JPH1154120A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JPH1154120A
JPH1154120A JP9219064A JP21906497A JPH1154120A JP H1154120 A JPH1154120 A JP H1154120A JP 9219064 A JP9219064 A JP 9219064A JP 21906497 A JP21906497 A JP 21906497A JP H1154120 A JPH1154120 A JP H1154120A
Authority
JP
Japan
Prior art keywords
composite oxide
lithium
positive electrode
mixture
safety
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9219064A
Other languages
Japanese (ja)
Inventor
Takao Fukunaga
福永  孝夫
Mikio Iwata
幹夫 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP9219064A priority Critical patent/JPH1154120A/en
Publication of JPH1154120A publication Critical patent/JPH1154120A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery having a positive electrode active material excellent in high capacity, a cycle characteristic and safety to heat by constituting the active material of a mixture of two kinds of Li-Ni-Co-Al composite oxide and Li-Mn composite oxide. SOLUTION: Since it is constituted of two kinds of composite oxides, high capacity, electron conductivity, an improvement in a cycle characteristic and large electric current performance of Li-Ni-Co-Al composite oxide and cost reduction and thermal stability of Li-Mn composite oxide are revealed, and a positive electrode well-balanced in all its aspects of capacity, a cycle, a cost and safety can be obtained. The content of the Li-Mn composite oxide in this mixture is desirable to be not less than 10 wt.% from the viewpoint of exhibiting safety. For example, composite oxide having the following composition can be actually used. The one being (Li:Ni:Co:Al:O=1:0.89:0.1:0.01:2) having the average particle size of 3.5 μm and the one being (Li:Mn:O=1:2:4) having the average particle size of 1 μm, are mixed together.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、リチウム化合物
を活物質とする正極を備えたリチウムイオン二次電池に
属する。
The present invention relates to a lithium ion secondary battery provided with a positive electrode using a lithium compound as an active material.

【0002】[0002]

【従来の技術】リチウムイオンを炭素などのホスト物質
(ここでホスト物質とは、リチウムイオンを吸蔵及び放
出できる物質をいう。)に吸蔵させたインターカレーシ
ョン化合物を負極材料とするリチウムイオン電池は、高
エネルギー密度を有し、且つ軽量であるうえ、金属リチ
ウムを使用していないので安全性が高い。従って、携帯
用無線電話、携帯用パソコン、携帯用ビデオカメラ等の
小型携帯電子機器用の電源として広範な利用が期待され
ている。
2. Description of the Related Art Lithium-ion batteries using an intercalation compound in which lithium ions are occluded in a host material such as carbon (here, a host material is a material that can occlude and release lithium ions) are used as a negative electrode material. It has high energy density, is lightweight, and has high safety because it does not use lithium metal. Therefore, it is expected to be widely used as a power source for small portable electronic devices such as portable radio telephones, portable personal computers, and portable video cameras.

【0003】リチウムイオン電池は、上記ホスト物質を
含む負極合剤を負極集電体に保持してなる負極板と、リ
チウム・コバルト複合酸化物やリチウム・ニッケル複合
酸化物のようにリチウムイオンと可逆的に電気化学反応
をする正極活物質を含む正極合剤を正極集電体に保持し
てなる正極板と、電解質を保持するとともに負極板と正
極板との間に介在して両極の短絡を防止するセパレータ
とを備えている。電解質は通常LiClO4、LiPF6
等のリチウム塩を溶解した非プロトン性の有機溶媒から
なるが、固体電解質でも良い。ただし、電解質が固体の
場合はセパレータは必須でない。
A lithium ion battery has a negative electrode plate in which a negative electrode mixture containing the above host material is held on a negative electrode current collector, and a reversible lithium ion such as a lithium-cobalt composite oxide or a lithium-nickel composite oxide. A positive electrode plate that holds a positive electrode mixture containing a positive electrode active material that performs an electrochemical reaction on the positive electrode current collector; And a separator for preventing the occurrence. The electrolyte is usually LiClO 4 , LiPF 6
And the like, but it is composed of an aprotic organic solvent in which a lithium salt is dissolved, but may be a solid electrolyte. However, when the electrolyte is solid, the separator is not essential.

【0004】正極活物質としては、上記のリチウム・コ
バルト複合酸化物及びリチウム・ニッケル複合酸化物の
他に、リチウム・マンガン複合酸化物も知られている。
このうちリチウム・コバルト複合酸化物は、安定した放
電電圧で高い放電容量を得ることができるうえに、放電
により電子伝導性が発現する(LiCoO2の導電率は10-2S
/cm)ため導電助剤は3%以下で十分性能を発揮する
が、高価である。リチウム・ニッケル複合酸化物は、放
電容量が最も大きいが、放電に伴って電圧が降下するの
で、大電流性能に劣る。この点、リチウム・マンガン複
合酸化物は、安価で、高温でも分解し難く安全である。
As the positive electrode active material, a lithium-manganese composite oxide is also known in addition to the above-described lithium-cobalt composite oxide and lithium-nickel composite oxide.
Among them, the lithium-cobalt composite oxide is capable of obtaining a high discharge capacity at a stable discharge voltage, and also exhibits electronic conductivity by discharging (the conductivity of LiCoO 2 is 10 -2 S
/ Cm), the conductive auxiliary exhibits sufficient performance at 3% or less, but is expensive. The lithium-nickel composite oxide has the largest discharge capacity, but is inferior in large current performance because the voltage drops with discharge. In this regard, the lithium-manganese composite oxide is inexpensive, hardly decomposed even at high temperatures, and is safe.

【0005】[0005]

【発明が解決しようとする課題】しかし、リチウム・マ
ンガン複合酸化物は、電子伝導性がリチウム・コバルト
複合酸化物のそれより2桁以上低いので導電助剤として
の炭素などを5%以上(通常は10%)添加しなければ
ならない。その結果、エネルギー密度が低い、放電容量
が小さい、特に大電流での放電容量が小さい等の欠点を
有する。また充放電時の膨張収縮による導電マトリック
スの崩壊による抵抗増により、サイクル特性の劣化が大
きい。このようにリチウム・マンガン複合酸化物は、多
くの課題を有する。
However, the lithium-manganese composite oxide has an electron conductivity that is at least two orders of magnitude lower than that of the lithium-cobalt composite oxide. 10%) must be added. As a result, there are disadvantages such as a low energy density, a small discharge capacity, and particularly a small discharge capacity at a large current. In addition, the resistance is increased by the collapse of the conductive matrix due to expansion and contraction at the time of charging and discharging, so that the cycle characteristics are greatly deteriorated. As described above, the lithium-manganese composite oxide has many problems.

【0006】そこで、リチウム・マンガン複合酸化物に
リチウムニッケル複合酸化物を添加し、放電容量及びサ
イクル特性を改善する技術が提案された(特開平8−4
5498号公報)。しかし、この技術をもってしても、
電気自動車などの10Ah以上の容量が必要とされる大
型電池に使用するには、熱安定性が不十分であり、当該
用途での実現が困難であった。
Therefore, a technique has been proposed in which a lithium-nickel composite oxide is added to a lithium-manganese composite oxide to improve the discharge capacity and cycle characteristics (JP-A-8-4).
No. 5498). However, even with this technology,
For use in a large battery that requires a capacity of 10 Ah or more, such as an electric vehicle, the thermal stability is insufficient, and it has been difficult to realize the use in the application.

【0007】それ故、この発明の目的は、リチウム・マ
ンガン複合酸化物を基本とする安価かつ高容量でサイク
ル特性及び熱に対する安全性の優れた正極活物質を備え
る電池を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a battery comprising a positive electrode active material based on a lithium-manganese composite oxide, which is inexpensive, has a high capacity, and has excellent cycle characteristics and safety against heat.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、この発明のリチウムイオン二次電池は、リチウム化
合物を活物質とする正極を備えたリチウムイオン電池に
おいて、活物質が、リチウム・ニッケル・コバルト・ア
ルミニウム複合酸化物及びリチウム・マンガン複合酸化
物の2種混合物からなることを特徴とする。
In order to achieve the above object, a lithium ion secondary battery according to the present invention is a lithium ion battery provided with a positive electrode using a lithium compound as an active material. -It is characterized by comprising a mixture of two kinds of cobalt-aluminum composite oxide and lithium-manganese composite oxide.

【0009】この特徴を有することにより、リチウム・
ニッケル・コバルト・アルミニウム複合酸化物の高容
量、電子伝導性、サイクル特性向上及び大電流性能と、
リチウム・マンガン複合酸化物の低価格化及び熱安定性
とが発現し、容量、サイクル、価格、安全性の全ての面
でバランスのとれた正極を得ることができる。2種混合
物中のリチウム・マンガン複合酸化物の含有量が10重
量%未満であると大型の実電池においてリチウム・マン
ガン複合酸化物の安全性が発揮され難くなるので、10
重量%以上が好ましい。
With this feature, lithium
Nickel-cobalt-aluminum composite oxide with high capacity, electronic conductivity, improved cycle characteristics and large current performance,
The reduced price and thermal stability of the lithium-manganese composite oxide are exhibited, and a positive electrode that is balanced in all aspects of capacity, cycle, price, and safety can be obtained. If the content of the lithium-manganese composite oxide in the two-component mixture is less than 10% by weight, the safety of the lithium-manganese composite oxide is difficult to be exhibited in a large-sized actual battery.
% By weight or more is preferred.

【0010】[0010]

【実施例】【Example】

[実施例1]これは、本発明のビーカー試験での実施例
である。共沈合成したβ−Ni1-XCoX(OH)2とA
l(OH)3とLiOHとの各粉末を所定割合で混合し
た後、酸素分圧0.5気圧の雰囲気中720℃で40時
間焼成し、ボールミルで粉砕することにより、平均粒径
3.5μmのLiNi0.89Co0.1Al0.012を合成し
た。
[Example 1] This is an example of the beaker test of the present invention. Β-Ni 1-X Co X (OH) 2 and A
After mixing each powder of l (OH) 3 and LiOH at a predetermined ratio, the mixture is fired at 720 ° C. for 40 hours in an atmosphere having an oxygen partial pressure of 0.5 atm, and pulverized by a ball mill to obtain an average particle size of 3.5 μm Of LiNi 0.89 Co 0.1 Al 0.01 O 2 was synthesized.

【0011】これと平均粒径1μmの市販のLiMn2
4とを表1に示す割合で混合し、混合物91重量部に
結着剤であるポリフッ化ビニリデン6重量部と導電剤で
あるアセチレンブラック3重量部を混合してN−メチル
−2−ピロリドンを適宜加えペースト状に調整した後、
その合剤を厚さ20μmのアルミニウム箔の両面に塗布
し、乾燥し加圧することによって、正極板を作成した。
A commercially available LiMn 2 having an average particle diameter of 1 μm
O 4 was mixed in the proportions shown in Table 1, and 91 parts by weight of the mixture was mixed with 6 parts by weight of polyvinylidene fluoride as a binder and 3 parts by weight of acetylene black as a conductive agent to obtain N-methyl-2-pyrrolidone. After adjusting to a paste by adding
The mixture was applied to both sides of a 20-μm-thick aluminum foil, dried and pressed to produce a positive electrode plate.

【0012】この正極板をLi金属からなる負極板とと
もに、LiClO4を1mol/l含むエチレンカーボ
ネート:ジエチルカーボネート=1:1(体積比)の混
合液からなる電解液に浸けた。
The positive electrode plate and the negative electrode plate made of Li metal were immersed in an electrolytic solution comprising a mixed solution of ethylene carbonate: diethyl carbonate = 1: 1 (volume ratio) containing 1 mol / l of LiClO 4 .

【0013】正極板に1mAで終止電圧4.1Vまでの
定電流充電を10時間行った後、1mA(放電率0.2
C)、5mA(同1C)又は10mA(同2C)の定電
流で終止電圧3.0Vまで放電した。そのときの放電容
量を表1に併記するとともに図1に打点した。図1で縦
軸が放電容量、横軸が上記混合物中のLiNi0.89Co
0.1Al0.012の重量比を示す。また、表1でNi欄及
びMn欄は、各々LiNi0.89Co0.1Al0.012及び
LiMn24の重量比を示す。
The positive electrode was charged at a constant current of 1 mA to a final voltage of 4.1 V for 10 hours, and then charged at 1 mA (discharge rate of 0.2
C) The battery was discharged to a final voltage of 3.0 V at a constant current of 5 mA (1 C) or 10 mA (2 C). The discharge capacity at that time is also shown in Table 1 and plotted in FIG. In FIG. 1, the vertical axis represents the discharge capacity, and the horizontal axis represents LiNi 0.89 Co in the above mixture.
Shows the weight ratio of 0.1 Al 0.01 O 2 . In Table 1, the Ni and Mn columns indicate the weight ratio of LiNi 0.89 Co 0.1 Al 0.01 O 2 and LiMn 2 O 4 , respectively.

【0014】[0014]

【表1】 [Table 1]

【0015】表1及び図1に見られるように、LiNi
0.89Co0.1Al0.012の含有量が増えるにつれて放電
容量が高くなった。特に放電率0.2C及び1Cにおい
て傾向が顕著であった。
As can be seen in Table 1 and FIG.
The discharge capacity increased as the content of 0.89 Co 0.1 Al 0.01 O 2 increased. In particular, the tendency was remarkable at the discharge rates of 0.2 C and 1 C.

【0016】[実施例2]これは、本発明の実電池での
実施例である。正極板は、実施例1で作成したものを使
用した。負極板は、厚さ20μmの銅箔からなる集電体
の両面に、ホスト物質としてのグラファイト(黒鉛)8
6部と結着剤としてのポリフッ化ビニリデン14部とを
混合しペースト状に調製した合剤を塗布し、乾燥し加圧
することによって製作された。セパレータは、ポリエチ
レン微多孔膜である。また、電解液は、LiPF6を1
mol/l含むエチレンカーボネート:ジエチルカーボ
ネート=1:1(体積比)の混合液である。
[Embodiment 2] This is an embodiment of an actual battery of the present invention. The positive electrode plate used in Example 1 was used. The negative electrode plate is made of graphite (graphite) 8 as a host material on both sides of a current collector made of a copper foil having a thickness of 20 μm.
The mixture was prepared by mixing 6 parts and 14 parts of polyvinylidene fluoride as a binder, applying a mixture prepared in the form of a paste, drying and pressing. The separator is a polyethylene microporous membrane. The electrolyte was LiPF 6
It is a mixed solution of ethylene carbonate: diethyl carbonate = 1: 1 (volume ratio) containing mol / l.

【0017】電池要素の各々の寸法は、正極板が厚さ2
00μm、幅175mmで、セパレータが厚さ35μ
m、幅200mmで、負極板が厚さ150μm、幅18
0mmとなっており、順に重ね合わせてポリエチレンの
巻芯を中心として、その周囲に長円渦状に巻いた後、電
池ケースに収納した。電池ケースは、直径66mm、高
さ220mmの円筒形で、材質はステンレス304であ
る。電池ケースの蓋上部には電解液注入用の孔が、底部
には安全弁が各々設けられている。電池の側面から釘を
貫通させたところ、正極活物質中にLiMn24が含ま
れていない電池で安全弁が作動した。LiMn24が1
0重量%以上含まれているものは作動しなかった。
The dimensions of each battery element are such that the positive electrode plate has a thickness of 2
00 μm, width 175 mm, separator 35 μm thick
m, width 200 mm, negative plate 150 μm thick, width 18
The length was 0 mm, and they were superposed in order and wound around the polyethylene core in an elliptical shape around the core, and then stored in a battery case. The battery case has a cylindrical shape with a diameter of 66 mm and a height of 220 mm, and is made of stainless steel 304. A hole for injecting an electrolyte is provided at the top of the lid of the battery case, and a safety valve is provided at the bottom. When a nail was penetrated from the side of the battery, the safety valve operated in a battery in which LiMn 2 O 4 was not contained in the positive electrode active material. LiMn 2 O 4 is 1
Those containing 0% by weight or more did not work.

【0018】[0018]

【発明の効果】安価で安全で放電容量の高い電池を得る
ことができる。
According to the present invention, a battery which is inexpensive, safe and has a high discharge capacity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 LiNi0.89Co0.1Al0.012の含有量と
放電容量との関係を測定したグラフである。
FIG. 1 is a graph showing the relationship between the content of LiNi 0.89 Co 0.1 Al 0.01 O 2 and the discharge capacity.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】リチウム化合物を活物質とする正極を備え
たリチウムイオン電池において、 活物質が、リチウム・ニッケル・コバルト・アルミニウ
ム複合酸化物及びリチウム・マンガン複合酸化物の2種
混合物からなることを特徴とするリチウムイオン二次電
池。
1. A lithium ion battery provided with a positive electrode using a lithium compound as an active material, wherein the active material comprises a mixture of two kinds of lithium-nickel-cobalt-aluminum composite oxide and lithium-manganese composite oxide. Characteristic lithium ion secondary battery.
【請求項2】2種混合物中のリチウム・マンガン複合酸
化物の含有量が10%以上である請求項1に記載のリチ
ウムイオン二次電池。
2. The lithium ion secondary battery according to claim 1, wherein the content of the lithium-manganese composite oxide in the two-component mixture is 10% or more.
JP9219064A 1997-07-29 1997-07-29 Lithium ion secondary battery Pending JPH1154120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9219064A JPH1154120A (en) 1997-07-29 1997-07-29 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9219064A JPH1154120A (en) 1997-07-29 1997-07-29 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH1154120A true JPH1154120A (en) 1999-02-26

Family

ID=16729715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9219064A Pending JPH1154120A (en) 1997-07-29 1997-07-29 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH1154120A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0944125A1 (en) * 1998-03-19 1999-09-22 Sanyo Electric Co., Ltd. Positive electrode material for lithium secondary battery
JP2001266876A (en) * 2000-03-15 2001-09-28 Sony Corp Positive electrode active material and non-aqueous electrolyte battery and manufacturing method of these
EP1255311A3 (en) * 2001-04-25 2005-06-08 Sony Corporation Cathode active material and non-aqueous electrolyte cell
JP2008277309A (en) * 2000-02-14 2008-11-13 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method thereof
JP2009123715A (en) * 2007-06-28 2009-06-04 Hitachi Maxell Ltd Lithium ion secondary battery
WO2009157507A1 (en) * 2008-06-25 2009-12-30 日立マクセル株式会社 Lithium ion secondary cell
US20120219840A1 (en) * 2009-03-03 2012-08-30 Lg Chem, Ltd. Lithium secondary battery containing cathode materials having high energy density and organic/inorganic composite porous membrane
JPWO2014142284A1 (en) * 2013-03-15 2017-02-16 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
US9608261B2 (en) 2013-03-15 2017-03-28 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0944125A1 (en) * 1998-03-19 1999-09-22 Sanyo Electric Co., Ltd. Positive electrode material for lithium secondary battery
JP2008277309A (en) * 2000-02-14 2008-11-13 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method thereof
JP2001266876A (en) * 2000-03-15 2001-09-28 Sony Corp Positive electrode active material and non-aqueous electrolyte battery and manufacturing method of these
EP1255311A3 (en) * 2001-04-25 2005-06-08 Sony Corporation Cathode active material and non-aqueous electrolyte cell
JP2009123715A (en) * 2007-06-28 2009-06-04 Hitachi Maxell Ltd Lithium ion secondary battery
JP2010034024A (en) * 2008-06-25 2010-02-12 Hitachi Maxell Ltd Lithium-ion secondary battery
WO2009157507A1 (en) * 2008-06-25 2009-12-30 日立マクセル株式会社 Lithium ion secondary cell
US20120219840A1 (en) * 2009-03-03 2012-08-30 Lg Chem, Ltd. Lithium secondary battery containing cathode materials having high energy density and organic/inorganic composite porous membrane
US8715856B2 (en) * 2009-03-03 2014-05-06 Lg Chem, Ltd. Lithium secondary battery containing cathode materials having high energy density and organic/inorganic composite porous membrane
US8753777B2 (en) 2009-03-03 2014-06-17 Lg Chem, Ltd. Lithium secondary battery containing cathode materials having high energy density and organic/inorganic composite porous membrane
JPWO2014142284A1 (en) * 2013-03-15 2017-02-16 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
US9608261B2 (en) 2013-03-15 2017-03-28 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US9716266B2 (en) 2013-03-15 2017-07-25 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Similar Documents

Publication Publication Date Title
JP5153156B2 (en) Method for producing positive electrode for non-aqueous electrolyte secondary battery
JP5103961B2 (en) Lithium ion secondary battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JPH09147863A (en) Nonaqueous electrolyte battery
JP2001052699A (en) Lithium secondary battery
JPH1154120A (en) Lithium ion secondary battery
JPH1027609A (en) Secondary battery with nonaqueous electrolyte
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JPH10208748A (en) Non-aqueous electrolyte secondary battery
JP2001143708A (en) Non-aqueous electrolyte secondary battery
JP2002128526A (en) Lithium transition metal compound oxide for positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JP3166332B2 (en) Thin non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH0997626A (en) Nonaqueous electrolytic battery
JPH113698A (en) Lithium ion secondary battery
JP2002025626A (en) Aging method for lithium secondary battery
JPH1154122A (en) Lithium ion secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP2003217568A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery
JP2003123753A (en) Positive electrode active material for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP3081981B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2000306601A (en) Lithium ion secondary battery
JP2001250585A (en) Charging method of lithium ion secondary battery