used at this time does not have any problem as long as the conductive material has good conductivity and low reactivity with the electrolytic solution regardless of whether carbon powder or metal powder is used.

【0020】また、負極を作製するときには結着剤を用
いる。結着剤としては、例えばEPDM,PVDF,ポリテ
トラフルオロエチレン等電解液と反応しないものであれ
ば特に限定されない。結着剤の配合量は、上記負極活物
質と導電材の合計重量に対して、1〜30wt.% 、特
に4〜15%が好ましい。前記合剤を用いた負極形状と
しては、シート状,フィルム状の金属箔上に塗布、ある
いは発泡金属に充填などして電池形状に対応した負極と
することが可能である。
When a negative electrode is produced, a binder is used. The binder is not particularly limited as long as it does not react with an electrolyte such as EPDM, PVDF, polytetrafluoroethylene, or the like. The compounding amount of the binder is preferably 1 to 30 wt.%, Particularly preferably 4 to 15%, based on the total weight of the negative electrode active material and the conductive material. The shape of the negative electrode using the mixture can be applied to a sheet-like or film-like metal foil, or filled in a foamed metal to form a negative electrode corresponding to the battery shape.

【0021】このようにして得られた負極は、通常用い
られる正極、セパレータおよび電解液と組合せることに
より最適なリチウム二次電池とすることができる。正極
に用いる活物質としては、LiCoO2,LiNiO2
LiMnO4 等のリチウムを含有した複合酸化物が用い
ることができ、これに導電材および粘結剤を混合したも
のをAl箔等の集電体に塗布して正極とする。セパレー
タとしては、ポリプロピレン,ポリエチレンやポリオレ
フィン系の多孔質膜が用いられている。また電解液とし
ては、プロピレンカーボネイト(PC),エチレンカー
ボネイト(EC)、1,2−ジメトキシエタン(DM
E),ジメチルカーボネイト(DMC),メチルエチル
カーボネイト(MEC)等の2種類以上の混合溶媒が用
いられる。また、電解質としては、LiPF6,LiB
4,LiClO4 等があり、上記溶媒に溶解したもの
が用いられる。
The thus obtained negative electrode can be combined with a generally used positive electrode, a separator and an electrolytic solution to form an optimal lithium secondary battery. As the active material used for the positive electrode, LiCoO 2 , LiNiO 2 ,
A composite oxide containing lithium, such as LiMnO 4, can be used, and a mixture of a conductive material and a binder is applied to a current collector such as an Al foil to form a positive electrode. As the separator, a porous film of polypropylene, polyethylene or polyolefin is used. Examples of the electrolyte include propylene carbonate (PC), ethylene carbonate (EC), and 1,2-dimethoxyethane (DM
E), two or more kinds of mixed solvents such as dimethyl carbonate (DMC) and methyl ethyl carbonate (MEC) are used. As the electrolyte, LiPF 6 , LiB
There are F 4 , LiClO 4 and the like, and those dissolved in the above solvents are used.

【0022】リチウム二次電池用負極材料に、リチウム
を吸蔵することができる相とリチウムを吸蔵しない相が
共存する粒子を負極活物質として用いることにより、充
放電容量の増大,電気伝導性の向上,出力密度の向上,
サイクル特性の向上、および高速充放電が可能となっ
た。
The use of particles having a phase capable of occluding lithium and a phase not occluding lithium in the negative electrode material for a lithium secondary battery as the negative electrode active material increases the charge / discharge capacity and improves the electrical conductivity. , Power density improvement,
Improved cycle characteristics and high-speed charge / discharge became possible.

【0023】[0023]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)平均粒径5μmのSi粒子と平均粒径5μ
mのCu粒子をVミキサーで混合した。混合重量比は、
Si:Cu=1:1とした。この混合粉の一部は、黒
鉛,非晶質炭素およびPVDFのN−メチルピロリドン
溶液と混錬し、Cu箔に塗布した。合剤中の各成分の重
量比は、Si−Cu混合粉:TJSP:AB:PVDF
=85:6:3:6である。また、Cu箔の厚さは20
μmである。塗布後、80℃で数時間乾燥させ、0.5t
on/cm2 の圧力でプレスした後、さらに120℃で3時
間、真空乾燥した。
(Example 1) Si particles having an average particle diameter of 5 μm and an average particle diameter of 5 μm
m Cu particles were mixed with a V mixer. The mixing weight ratio is
Si: Cu = 1: 1. A part of this mixed powder was kneaded with a solution of graphite, amorphous carbon and PVDF in N-methylpyrrolidone, and applied to a Cu foil. The weight ratio of each component in the mixture is as follows: Si-Cu mixed powder: TJSP: AB: PVDF
= 85: 6: 3: 6. The thickness of the Cu foil is 20
μm. After coating, dry at 80 ° C for several hours,
After pressing at a pressure of on / cm 2 , vacuum drying was performed at 120 ° C. for 3 hours.

【0024】このような操作により負極シートを作製し
た。上記混合粉の残りは、Mo製の治具で1.0ton/cm
2 の圧力でプレス成形した後、治具ごと900℃、1時
間の真空加熱を行った。得られた成形体を粉砕して、S
i−Cu結合粉を得た。Si−Cu結合粉はSi粒子と
Cu粒子とが接合されて1つの粒子を形成しており、S
iとCuの界面にはSi−Cuの化合物層が形成されて
いた。Si−Cu結合粉はふるいを用いて分級し、32
μm以下の粉末のみを負極材として用いた。
A negative electrode sheet was produced by the above operation. The remainder of the mixed powder is 1.0 ton / cm with a Mo jig.
After press molding at a pressure of 2 , the jig was heated at 900 ° C. for 1 hour under vacuum. The obtained molded body is pulverized and
An i-Cu binding powder was obtained. In the Si-Cu bonding powder, the Si particles and the Cu particles are joined to form one particle.
An Si-Cu compound layer was formed at the interface between i and Cu. Si-Cu bonding powder is classified using a sieve,
Only powder having a size of less than μm was used as the negative electrode material.

【0025】このSi−Cu結合粉は、Si−Cu混合
粉と同様の配合および方法でCu箔に塗布し、負極シー
トに加工した。これらの負極シートを、対極および参照
極をLi金属として単極評価を実施した。このとき、電
解液はLiPF6を1mol/l含むEC:DMC=1:2
の溶液を用いた。また、充放電電流は1mA/cm2 とな
るように調整し、参照極に対する負極の電位が0.01
〜1Vの範囲で充放電試験を行った。
This Si—Cu bonding powder was applied to a Cu foil in the same composition and method as the Si—Cu mixed powder, and processed into a negative electrode sheet. These negative electrode sheets were subjected to unipolar evaluation using the counter electrode and the reference electrode as Li metal. At this time, the electrolytic solution contained 1 mol / l of LiPF 6 and EC: DMC = 1: 2.
Was used. The charge / discharge current was adjusted to be 1 mA / cm 2, and the potential of the negative electrode with respect to the reference electrode was 0.01.
A charge / discharge test was performed in the range of 11 V.

【0026】充放電試験結果を図1に示す。Si−Cu
混合粉では初期充電容量が1865mAh/gと非常に
大きい。また、初期放電容量は553mAh/gで黒鉛
負極に比べ大きな値であった。しかし、初期充電容量と
初期放電容量の差である不可逆容量は1312mAh/
gであり、不可逆容量の初期充電容量に対する比は0.
76 で非常に大きな値となった。これに対して、Si
−Cu結合粉は初期充電容量651mAh/g、初期放
電容量523mAh/gであり、混合粉に比べ充放電容
量は小さくなったが不可逆容量が非常に小さくなった。
また、初期放電容量の95%以上を維持するサイクル数
は、混合粉では1サイクルだけであったが、結合粉では
26サイクルであった。
FIG. 1 shows the results of the charge / discharge test. Si-Cu
The mixed powder has a very large initial charge capacity of 1865 mAh / g. The initial discharge capacity was 553 mAh / g, which was a larger value than that of the graphite negative electrode. However, the irreversible capacity, which is the difference between the initial charge capacity and the initial discharge capacity, is 1312 mAh /
g, and the ratio of the irreversible capacity to the initial charge capacity is 0.3.
It was a very large value at 76. In contrast, Si
The -Cu-bonded powder had an initial charge capacity of 651 mAh / g and an initial discharge capacity of 523 mAh / g.
The number of cycles for maintaining 95% or more of the initial discharge capacity was only one cycle for the mixed powder, but 26 cycles for the combined powder.

【0027】(実施例2)実施例1と同種のSiおよび
Cu粉末を、遊星型ボールミリング装置でメカニカルア
ロイング処理を施した。SiとCuの粉末重量比は、ほ
ぼ1:2である。このとき、ステンレス鋼製の容器およ
びボールを用いた。容器およびボールを構成する元素
が、メカニカルアロイングの間に粉末中に混入する可能
性があるので、まずCu粉末のみを容器内に装填しボー
ルミリング装置を運転した。この後、複合化するための
SiおよびCu粉末を容器に装填してメカニカルアロイ
ングを施した。メカニカルアロイングにより得られた粉
末は、SiとCuが層状に積層した状態であり、Siと
Cuそれぞれの層の厚さは1μm以下であった。得られ
たメカニカルアロイング粉末から、さらに32μm以下
の粉末を分級した。
Example 2 Si and Cu powders of the same kind as in Example 1 were subjected to mechanical alloying by a planetary ball mill. The powder weight ratio of Si to Cu is approximately 1: 2. At this time, a stainless steel container and a ball were used. Since elements constituting the container and the ball may be mixed into the powder during mechanical alloying, first, only the Cu powder was loaded into the container and the ball milling device was operated. Thereafter, Si and Cu powders for compounding were charged into a container and subjected to mechanical alloying. The powder obtained by mechanical alloying was in a state in which Si and Cu were laminated in layers, and the thickness of each layer of Si and Cu was 1 μm or less. A powder having a size of 32 μm or less was further classified from the obtained mechanical alloying powder.

【0028】この粉末を用いて実施例1と同じ配合比お
よび作製条件で、負極シートを作製した。ここでのメカ
ニカルアロイング粉末の化学組成は、Siが39.3%
,Cuが60.7% であった。また、SiとCuの重
量比がほぼ1:2となるようにVミキサーで混合したS
i−Cu混合粉、およびこの混合粉を実施例1と同様に
して結合させた結合粉も上記と同じ配合比および作製条
件で負極シートを作製した。これらの負極シートの充放
電特性の単極評価を実施したが、その条件は実施例1と
同じである。
Using this powder, a negative electrode sheet was produced under the same mixing ratio and production conditions as in Example 1. The chemical composition of the mechanical alloying powder here is 39.3% of Si.
, Cu was 60.7%. Further, S mixed with a V mixer so that the weight ratio of Si and Cu becomes approximately 1: 2.
An i-Cu mixed powder and a bonded powder obtained by bonding the mixed powder in the same manner as in Example 1 were also prepared as negative electrode sheets under the same blending ratio and preparation conditions as described above. Unipolar evaluation of the charge / discharge characteristics of these negative electrode sheets was performed. The conditions were the same as in Example 1.

【0029】充放電試験結果を図2に示す。いずれの粉
末とも組成はほぼ等しいが、混合粉に比べ結合粉は充放
電特性が向上し、またメカニカルアロイング粉末は結合
粉よりさらに特性が向上した。
FIG. 2 shows the results of the charge / discharge test. Although the composition of each powder was almost the same, the charge and discharge characteristics of the binder powder were improved as compared with the mixed powder, and the characteristics of the mechanical alloying powder were further improved as compared with the binder powder.

【0030】(実施例3)平均粒径約10μmのAl粒
子と平均粒径約5μmのCu粒子を実施例2と同様に遊
星型ボールミリング装置でメカニカルアロイングを施し
た。得られた粉末は、Si−Cuメカニカルアロイング
粉末と同様に層状の組織を有していた。Al−Cuメカ
ニカルアロイング粉末の化学組成は、Alが38.8%
,Cuが61.2% であった。このメカニカルアロイ
ング粉末も、32μm以下に分級した後、実施例1と同
様の方法で負極シートを作製した。また、AlとCu粒
子を混合しただけの混合粉でも負極シートを作製した。
Example 3 Al particles having an average particle diameter of about 10 μm and Cu particles having an average particle diameter of about 5 μm were subjected to mechanical alloying by a planetary ball mill in the same manner as in Example 2. The obtained powder had a layered structure similarly to the Si-Cu mechanical alloying powder. The chemical composition of the Al-Cu mechanical alloying powder is 38.8% Al.
, Cu was 61.2%. After the mechanical alloying powder was classified to 32 μm or less, a negative electrode sheet was produced in the same manner as in Example 1. Also, a negative electrode sheet was prepared using a mixed powder obtained by merely mixing Al and Cu particles.

【0031】これらの負極シートも実施例1と同様の充
放電試験を実施した。その結果を図3に示す。これよ
り、メカニカルアロイング粉末は混合粉に比べ、その充
放電特性が向上した。
These negative electrode sheets were also subjected to the same charge / discharge test as in Example 1. The result is shown in FIG. As a result, the mechanical alloying powder had improved charge / discharge characteristics as compared with the mixed powder.

【0032】(実施例4)粒径が32μm以下のNiS
2 粒子と平均粒径約5μmのCu粒子を重量比で1:
1となるようにVミキサーで混合した後、その一部は混
合粉のまま負極シートを作製し、残部は実施例1と同様
に粉末冶金法により結合粉とし負極シートを作製した。
ここでの負極シート作製方法は実施例1と同様である。
また、充放電特性も実施例1と同様にして試験した。そ
の結果を図4に示す。混合粉は、初期放電容量の95%
を維持するサイクルが1サイクルであるのに対し、結合
粉では33サイクルであった。
Example 4 NiS having a particle size of 32 μm or less
The i 2 particles and the Cu particles having an average particle diameter of about 5 μm are in a weight ratio of 1:
After mixing with a V mixer so as to obtain a negative electrode sheet, a part thereof was prepared as a mixed powder by powder metallurgy in the same manner as in Example 1, and a negative electrode sheet was prepared.
The method for producing the negative electrode sheet here is the same as in Example 1.
The charge and discharge characteristics were also tested in the same manner as in Example 1. FIG. 4 shows the results. The mixed powder is 95% of the initial discharge capacity
Was maintained in one cycle, whereas the number of cycles in the bound powder was 33.

【0033】(実施例5)比較例として、黒鉛系材料で
あるTJSPを主体とする負極シートを作製した。TJ
SPとPVDFのN−メチルピロリドン溶液とを混練し
て、これをCu箔に塗布した。ここで、TJSPとPV
DFの重量比は90:10である。この後は、実施例1
と同様の作製方法で従来型負極シートを得た。また、こ
の従来型負極シートの充放電試験も実施例1と同様に実
施した。その結果を図5に示す。TJSPを負極活物質
とする負極シートでは、充放電サイクルは安定している
が、放電容量が約300mAh/gであるために、実施
例1から4に示した複合化負極に比べ容量が小さい。
Example 5 As a comparative example, a negative electrode sheet mainly composed of TJSP which is a graphite material was prepared. TJ
SP and an N-methylpyrrolidone solution of PVDF were kneaded and applied to a Cu foil. Here, TJSP and PV
The weight ratio of DF is 90:10. Thereafter, Example 1
A conventional negative electrode sheet was obtained in the same manner as described above. A charge / discharge test of this conventional negative electrode sheet was also performed in the same manner as in Example 1. The result is shown in FIG. In the negative electrode sheet using TJSP as the negative electrode active material, the charge / discharge cycle is stable, but since the discharge capacity is about 300 mAh / g, the capacity is smaller than that of the composite negative electrodes shown in Examples 1 to 4.

【0034】(実施例6)厚さ20μmのAl箔にLi
CoO2 活物質と人造黒鉛とPVDFを重量比で87:
9:4とした合剤を片面90μmとなるように両面に塗
布し、乾燥,圧延した正極21と、厚さ20μmのCu
箔に実施例4で作製したNiSi2 −Cu結合粉と人造
黒鉛とPVDFを重量比で86:8:6とした合剤を片
面50μmとなるように両面塗布し、乾燥,圧延した負
極22、および厚さ25μmのポリエチレン製多孔質の
セパレータ23を、図6に示すように捲回して外寸法1
8φ×65mmの電池缶に収納し、電解液として1MLiPF6
−EC/DMCを用いて、その特性を評価した。
Example 6 A 20 μm thick Al foil was coated with Li
CoO 2 active material, artificial graphite and PVDF in a weight ratio of 87:
A 9: 4 mixture was applied to both sides so as to have a thickness of 90 μm on one side, dried and rolled, and a 20 μm thick Cu
A negative electrode 22, which was coated on both sides with a mixture of NiSi 2 —Cu binding powder, artificial graphite, and PVDF prepared in Example 4 in a weight ratio of 86: 8: 6 at a weight ratio of 50 μm on one side, dried, and rolled, And a polyethylene porous separator 23 having a thickness of 25 μm was wound as shown in FIG.
Stored in a battery can of 8 mm x 65 mm, and used 1MLiPF 6 as electrolyte.
-The characteristics were evaluated using EC / DMC.

【0035】試験条件は、充放電速度0.5C、充電終
止電圧4.2V、放電終止電圧2.5Vとした。その結
果、320Wh/lのエネルギー密度が得られ、100
サイクルまで安定した性能を示した。
The test conditions were a charge / discharge rate of 0.5 C, a charge end voltage of 4.2 V, and a discharge end voltage of 2.5 V. As a result, an energy density of 320 Wh / l was obtained,
The performance was stable up to the cycle.

【0036】[0036]

【発明の効果】本発明は、負極材料の充放電を担う負極
活物質がリチウムを吸蔵することができる相とリチウム
を吸蔵しない相を共に含む粒子で構成されることによ
り、充放電に伴う互いの構造変化を緩和し合い、粒子の
崩壊を抑制し、充放電容量が大きく、不可逆容量が小さ
く、充放電サイクル寿命が長いリチウム二次電池を提供
することができる。
According to the present invention, the negative electrode active material responsible for charging and discharging of the negative electrode material is composed of particles containing both a phase capable of occluding lithium and a phase not occluding lithium. Can suppress the disintegration of particles, suppress the disintegration of particles, and provide a lithium secondary battery having a large charge / discharge capacity, a small irreversible capacity, and a long charge / discharge cycle life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のSi−Cu混合粉およびSi−Cu結
合粉の充放電サイクルを示す特性図。
FIG. 1 is a characteristic diagram showing a charge / discharge cycle of a Si—Cu mixed powder and a Si—Cu binding powder of the present invention.

【図2】Si−Cu系粉末の充放電サイクル特性。FIG. 2 shows charge-discharge cycle characteristics of a Si—Cu-based powder.

【図3】Al−Cu混合粉およびAl−Cu結合粉の充
放電サイクルを示す特性図。
FIG. 3 is a characteristic diagram showing a charge / discharge cycle of an Al—Cu mixed powder and an Al—Cu binding powder.

【図4】NiSi2 −Cu混合粉およびNiSi2 −C
u結合粉の充放電サイクルを示す特性図。
FIG. 4 NiSi 2 —Cu mixed powder and NiSi 2 —C
FIG. 3 is a characteristic diagram showing a charge / discharge cycle of u-bonded powder.

【図5】TJSP粉末の充放電サイクルを示す特性図。FIG. 5 is a characteristic diagram showing a charge / discharge cycle of TJSP powder.

【図6】本発明の円筒型電池の構成図。FIG. 6 is a configuration diagram of a cylindrical battery of the present invention.

【符号の説明】[Explanation of symbols]

1…Si−Cu混合粉の充放電サイクル特性曲線、2…
Si−Cu結合粉の充放電サイクル特性曲線、3…Si
−Cu混合粉の充放電サイクル特性曲線、4…Si−C
u結合粉の充放電サイクル特性曲線、5…Si−CuM
A粉の充放電サイクル特性曲線、6…Al−Cu混合粉
の充放電サイクル特性曲線、7…Al−CuMA粉の充
放電サイクル特性曲線、8…NiSi2 −Cu混合粉の
充放電サイクル特性曲線、9…NiSi2 −Cu結合粉
の充放電サイクル特性曲線、10…TJSP粉末の充放
電サイクル特性曲線、21…正極、22…負極、23…
セパレータ、24…正極端子、25…負極端子。
1 ... Charge-discharge cycle characteristic curve of Si-Cu mixed powder, 2 ...
Charge-discharge cycle characteristic curve of Si-Cu bonding powder, 3 ... Si
-Charge / discharge cycle characteristic curve of Cu mixed powder, 4 ... Si-C
Charge / discharge cycle characteristic curve of u-bonded powder, 5 ... Si-CuM
Charge-discharge cycle characteristics curves of the powder A, the charge-discharge cycle characteristic curve of 6 ... Al-Cu mixed powder, the charge-discharge cycle characteristic curve of 7 ... Al-CuMA powder, charge-discharge cycle characteristic curve of 8 ... NiSi 2 -Cu mixed powder , charge-discharge cycle characteristics curves of 9 ... NiSi 2 -Cu bond powder, charge-discharge cycle characteristics curves of 10 ... TJSP powder, 21 ... positive electrode, 22 ... negative electrode, 23 ...
Separator, 24: Positive terminal, 25: Negative terminal.

フロントページの続き (72)発明者 村中 廉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 稲垣 正寿 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 児玉 英世 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 青野 泰久 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内Continued on the front page (72) Inventor Ren Muranaka 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Masatoshi Inagaki 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture No. 7 Hitachi, Ltd. Hitachi Research Laboratories (72) Inventor Hideyo Kodama 1-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Institute Hitachi Research Laboratory (72) Inventor Yasuhisa Aono Omikamachi, Hitachi City, Ibaraki Prefecture No. 1-1, Hitachi Research Laboratory, Hitachi Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】充放電時にリチウムイオンを吸蔵,放出す
るリチウム二次電池用負極材料において、前記負極材料
の充放電を担う負極活物質がリチウムを吸蔵することが
できる相とリチウムを吸蔵しない相を共に含む粒子で構
成されていることを特徴とするリチウム二次電池用負極
材料。
1. A negative electrode material for a lithium secondary battery that stores and releases lithium ions during charging and discharging, wherein a negative electrode active material responsible for charging and discharging the negative electrode material has a phase capable of storing lithium and a phase not storing lithium. A negative electrode material for a lithium secondary battery, comprising a particle containing the same.
【請求項2】請求項2に記載の充放電時にリチウムイオ
ンを吸蔵,放出するリチウム二次電池用負極材料におい
て、リチウムを吸蔵することができる相が、3B,4
B,5B族元素のいずれかから成る相であることを特徴
とするリチウム二次電池用負極材料。
2. The negative electrode material for a lithium secondary battery according to claim 2, which can occlude and release lithium ions during charge and discharge, wherein the phase capable of occluding lithium is 3B, 4.
A negative electrode material for a lithium secondary battery, wherein the negative electrode material is a phase composed of any one of Group B and 5B elements.
【請求項3】請求項2に記載の充放電時にリチウムイオ
ンを吸蔵,放出するリチウム二次電池用負極材料におい
て、リチウムを吸蔵することができる相が、Al,G
a,In,Si,Ge,Sn,Pb,Sb,Biのいず
れかから成る相であることを特徴とするリチウム二次電
池用負極材料。
3. The negative electrode material for a lithium secondary battery according to claim 2, which is capable of occluding and releasing lithium ions at the time of charge and discharge, wherein the phase capable of occluding lithium is Al, G or G.
A negative electrode material for a lithium secondary battery, wherein the negative electrode material is a phase composed of any of a, In, Si, Ge, Sn, Pb, Sb, and Bi.
【請求項4】請求項2に記載の充放電時にリチウムイオ
ンを吸蔵,放出するリチウム二次電池用負極材料におい
て、リチウムを吸蔵することができる相が、Al,G
a,In,Si,Ge,Sn,Pb,Sb,Biのうち
少なくとも1種類を構成元素の一つとする金属間化合物
の相であることを特徴とするリチウム二次電池用負極材
料。
4. The negative electrode material for a lithium secondary battery according to claim 2, which is capable of occluding and releasing lithium ions during charge and discharge, wherein the phase capable of occluding lithium is Al, G or G.
A negative electrode material for a lithium secondary battery, which is a phase of an intermetallic compound containing at least one of a, In, Si, Ge, Sn, Pb, Sb, and Bi as one of the constituent elements.
【請求項5】請求項2に記載の充放電時にリチウムイオ
ンを吸蔵,放出するリチウム二次電池用負極材料におい
て、リチウムを吸蔵しない相が4A,5A,6A族元素
およびMn,Fe,Co,Ni,Cuの少なくとも1種
類の元素で構成される相であることを特徴とするリチウ
ム二次電池用負極材料。
5. The negative electrode material for a lithium secondary battery according to claim 2, which does not occlude lithium in the negative electrode material for lithium secondary batteries that occludes and releases lithium ions during charge and discharge. A negative electrode material for a lithium secondary battery, wherein the negative electrode material is a phase composed of at least one element of Ni and Cu.
【請求項6】充放電時にリチウムイオンを吸蔵,放出す
る負極活物質を主体とする負極と、正極と、リチウムイ
オン導電性の非水系電解液あるいはポリマー電解質から
成るリチウム二次電池において、前記リチウム二次電池
の負極材料が請求項1から6に記載のいずれかの負極材
料であることを特徴とするリチウム二次電池。
6. A lithium secondary battery comprising a negative electrode mainly composed of a negative electrode active material that occludes and releases lithium ions during charge and discharge, a positive electrode, and a lithium ion conductive non-aqueous electrolyte or polymer electrolyte. A lithium secondary battery, wherein the negative electrode material of the secondary battery is any one of the negative electrode materials according to claim 1.
JP9246472A 1997-09-11 1997-09-11 Lithium secondary battery Pending JPH1186854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9246472A JPH1186854A (en) 1997-09-11 1997-09-11 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9246472A JPH1186854A (en) 1997-09-11 1997-09-11 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH1186854A true JPH1186854A (en) 1999-03-30

Family

ID=17148920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9246472A Pending JPH1186854A (en) 1997-09-11 1997-09-11 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH1186854A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2000311681A (en) * 1998-09-18 2000-11-07 Canon Inc Negative electrode material for secondary battery, electrode structural body, secondary battery and their manufacture
JP2001196052A (en) * 2000-01-12 2001-07-19 Sony Corp Negative electrode and nonaqueous electrolyte battery
US6265111B1 (en) 1998-10-22 2001-07-24 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
WO2001067528A1 (en) * 2000-03-07 2001-09-13 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
WO2002007239A1 (en) * 2000-07-19 2002-01-24 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
EP1271674A1 (en) * 2000-03-28 2003-01-02 Sanyo Electric Co., Ltd. Rechargeable battery
US6537702B2 (en) 2000-06-30 2003-03-25 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JP2003520397A (en) * 2000-01-13 2003-07-02 スリーエム イノベイティブ プロパティズ カンパニー Electrode composition with improved circulation behavior
EP1207577A3 (en) * 2000-11-15 2004-01-02 Matsushita Electric Industrial Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery and method for producing the same
KR100416094B1 (en) * 2001-08-28 2004-01-24 삼성에스디아이 주식회사 Anode thin film for Lithium secondary battery and preparation method thereof
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
CN1295802C (en) * 2003-05-20 2007-01-17 索尼株式会社 Anode and battery using the same
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
JP2008198611A (en) * 2007-02-15 2008-08-28 Samsung Sdi Co Ltd Composite negative electrode active material, its manufacturing method, negative electrode using it, and lithium battery
US7811706B2 (en) 2004-11-08 2010-10-12 Sony Corporation Battery

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2000311681A (en) * 1998-09-18 2000-11-07 Canon Inc Negative electrode material for secondary battery, electrode structural body, secondary battery and their manufacture
US6265111B1 (en) 1998-10-22 2001-07-24 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
US7794881B1 (en) 1999-10-22 2010-09-14 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7235330B1 (en) 1999-10-22 2007-06-26 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2001196052A (en) * 2000-01-12 2001-07-19 Sony Corp Negative electrode and nonaqueous electrolyte battery
JP2003520397A (en) * 2000-01-13 2003-07-02 スリーエム イノベイティブ プロパティズ カンパニー Electrode composition with improved circulation behavior
US6911282B2 (en) 2000-03-07 2005-06-28 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
WO2001067528A1 (en) * 2000-03-07 2001-09-13 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
EP1271674A1 (en) * 2000-03-28 2003-01-02 Sanyo Electric Co., Ltd. Rechargeable battery
US7655273B2 (en) 2000-03-28 2010-02-02 Sanyo Electric Co., Ltd. Method of manufacturing an electrode active material particle for a rechargeable battery
US7316717B2 (en) 2000-03-28 2008-01-08 Sanyo Electric Co., Ltd. Method of manufacturing an electrode active material particle for a rechargeable battery
EP1271674A4 (en) * 2000-03-28 2007-09-05 Sanyo Electric Co Rechargeable battery
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US6537702B2 (en) 2000-06-30 2003-03-25 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JP2002042805A (en) * 2000-07-19 2002-02-08 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
US6761998B2 (en) 2000-07-19 2004-07-13 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
WO2002007239A1 (en) * 2000-07-19 2002-01-24 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP4608743B2 (en) * 2000-07-19 2011-01-12 パナソニック株式会社 Nonaqueous electrolyte secondary battery
EP1207577A3 (en) * 2000-11-15 2004-01-02 Matsushita Electric Industrial Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery and method for producing the same
US6824921B2 (en) 2000-11-15 2004-11-30 Matsushita Electric Industrial Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery and method for producing the same
US7052801B2 (en) 2001-08-28 2006-05-30 Samsung Sdi Co., Ltd. Anode thin film for lithium secondary battery and preparation method thereof
KR100416094B1 (en) * 2001-08-28 2004-01-24 삼성에스디아이 주식회사 Anode thin film for Lithium secondary battery and preparation method thereof
CN1295802C (en) * 2003-05-20 2007-01-17 索尼株式会社 Anode and battery using the same
US7811706B2 (en) 2004-11-08 2010-10-12 Sony Corporation Battery
JP2008198611A (en) * 2007-02-15 2008-08-28 Samsung Sdi Co Ltd Composite negative electrode active material, its manufacturing method, negative electrode using it, and lithium battery

Similar Documents

Publication Publication Date Title
JPH1186854A (en) Lithium secondary battery
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JP2000030703A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
JP2001148248A (en) Manufacturing method of negative electrode material and a manufacturing method of secondary battery
JP2010129471A (en) Cathode active material and nonaqueous electrolyte battery
JP2004349164A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPH1186853A (en) Lithium secondary battery
JP2006253126A (en) Anode active material for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell using same, and nonaqueous electrolyte secondary cell
JPH09115523A (en) Nonaqueous electrolytic secondary battery
JP2004335272A (en) Negative electrode material for nonaqueous electrolyte secondary battery
JP2002373648A (en) Negative electrode, nonaqueous electrolyte secondary battery, and method for producing the negative electrode
JPH10308207A (en) Non-aqueous electrolyte secondary battery
KR20060052502A (en) Battery
JPH11297311A (en) Negative electrode material for nonaqueous secondary battery
JP3204358B2 (en) Non-aqueous electrolyte secondary battery
JP2001143708A (en) Non-aqueous electrolyte secondary battery
JP5217083B2 (en) Negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2007134274A (en) Electrode material, electrode, and lithium ion battery
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JPH1154120A (en) Lithium ion secondary battery
JP3152307B2 (en) Lithium secondary battery
JP2007095570A (en) Lithium secondary battery and negative electrode used in that battery
JP2000315504A (en) Non-aqueous electrolyte secondary battery
JPH113698A (en) Lithium ion secondary battery
JP4457441B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810