JPH11319752A - Recovery of valued composition from rare earth element-containing substance and alloy powder obtained thereby - Google Patents

Recovery of valued composition from rare earth element-containing substance and alloy powder obtained thereby

Info

Publication number
JPH11319752A
JPH11319752A JP12871298A JP12871298A JPH11319752A JP H11319752 A JPH11319752 A JP H11319752A JP 12871298 A JP12871298 A JP 12871298A JP 12871298 A JP12871298 A JP 12871298A JP H11319752 A JPH11319752 A JP H11319752A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
calcium
weight
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12871298A
Other languages
Japanese (ja)
Inventor
Kaname Takeya
要 武谷
Katsuya Kase
克也 加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP12871298A priority Critical patent/JPH11319752A/en
Priority to CN99106463A priority patent/CN1077603C/en
Priority to DE1999122144 priority patent/DE19922144C2/en
Publication of JPH11319752A publication Critical patent/JPH11319752A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method for recovering a valued composition from rare earth element-containing substances which can obtain the powdered valued composition recyclable as a sintered body raw material by the incorporation of a proper conditioning alloy without separation/purification into each constituent element simple substance. SOLUTION: In this recovery method, rare earth element-containing substances are crushed, acid-pickled, and dried to obtain a valued composition. Or, the crushed substances are reduced with calcium, the produced calcium oxide and the residual calcium are removed by washing with water, and the product is dried to obtain the valued composition. Or, the crushed substances, after being acid-pickled, are reduced with calcium, the produced calcium oxide and the residual calcium are removed by washing with water, and the product is dried to obtain the valued composition. Or, the acid-pickled crushed substances are reduced with calcium, the produced calcium oxide and the residual calcium are removed by washing with water, and the product is dried to obtain the valued composition. Or, the acid-pickled crushed substances are reduced with calcium, the produced calcium oxide and the residual calcium are removed by washing with water, the product is acid pickled again and dried to obtain the valued composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類元素含有物
からの有価組成物を回収する方法、および、その回収方
法によって得られた希土類元素含有合金粉末に関する。
The present invention relates to a method for recovering a valuable composition from a rare earth element-containing material, and a rare earth element-containing alloy powder obtained by the method.

【0002】[0002]

【従来の技術】Sm−Co系、Nd−Fe−B系などの
焼結磁石、Tb−Fe−Co系などのスパッタリング用
ターゲット材は、希土類元素成分を含有している。焼結
磁石は成形体の常圧焼結法によって、ターゲット材はホ
ットプレス法によって主として得られている。これら焼
結体には、製品不良によって発生するスクラップや、組
み込まれた製品が廃棄されたときのスクラップ等が存在
する。特にスパッタリングターゲット材では、ターゲッ
ト材全体をスパッタリングで消費することは困難で、必
ず使用後に一部の焼結体が残存し、これがスクラップと
なる。
2. Description of the Related Art Sm-Co based, Nd-Fe-B based sintered magnets, and Tb-Fe-Co based sputtering target materials contain rare earth elements. The sintered magnet is mainly obtained by a normal pressure sintering method of a molded body, and the target material is mainly obtained by a hot pressing method. In these sintered bodies, there are scraps generated due to defective products, scraps when the incorporated products are discarded, and the like. In particular, in the case of a sputtering target material, it is difficult to consume the entire target material by sputtering, and a portion of the sintered body always remains after use, and this becomes scrap.

【0003】希土類元素は比較的高価であり、また、限
られた資源でもあるので、これらスクラップから有価組
成物を回収し、再使用することは、資源の有効利用とし
て重要である。
[0003] Since rare earth elements are relatively expensive and have limited resources, it is important to recover and reuse valuable compositions from these scraps as an effective use of resources.

【0004】従来、このような目的として、湿式冶金技
術によって含有成分を相互分離する方法が主として行わ
れた。また、溶解用の母合金として再利用する方法もあ
った。
Heretofore, for this purpose, a method of mutually separating components contained by hydrometallurgy has been mainly used. There is also a method of reusing as a melting master alloy.

【0005】[0005]

【発明が解決しようとする課題】従来の方法は公知の冶
金技術を基本とし、条件を適正化することで処理が可能
であったが、複雑な工程を要したり、非常に低価値な産
物が生じるなどの問題があった。
The conventional method is based on a known metallurgy technique and can be processed by optimizing the conditions. However, it requires complicated steps and requires a very low-value product. And other problems.

【0006】例えば、従来方法のひとつである湿式冶金
法の場合は、希土類金属やコバルト金属などの比較的高
価な元素がスクラップの主構成成分であるときは比較的
好ましい方法である。しかし、回収物の形態が酸化物等
の化合物であるため、合金原料として用いる場合は金属
へ還元する工程が必要となる。
For example, in the case of hydrometallurgy, which is one of the conventional methods, it is a relatively preferable method when relatively expensive elements such as rare earth metals and cobalt metals are the main components of scrap. However, since the form of the recovered product is a compound such as an oxide, a step of reducing it to a metal is required when used as an alloy raw material.

【0007】また、従来の他の方法である乾式冶金法の
場合は、不純物精製工程において希土類金属がスラグ中
へ逃げ出し、別途スラグから希土類金属成分を回収する
必要であった。また、溶解用の母原料に利用できるほど
酸素量を十分除去することが困難であった。
[0007] In the case of the dry metallurgy method as another conventional method, the rare earth metal escapes into the slag in the impurity refining step, and it is necessary to separately recover the rare earth metal component from the slag. Further, it was difficult to sufficiently remove the amount of oxygen so that it could be used as a base material for dissolution.

【0008】そこで本発明は、従来の方法のように各構
成元素単体にまで分離精製することなく、適当な調整合
金との配合によって容易に焼結体原料として再利用可能
な粉末状の有価組成物が得られる希土類元素含有物から
の有価組成物の回収方法を提供することを目的とする。
Accordingly, the present invention provides a powdery valuable composition which can be easily reused as a raw material for a sintered body by blending with an appropriate adjustment alloy without separating and purifying each constituent element as in the conventional method. It is an object of the present invention to provide a method for recovering a valuable composition from a rare earth element-containing material from which a product is obtained.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の本発明の有価組成物の回収方法は、希土類元素含有物
を粉砕し、粉砕物を酸洗浄処理後乾燥して有価組成物を
得ることを特徴とする。
According to the present invention, there is provided a method for recovering a valuable composition, comprising the steps of: pulverizing a rare earth element-containing substance; washing the pulverized product with an acid washing treatment; and drying to obtain a valuable composition. It is characterized by the following.

【0010】また、本発明の他の有価組成物の回収方法
は、希土類元素含有物を粉砕し、粉砕物をカルシウム還
元処理し、生成した酸化カルシウム及び残留したカルシ
ウムを除去するための水洗後、乾燥して有価組成物を得
ることを特徴とする。
Another method of recovering a valuable composition of the present invention is to pulverize the rare earth element-containing material, reduce the pulverized material with calcium, and wash with water to remove generated calcium oxide and remaining calcium. It is characterized in that a valuable composition is obtained by drying.

【0011】また、本発明の他の希土類元素含有物から
の有価組成物の回収方法は、希土類元素含有物を粉砕
し、粉砕物を酸洗浄処理し、更にカルシウム還元処理
し、生成した酸化カルシウム及び残留したカルシウムを
除去するための水洗後、乾燥して有価組成物を得ること
を特徴とする。
Further, another method of recovering a valuable composition from a rare earth element-containing material according to the present invention is to pulverize the rare earth element-containing material, subject the pulverized material to an acid washing treatment, further perform a calcium reduction treatment, and generate calcium oxide. And washing with water to remove residual calcium, followed by drying to obtain a valuable composition.

【0012】また、本発明の他の希土類元素含有物から
の有価組成物の回収方法は、希土類元素含有物を粉砕
し、粉砕物を酸洗浄処理し、酸洗浄処理物をカルシウム
還元処理し、生成した酸化カルシウム及び残留したカル
シウムを除去するための水洗後、更に酸洗浄処理し、水
洗後乾燥して有価組成物を得ることを特徴とする。
Further, another method of recovering a valuable composition from a rare earth element-containing material according to the present invention is to pulverize the rare earth element-containing material, subject the pulverized material to an acid washing treatment, and subject the acid washed material to a calcium reduction treatment. After washing with water to remove the generated calcium oxide and residual calcium, it is further subjected to an acid washing treatment, washed with water and dried to obtain a valuable composition.

【0013】本発明の方法により回収される有価組成物
は、例えば、R−Fe−B系合金や、特に、原子比でN
2Fe14B組成の相を含む合金などである。
The valuable composition recovered by the method of the present invention may be, for example, an R—Fe—B based alloy or, in particular, N in atomic ratio.
An alloy containing a phase having a d 2 Fe 14 B composition is used.

【0014】[0014]

【発明の実施の形態】本発明の回収方法が扱う希土類元
素含有物は、例えば、希土類元素を含有する金属質焼結
体や、希土類元素を含有する焼結体磁石、例えばR−F
e−B系焼結体磁石、Nd−Fe−B系焼結体磁石Sm
−Co系焼結磁石、これらの改良組成や、Tb−Fe−
Co系ターゲット材などである。
BEST MODE FOR CARRYING OUT THE INVENTION The rare earth element-containing material handled by the recovery method of the present invention is, for example, a metal sintered body containing a rare earth element or a sintered magnet containing a rare earth element, such as RF
e-B based sintered magnet, Nd-Fe-B based sintered magnet Sm
-Co-based sintered magnets, their improved compositions, and Tb-Fe-
Co-based target materials and the like.

【0015】本発明では、まず焼結体などの希土類元素
含有物を粉砕する。粉砕は、酸化防止のため不活性雰囲
気中で機械粉砕することが好ましく、例えば粒径約10
0μm以下に粉砕する。
In the present invention, first, a rare earth element-containing material such as a sintered body is pulverized. The pulverization is preferably performed by mechanical pulverization in an inert atmosphere to prevent oxidation.
Grind to 0 μm or less.

【0016】希土類元素含有物の多くは、体積変化を伴
う水素吸蔵放出の性質を有するため、この性質を利用し
て水素吸収処理、あるいは、水素吸収放出処理を行うこ
とで自己崩壊させ、必要に応じて、機械粉砕で所望の粒
度に調整してもよい。
Most of the rare earth element-containing materials have the property of storing and releasing hydrogen with a change in volume. Therefore, by utilizing this property, a hydrogen absorption treatment or a hydrogen absorption and release treatment is performed to cause self-disintegration, and Accordingly, the particle size may be adjusted to a desired particle size by mechanical pulverization.

【0017】焼結体の原料は、酸素含有量が低いことが
必要である。しかし、スクラップ焼結体の酸素含有量
は、通常0.2〜0.8重量%程度もある。
It is necessary that the raw material of the sintered body has a low oxygen content. However, the oxygen content of the scrap sintered body is usually about 0.2 to 0.8% by weight.

【0018】焼結体中で酸素の多い部分は、焼結時に酸
化されやすい粉末表面領域や、焼結後に酸素が集まる組
織の粒界であると考えられる。本発明における粉砕後の
酸洗浄処理では、これら酸素の偏在する粉末表面領域や
組織の粒界に存在する酸化物や酸化膜を溶出除去し、酸
素量を低下させることを目的として行われる。
It is considered that the oxygen-rich portion in the sintered body is a powder surface region that is easily oxidized during sintering, or a grain boundary of a structure in which oxygen collects after sintering. The acid cleaning treatment after the pulverization in the present invention is carried out for the purpose of eluting and removing oxides and oxide films present in the powder surface region where the oxygen is unevenly distributed and the grain boundaries of the structure, thereby reducing the amount of oxygen.

【0019】酸洗浄処理工程によって、酸素のみなら
ず、焼結体に不要な炭素含有量も低下できる。
The acid cleaning step can reduce not only oxygen but also unnecessary carbon content in the sintered body.

【0020】酸洗浄処理の条件は、その対象となる希土
類元素含有物に適していればよく、特に限定するものは
ないが、pHが低いと不用意に希土類成分の溶出を招く
ため、希酸、あるいは、酢酸等のpH緩衝溶液を用い
て、pHを制御することが好ましい。十分な酸素の低減
が達成されない場合でも、カルシウム還元処理を行うこ
とにより、酸素を低下させることができる。
The condition of the acid washing treatment is not particularly limited as long as it is suitable for the target rare earth element-containing material. However, if the pH is low, the rare earth component is inadvertently eluted. Alternatively, it is preferable to control the pH using a pH buffer solution such as acetic acid. Even when sufficient reduction of oxygen is not achieved, oxygen can be reduced by performing the calcium reduction treatment.

【0021】酸洗浄処理後や水洗処理後は、酸化防止等
のため水分を乾燥除去する必要があるが、特にその方
法、装置は限定されない。
After the acid washing treatment or the water washing treatment, it is necessary to dry and remove water to prevent oxidation and the like, but the method and apparatus are not particularly limited.

【0022】粉砕物のカルシウム還元処理では、粒状ま
たはフレーク状の金属カルシウムを用いることが経済的
で取扱も比較的容易である。その他、水素化カルシウム
を用いることも可能である。還元剤としてのカルシウム
の添加量は特に限定されるものではないが、被還元物の
酸素濃度から必要な還元等量以上を用いるとよい。還元
処理は、粉砕物とカルシウムとの混合物を不活性ガス雰
囲気中や真空中でカルシウムの融点温度以上の温度に適
当な時間保持して行う。
In the calcium reduction treatment of the pulverized material, it is economical to use granular or flaky metal calcium and the handling is relatively easy. In addition, calcium hydride can be used. The amount of calcium added as a reducing agent is not particularly limited, but it is preferable to use a necessary reduction equivalent or more based on the oxygen concentration of the substance to be reduced. The reduction treatment is performed by keeping the mixture of the ground material and calcium in an inert gas atmosphere or vacuum at a temperature higher than the melting point of calcium for an appropriate time.

【0023】還元処理後の反応物は水中に投入すると崩
壊する。残留金属カルシウム分は、水中で水素ガスを発
しながら水酸化カルシウムとなり、この反応で水中崩壊
性が良くなり、カルシウム分と有価組成物の分離を良く
する。デカンテーションとレパルプ洗浄とを繰り返すこ
とにより、生成した酸化カルシウムや残留した金属カル
シウム等のカルシウム分を効果的に除去できる。さら
に、必要に応じて塩化カルシウム等の水溶性フラックス
成分を予め混合添加しても崩壊性が向上する。
The reaction product after the reduction treatment is disintegrated when poured into water. The residual metal calcium content becomes calcium hydroxide while generating hydrogen gas in water, and this reaction improves the disintegration in water and improves the separation between the calcium content and the valuable composition. By repeating the decantation and the repulping washing, the generated calcium oxide and the remaining calcium such as metallic calcium can be effectively removed. Furthermore, the disintegration is improved even if a water-soluble flux component such as calcium chloride is added in advance as required.

【0024】カルシウム還元処理しても、水中崩壊時
や、デカンテーションとレパルプ洗浄時に有価組成物の
表面酸化が進行するためと思われる酸素濃度の上昇が生
じる場合がある。このような場合は、粉砕後、カルシウ
ム還元処理、水中崩壊、水洗浄して更に、酸洗浄処理を
行うことが有効である。
[0024] Even when the calcium reduction treatment is performed, the oxygen concentration may increase due to the progress of surface oxidation of the valuable composition during disintegration in water or during decantation and repulping washing. In such a case, after the pulverization, it is effective to perform a calcium reduction treatment, disintegration in water, washing with water, and further an acid washing treatment.

【0025】また、カルシウム還元前において、被還元
物の炭素濃度が高い場合には、還元反応時に溶解度が低
い炭酸カルシウム等の炭酸塩が若干生成するためか、酸
素と炭素の低減が十分に行われない場合がある。このよ
うな場合は、粉砕後、酸洗浄処理、カルシウム還元処
理、再度の酸洗浄処理を行うことで、より十分な低酸素
化が可能になる。
In addition, if the carbon concentration of the substance to be reduced is high before the calcium reduction, the reduction of oxygen and carbon is sufficiently performed, probably because carbonates such as calcium carbonate having low solubility are generated during the reduction reaction. May not be. In such a case, by performing an acid washing treatment, a calcium reduction treatment, and a second acid washing treatment after the pulverization, a more sufficient oxygen reduction can be achieved.

【0026】得られる有価組成物は粉末状であり、この
粉末を所望の組成となるよう別途準備される組成調整用
の合金粉末と配合することで、焼結体製造用の原料粉末
として再利用できる。組成調整用合金粉末は特に限定さ
れるものではないが、本発明の主目的である低酸素化処
理では、希土類成分を酸浸出しているため、組成調整用
粉末の少なくとも一種は希土類元素含有合金粉末とな
る。
The obtained valuable composition is in the form of a powder. By mixing this powder with a separately prepared alloy powder for adjusting the composition so as to have a desired composition, it can be reused as a raw material powder for producing a sintered body. it can. Although the composition-adjusting alloy powder is not particularly limited, in the oxygen reduction treatment, which is the main object of the present invention, at least one of the composition-adjusting powders is a rare-earth element-containing alloy because the rare-earth component is acid-leached. It becomes a powder.

【0027】組成調整用の合金粉末は、溶解鋳造後粉砕
する溶解鋳造粉砕法、溶解後ロール急冷によりリボン状
薄体を得てそれを粉砕する液体急冷粉砕法、溶解後噴霧
冷却して直接粉末を得る水アトマイズあるいはガスアト
マイズなどのアトマイズ法、カルシウム還元により合金
粉末を得る還元拡散法など、公知の各種方法よりに得ら
れた合金粉末を用いることができる。
The alloy powder for composition adjustment is prepared by a melt casting and pulverization method of melting and casting and then pulverizing, a liquid quenching and pulverization method of obtaining a ribbon-like thin body by quenching a roll after melting and pulverizing it, and a spraying and cooling after melting to directly powder An alloy powder obtained by various known methods such as an atomizing method such as water atomizing or gas atomizing, or a reduction diffusion method of obtaining an alloy powder by reducing calcium can be used.

【0028】[0028]

【実施例】以下、実施例により本発明を説明する。The present invention will be described below with reference to examples.

【0029】実施例1 ・・・ 希土類元素含有物とし
て、還元拡散法による希土類合金粉末を原料としてホッ
トプレス法により焼結された、Tb―Fe―Co系光磁
気ディスク用スパッタリングターゲット材のスクラップ
品を用いた。これは、取り扱い時に欠けを生じ製品不良
となったものである。
Example 1 A scrap product of a sputtering target material for a Tb-Fe-Co magneto-optical disk, which was sintered by a hot press method using a rare earth alloy powder by a reduction diffusion method as a raw material as a rare earth element-containing material. Was used. This is due to chipping during handling, resulting in a product defect.

【0030】組成は、テルビウム(Tb)49.8重量
%、鉄(Fe)46.1重量%、コバルト(Co)4.
12重量%、カルシウム(Ca)0.09重量%、酸素
(O)0.25重量%、炭素(C)0.012重量%で
あった。組織は、EPMAの定量分析によると、 Fe
−Co相(鉄が約93〜96重量%、コバルトが約4〜
7重量%)、低テルビウム濃度Tb−Fe−Co合金相
(鉄が約65〜68重量%、コバルトが約2〜5重量
%、テルビウムが約23〜25重量%)、 中テルビウ
ム濃度Tb−Fe−Co合金相(鉄が約45〜52重量
%、コバルトが約3〜4重量%、テルビウムが約42〜
49重量%)、高テルビウム濃度Tb−Fe−Co合金
相(鉄が約35〜37重量%、コバルトが約5〜6重量
%、テルビウムが約57〜60重量%)から構成されて
いた。
The composition was 49.8% by weight of terbium (Tb), 46.1% by weight of iron (Fe), and 4.0% by weight of cobalt (Co).
The content was 12% by weight, calcium (Ca) 0.09% by weight, oxygen (O) 0.25% by weight, and carbon (C) 0.012% by weight. According to the quantitative analysis of EPMA, the tissue
-Co phase (about 93 to 96% by weight of iron, about 4 to
7% by weight), low terbium concentration Tb-Fe-Co alloy phase (about 65-68% by weight of iron, about 2-5% by weight of cobalt, about 23-25% by weight of terbium), medium terbium concentration Tb-Fe -Co alloy phase (about 45-52 wt% iron, about 3-4 wt% cobalt, about 42-
49% by weight), and a high terbium-concentrated Tb-Fe-Co alloy phase (about 35-37% by weight of iron, about 5-6% by weight of cobalt, and about 57-60% by weight of terbium).

【0031】このターゲット材を炉に入れ、炉内の空気
をアルゴンガスで置換し、さらにアルゴンガスを水素ガ
スに置換し、水素ガス気流中で約300℃まで昇温し、
30分間保持した。その後炉内の水素ガスをアルゴンガ
スに置換し、室温まで冷却して取り出したところ、粒径
500μm以下の粉末が得られた。
The target material is placed in a furnace, the air in the furnace is replaced with argon gas, and the argon gas is further replaced with hydrogen gas, and the temperature is raised to about 300 ° C. in a hydrogen gas stream.
Hold for 30 minutes. Thereafter, the hydrogen gas in the furnace was replaced with argon gas, cooled to room temperature, and taken out. As a result, a powder having a particle size of 500 μm or less was obtained.

【0032】得られた粉末を脱イオン水に投入して30
g/リットル濃度のスラリーとし、攪拌しながらこれに
10倍の酢酸溶液を滴下してpHを5に調整し、約5分
間の酸洗浄処理を行なった。次に、脱イオン水で置換洗
浄した後、ろ過し、水分をエタノールで置換し、真空乾
燥し、合金粉末を得た。
The obtained powder is put into deionized water and the powder is charged for 30 minutes.
A slurry having a concentration of g / liter was prepared, and a 10-fold acetic acid solution was added dropwise thereto with stirring to adjust the pH to 5, and an acid washing treatment was performed for about 5 minutes. Next, after washing with replacement with deionized water, filtration was performed, the moisture was replaced with ethanol, and vacuum drying was performed to obtain an alloy powder.

【0033】得られた合金粉末の組成は、テルビウム4
7.8重量%、鉄47.2重量%、コバルト5.36重
量%、カルシウム0.07重量%、酸素0.07重量
%、炭素0.008重量%であった。これは、処理前の
ターゲット材組成に比べ、テルビウム品位は2重量%減
少し、酸素品位は0.18重量%減少した。合金粉末の
組織は、処理前のターゲット材で確認された組織と同じ
であった。
The composition of the obtained alloy powder was terbium 4
7.8% by weight, iron 47.2% by weight, cobalt 5.36% by weight, calcium 0.07% by weight, oxygen 0.07% by weight, and carbon 0.008% by weight. The terbium grade was reduced by 2% by weight and the oxygen grade was reduced by 0.18% by weight, as compared with the target material composition before the treatment. The structure of the alloy powder was the same as the structure confirmed in the target material before the treatment.

【0034】この回収合金粉と金属テルビウム粉末と
を、テルビウム組成49.8重量%を目的とし、それぞ
れを重量で98%と2%で配合し、十分に混合した後、
ホットプレス法によりターゲット材を製造した。
The recovered alloy powder and the metal terbium powder are blended at 98% and 2% by weight for a terbium composition of 49.8% by weight, and thoroughly mixed.
The target material was manufactured by the hot press method.

【0035】得られたターゲット材の組成は、テルビウ
ム49.7重量%、鉄46.3重量%、コバルト4.1
8重量%、カルシウム0.07重量%、酸素0.07重
量%、炭素0.009重量%であり、合金組織も処理前
のものと同じであった。
The composition of the obtained target material was 49.7% by weight of terbium, 46.3% by weight of iron, and 4.1% by weight of cobalt.
The content was 8% by weight, 0.07% by weight of calcium, 0.07% by weight of oxygen and 0.009% by weight of carbon, and the alloy structure was the same as that before the treatment.

【0036】上記より、取り扱い時に欠けを生じ製品不
良となったTb―Fe―Co系光磁気ディスク用スパッ
タリングターゲット材の組織は有価物として回収され、
さらに、再利用が可能であることがわかる。
As described above, the structure of the sputtering target material for the Tb—Fe—Co based magneto-optical disk, which has become defective due to chipping during handling, is recovered as a valuable resource.
Further, it can be seen that reuse is possible.

【0037】実施例2 ・・・ 希土類元素含有物とし
て、還元拡散法により得られた合金を原料にして製造し
たSmCo5系焼結磁石であって、着磁前の磁石化工程
で寸法不良となったスクラップを用いた。組成は、サマ
リウム(Sm)34.8重量%、コバルト(Co)6
5.1重量%、カルシウム(Ca)0.06重量%、酸
素(O)0.18重量%、炭素(C)0.011重量%
であった。この焼結体を、実施例1と同様の水素処理と
さらにアルゴン雰囲気中のパルベライザー粉砕によって
粒径500μm以下に粉砕し、次に、実施例1と同様に
酸洗浄処理を実施した。得られた粉砕粉の酸素濃度は
0.16重量%であり、焼結体の酸素濃度より低下して
いたが、焼結原料として用いるには、まだ不十分なもの
であった。
Example 2 An SmCo 5 -based sintered magnet manufactured using an alloy obtained by a reduction diffusion method as a rare earth element-containing material, and having a dimensional defect in a magnetizing process before magnetization. Used scrap was used. The composition is 34.8% by weight of samarium (Sm), cobalt (Co) 6
5.1% by weight, calcium (Ca) 0.06% by weight, oxygen (O) 0.18% by weight, carbon (C) 0.011% by weight
Met. This sintered body was pulverized to a particle size of 500 μm or less by hydrogen treatment as in Example 1 and pulverizer pulverization in an argon atmosphere, and then subjected to an acid washing treatment as in Example 1. The oxygen concentration of the obtained pulverized powder was 0.16% by weight, which was lower than the oxygen concentration of the sintered body, but was still insufficient for use as a raw material for sintering.

【0038】次に、得られた粉砕粉に、10重量%の金
属カルシウム(Ca、粒度4メッシュ以下)、20重量
%の無水塩化カルシウム(CaCl2、粒度300メッ
シュ以下)を十分に混合し、ステンレス製容器に入れ、
アルゴンガス雰囲気中で1000℃で3時間保持すると
いう、カルシウムによる還元処理を行った。
Next, 10% by weight of metallic calcium (Ca, particle size of 4 mesh or less) and 20% by weight of anhydrous calcium chloride (CaCl 2 , particle size of 300 mesh or less) were sufficiently mixed with the obtained pulverized powder, Put it in a stainless steel container,
A reduction treatment with calcium was performed in which the mixture was kept at 1000 ° C. for 3 hours in an argon gas atmosphere.

【0039】冷却後、反応物を約10mm大に粉砕し、
スラリー濃度が30g/リットルになる条件で水中投下
し、攪拌し、水中崩壊させた。デカンテーションにより
カルシウム分を分離除去した後、pH値が10以下にな
るまで10分攪拌し、排水、注水、攪拌のレパルプ洗浄
を繰り返したところ、4回のレパルプ洗浄でpH値は1
0以下となった。このスラリーを実施例1と同様の方法
でアルコール置換し、乾燥後、合金粉末として回収し
た。
After cooling, the reaction product was ground to a size of about 10 mm,
The slurry was dropped in water under the condition that the slurry concentration was 30 g / liter, stirred, and disintegrated in water. After the calcium content was separated and removed by decantation, the mixture was stirred for 10 minutes until the pH value became 10 or less, and the repulp washing of drainage, water injection, and stirring was repeated.
0 or less. This slurry was replaced with alcohol in the same manner as in Example 1, dried, and recovered as an alloy powder.

【0040】得られた合金粉末の酸素濃度は0.09重
量%であり、焼結原料として十分な酸素濃度であった。
他の成分は、サマリウム33.1重量%、コバルト6
5.8重量%、カルシウム0.07重量%、炭素0.0
13重量%であり、サマリウム濃度が低下し、SmCo
5の化学量論組成に近づいていた。
The oxygen concentration of the obtained alloy powder was 0.09% by weight, which was a sufficient oxygen concentration as a raw material for sintering.
The other components were 33.1% by weight of samarium, cobalt 6
5.8% by weight, calcium 0.07% by weight, carbon 0.0
13% by weight, the samarium concentration decreased, and SmCo
A stoichiometry of 5 was approaching.

【0041】この合金粉末と、還元拡散法で得られた、
サマリウム濃度40.2%、コバルト濃度58.9%、
酸素濃度0.06重量%、カルシウム濃度0.08重量
%、炭素0.010重量%の合金粉末とを、重量比で7
9.2:21.7で配合し、サマリウム34.9重量
%、コバルト64.9重量%、カルシウム0.07重量
%、酸素0.08重量%、炭素0.012重量%の合金
粉末とし、SmCo5系焼結体を得たところ、サマリウ
ム34.8重量%、コバルト64.8重量%、カルシウ
ム0.06重量%、酸素0.18重量%、炭素0.01
2重量%である処理前のスクラップ品と同等の焼結体を
得た。
This alloy powder was obtained by the reduction diffusion method.
Samarium concentration 40.2%, cobalt concentration 58.9%,
An alloy powder having an oxygen concentration of 0.06% by weight, a calcium concentration of 0.08% by weight, and a carbon of 0.010% by weight is mixed with a powder having a weight ratio of
9.2: 21.7 blended to form an alloy powder of 34.9% by weight of samarium, 64.9% by weight of cobalt, 0.07% by weight of calcium, 0.08% by weight of oxygen and 0.012% by weight of carbon, When an SmCo 5 sintered body was obtained, 34.8% by weight of samarium, 64.8% by weight of cobalt, 0.06% by weight of calcium, 0.18% by weight of oxygen, and 0.01% of carbon
A sintered body equivalent to 2% by weight of the unprocessed scrap product was obtained.

【0042】このことより、寸法不良となったSmCo
5系磁石用焼結体中のSmCo5相は有価物として回収さ
れ、再利用できたことがわかる。
As a result, the dimensional defect of SmCo
It can be seen that the SmCo 5 phase in the sintered body for the 5- system magnet was recovered as a valuable material and could be reused.

【0043】実施例3 ・・・ カルシウム還元後、実
施例1の酸洗浄処理を行うこと以外は実施例2と同じ処
理を実施例2の不良焼結体について実施した結果、得ら
れた合金粉末の酸素濃度は0.05重量%となり、焼結
原料としてより酸素濃度が低い良好な合金粉末であっ
た。他の成分はサマリウム33.1重量%、コバルト6
5.9重量%、カルシウム0.06重量%、炭素0.0
11重量%であった。
Example 3 An alloy powder obtained as a result of performing the same processing as in Example 2 on the defective sintered body of Example 2 except that the acid cleaning treatment of Example 1 is performed after the calcium reduction. Has an oxygen concentration of 0.05% by weight, and is a good alloy powder having a lower oxygen concentration as a sintering raw material. Other components are 33.1% by weight of samarium, cobalt 6
5.9% by weight, calcium 0.06% by weight, carbon 0.0
It was 11% by weight.

【0044】このことから、カルシウム還元後に酸洗浄
を行うことで、有価物としての品質が向上することがわ
かる。
From this, it can be seen that the quality as a valuable resource is improved by performing acid washing after calcium reduction.

【0045】実施例4 ・・・ カルシウム還元前に、
実施例1の酸洗浄処理を行うこと以外は実施例2と同じ
処理を実施例2の不良焼結体について実施した結果、得
られた合金粉末の酸素濃度は0.05重量%であった。
他の成分がサマリウム33.1重量%、コバルト65.
9重量%、カルシウム0.06重量%、炭素0.005
重量%となり、炭素成分が低く品質の良い合金粉末が得
られた。
Example 4 Before calcium reduction,
The same process as in Example 2 was performed on the defective sintered body of Example 2 except that the acid cleaning process of Example 1 was performed. As a result, the oxygen concentration of the obtained alloy powder was 0.05% by weight.
Other components are 33.1% by weight of samarium and 65.
9% by weight, calcium 0.06% by weight, carbon 0.005
% By weight, and a high-quality alloy powder having a low carbon content was obtained.

【0046】このことから、この磁石用SmCo5系焼
結体では、カルシウム還元前に酸洗浄を行うことで炭素
濃度が低減された品質が向上した有価物となることがわ
かる。
From this, it can be seen that this SmCo 5 -based sintered body for magnets is a valuable material having reduced carbon concentration and improved quality by performing acid washing before calcium reduction.

【0047】実施例5 ・・・ ネオジウム(Nd)3
1.2重量%、ディスプロシウム(Dy)1.1重量
%、ホウ素(B)1.1重量%、酸素(O)0.58重
量%、炭素(C)0.41重量%からなる、欠けを生じ
たNd−Fe−B系磁石用焼結体を、実施例2と同様の
粉砕方法で粒径100μm以下の粉末を得た。
Example 5 Neodymium (Nd) 3
1.2% by weight, dysprosium (Dy) 1.1% by weight, boron (B) 1.1% by weight, oxygen (O) 0.58% by weight, carbon (C) 0.41% by weight, The Nd-Fe-B-based sintered body for a magnet having a chip was obtained by the same pulverization method as in Example 2 to obtain a powder having a particle size of 100 µm or less.

【0048】この粉末をpH値を4とすること以外は実
施例1と同様の方法で酸洗浄処理して粉末を回収したと
ころ、酸素濃度は0.43重量%、炭素濃度0.031
重量%であった。Nd―Fe−B系合金原料として炭素
濃度は十分低いが、酸素は高い数値であった。
This powder was subjected to acid washing in the same manner as in Example 1 except that the pH value was changed to 4, and the powder was recovered. The oxygen concentration was 0.43% by weight and the carbon concentration was 0.031%.
% By weight. Although the carbon concentration was sufficiently low as an Nd—Fe—B-based alloy raw material, oxygen was a high value.

【0049】この合金粉末に対し、10重量%の金属カ
ルシウム(粒度4メッシュ以下)、20重量%の無水塩
化カルシウム(粒度300メッシュ以下)を十分に混合
し、ステンレス製容器に入れ、アルゴンガス雰囲気中で
1000℃で3時間保持し、カルシウムによる還元処理
を行った。冷却後、反応物を約10mm大に粉砕し、ス
ラリー濃度が30g/リットルになる条件で水中投下
し、攪拌し、水中崩壊させた。デカンテーションにより
カルシウム分を分離除去した後、pH値が10以下にな
るまで攪拌10分、排水、注水、攪拌のレパルプ洗浄を
繰り返したところ、7回のレパルプ洗浄でpH値は10
以下となった。
To this alloy powder, 10% by weight of metallic calcium (particle size of 4 mesh or less) and 20% by weight of anhydrous calcium chloride (particle size of 300 mesh or less) are sufficiently mixed, put in a stainless steel container, and placed in an argon gas atmosphere. And kept at 1000 ° C. for 3 hours in order to perform a reduction treatment with calcium. After cooling, the reaction product was pulverized to a size of about 10 mm, dropped into water under the condition of a slurry concentration of 30 g / liter, stirred, and disintegrated in water. After the calcium content was separated and removed by decantation, the repulp washing of drainage, water injection and stirring was repeated for 10 minutes until the pH value became 10 or less.
It was as follows.

【0050】この工程までに得られた合金粉末の一部を
エタノール置換し、真空乾燥を経て回収したところ、ネ
オジウム26.5重量%、ディスプロシウム1.12重
量%、ホウ素1.02重量%、酸素濃度0.27重量%
であり、酸素濃度は、やや高いものであった。
A part of the alloy powder obtained up to this step was replaced with ethanol, and recovered by vacuum drying. 26.5% by weight of neodymium, 1.12% by weight of dysprosium, 1.02% by weight of boron , Oxygen concentration 0.27% by weight
And the oxygen concentration was somewhat high.

【0051】さらに、カルシウム還元前の酸洗浄処理と
同じ処理を実施し、エタノール置換し、真空乾燥を経て
回収したところ、ネオジウム26.2重量%、ディスプ
ロシウム1.13重量%、ホウ素1.01重量%、酸素
濃度0.14重量%となり、酸素濃度は、十分低かっ
た。また、炭素濃度0.018重量%、カルシウム濃度
0.03重量%となり、これらの不純物濃度も低かっ
た。合金粉末は、大部分がNd−Fe−B系磁石の磁気
発現相である、Nd2Fe141主相からなる合金粉末で
あった。
Further, the same treatment as the acid washing treatment before the calcium reduction was carried out, the mixture was replaced with ethanol, and recovered by vacuum drying. As a result, 26.2% by weight of neodymium, 1.13% by weight of dysprosium and 1. The oxygen concentration was 01% by weight and the oxygen concentration was 0.14% by weight, and the oxygen concentration was sufficiently low. In addition, the carbon concentration was 0.018% by weight and the calcium concentration was 0.03% by weight, and these impurity concentrations were also low. The alloy powder was an alloy powder mainly composed of Nd 2 Fe 14 B 1 main phase, which is a magnetic manifestation phase of the Nd—Fe—B-based magnet.

【0052】この合金粉末に、ネオジウム濃度85.4
重量%で、Nd相とNd2Fe14相の共晶組織を有する
Nd−Fe合金粉末とを、重量比で94:6に配合し、
常法の粉末冶金法により焼結磁石を作製したところ、得
られた磁石の特性は、最大磁気エネルギー密度、(B
H)maxが43.2MGOe、保磁力、Hcjが14.
0kOeの高性能を示した。
The alloy powder was added with a neodymium concentration of 85.4.
By weight, Nd-Fe alloy powder having a eutectic structure of Nd phase and Nd 2 Fe 14 phase is blended in a weight ratio of 94: 6,
When a sintered magnet was manufactured by a conventional powder metallurgy method, the characteristics of the obtained magnet were the maximum magnetic energy density, (B
H) max is 43.2 MGOe, coercive force, Hcj is 14.
It exhibited a high performance of 0 kOe.

【0053】このことから、この磁石用Nd−Fe−B
系焼結体から回収される低酸素主相合金粉末は、有価物
となるとともに、それを用いて組成調整した合金粉を用
いた磁石は実用レベルの磁石特性を有するものであるこ
とがわかる。
From the above, it is clear that Nd-Fe-B for magnets
It can be seen that the low-oxygen main phase alloy powder recovered from the system sintered body is a valuable material, and that the magnet using the alloy powder whose composition has been adjusted using the same has practical-level magnet characteristics.

【0054】[0054]

【発明の効果】本発明は、 Sm系やNd系などの希土
類永久磁石や、Tb−Fe−Co系などのスパッタリン
グ用ターゲット材等の希土類元素含有物から有価組成物
を回収する方法と、回収物の再利用方法を提供するもの
であり、従来法のように各構成元素レベルに分離精製す
ることなく有価組成物としてその大部分を回収するた
め、経済性が高い。また、適当な組成調整合金との配合
により容易に焼結体原料として再生でき、さらに得られ
る製品は十分な特性を発現する。
The present invention provides a method of recovering a valuable composition from rare earth element-containing materials such as rare earth permanent magnets such as Sm-based or Nd-based and sputtering target materials such as Tb-Fe-Co-based. The present invention provides a method for reusing materials and recovers most of the valuable composition as a valuable composition without separating and refining to the level of each constituent element as in the conventional method. In addition, it can be easily regenerated as a raw material of a sintered body by blending with an appropriate composition adjusting alloy, and the obtained product exhibits sufficient characteristics.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素含有物を粉砕し、粉砕物を酸
洗浄処理後乾燥して有価組成物を得ることを特徴とする
希土類元素含有物からの有価組成物の回収方法。
1. A method for recovering a valuable composition from a rare earth element-containing material, wherein the rare earth element-containing material is pulverized, and the pulverized material is subjected to an acid washing treatment and then dried to obtain a valuable composition.
【請求項2】 希土類元素含有物を粉砕し、粉砕物をカ
ルシウム還元処理し、生成した酸化カルシウム及び残留
したカルシウムを除去するための水洗後、乾燥して有価
組成物を得ることを特徴とする希土類元素含有物からの
有価組成物の回収方法。
2. A rare earth element-containing substance is pulverized, the pulverized substance is subjected to calcium reduction treatment, washed with water to remove generated calcium oxide and residual calcium, and then dried to obtain a valuable composition. A method for recovering a valuable composition from a rare earth element-containing material.
【請求項3】 希土類元素含有物を粉砕し、粉砕物を酸
洗浄処理し、更にカルシウム還元処理し、生成した酸化
カルシウム及び残留したカルシウムを除去するための水
洗後、乾燥して有価組成物を得ることを特徴とする希土
類元素含有物からの有価組成物の回収方法。
3. The rare earth element-containing substance is pulverized, the pulverized substance is subjected to an acid washing treatment, further subjected to a calcium reduction treatment, washed with water to remove generated calcium oxide and residual calcium, and then dried to obtain a valuable composition. A method for recovering a valuable composition from a rare earth element-containing material, comprising:
【請求項4】 希土類元素含有物を粉砕し、粉砕物を酸
洗浄処理し、酸洗浄処理物をカルシウム還元処理し、生
成した酸化カルシウム及び残留したカルシウムを除去す
るための水洗後、更に酸洗浄処理し、水洗後乾燥して有
価組成物を得ることを特徴とする希土類元素含有物から
の有価組成物の回収方法。
4. A pulverized material containing a rare earth element, an acid-cleaning treatment of the pulverized material, a calcium reduction treatment of the acid-washed material, water washing for removing generated calcium oxide and residual calcium, and further acid washing. A method for recovering a valuable composition from a rare earth element-containing material, comprising treating, washing with water, and drying to obtain a valuable composition.
【請求項5】 希土類元素含有物が希土類元素を含有す
る金属質焼結体である請求項1〜請求項4いずれかに記
載の有価組成物の回収方法。
5. The method for recovering a valuable composition according to claim 1, wherein the rare earth element-containing material is a metallic sintered body containing a rare earth element.
【請求項6】 希土類元素含有物が希土類元素を含有す
る焼結体磁石である請求項1〜請求項4いずれかに記載
の有価組成物の回収方法。
6. The method for recovering a valuable composition according to claim 1, wherein the rare earth element-containing material is a sintered magnet containing a rare earth element.
【請求項7】 希土類元素含有物がR−Fe−B系焼結
体磁石である請求項1〜請求項4いずれかに記載の有価
組成物の回収方法。
7. The method for recovering a valuable composition according to claim 1, wherein the rare earth element-containing material is an R—Fe—B based sintered magnet.
【請求項8】 希土類元素含有物がNd−Fe−B系焼
結体磁石である請求項1〜請求項4いずれかに記載の有
価組成物の回収方法。
8. The method for recovering a valuable composition according to claim 1, wherein the rare earth element-containing material is an Nd—Fe—B-based sintered magnet.
【請求項9】 回収される有価組成物がR−Fe−B系
合金である請求項1〜請求項8いずれかに記載の希土類
元素含有物からの有価組成物の回収方法。
9. The method for recovering a valuable composition from a rare earth element-containing material according to claim 1, wherein the valuable composition to be recovered is an R—Fe—B-based alloy.
【請求項10】 回収される有価組成物が原子比でNd
2Fe14B組成の相を含む合金である請求項1〜請求項
8いずれかに記載の希土類元素含有物からの有価組成物
の回収方法。
10. The recovered valuable composition is Nd in atomic ratio.
Method of recovering valuable compositions from rare earth-containing composition according to any one of claims 1 to 8 are alloys comprising phase 2 Fe 14 B composition.
【請求項11】 請求項1〜請求項10いずれかに記載
の回収方法によって得られた希土類元素含有合金粉末。
11. A rare earth element-containing alloy powder obtained by the recovery method according to any one of claims 1 to 10.
JP12871298A 1998-05-12 1998-05-12 Recovery of valued composition from rare earth element-containing substance and alloy powder obtained thereby Pending JPH11319752A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP12871298A JPH11319752A (en) 1998-05-12 1998-05-12 Recovery of valued composition from rare earth element-containing substance and alloy powder obtained thereby
CN99106463A CN1077603C (en) 1998-05-12 1999-05-12 Recovering method of valuable composition from rare earth element-containing material and alloy powder obtained therefrom
DE1999122144 DE19922144C2 (en) 1998-05-12 1999-05-12 Process for the preparation of a material composition from material containing rare earth elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12871298A JPH11319752A (en) 1998-05-12 1998-05-12 Recovery of valued composition from rare earth element-containing substance and alloy powder obtained thereby

Publications (1)

Publication Number Publication Date
JPH11319752A true JPH11319752A (en) 1999-11-24

Family

ID=14991573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12871298A Pending JPH11319752A (en) 1998-05-12 1998-05-12 Recovery of valued composition from rare earth element-containing substance and alloy powder obtained thereby

Country Status (3)

Country Link
JP (1) JPH11319752A (en)
CN (1) CN1077603C (en)
DE (1) DE19922144C2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068082A (en) * 2002-08-06 2004-03-04 Chiba Inst Of Technology Method for recovering rare-earth metal
JP2010042346A (en) * 2008-08-12 2010-02-25 Jfe Mineral Co Ltd Pretreatment method for recovering rare earth element from disposed fluorescent lamp and method of recovering rare earth element using solid matter obtained by the pretreatment method
CN103103361A (en) * 2013-02-28 2013-05-15 包头稀土研究院 Method for preparing rare earth oxide from rare earth polishing powder waste
KR101414967B1 (en) * 2012-03-22 2014-07-04 한국생산기술연구원 Nd Extraction Metod From Rare Earth element

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329811A (en) * 1998-05-18 1999-11-30 Sumitomo Special Metals Co Ltd Raw material powder for r-fe-b magnet and manufacture of r-fe-b based magnet
DE19843883C1 (en) * 1998-09-24 1999-10-07 Vacuumschmelze Gmbh Method for recycling of permanent magnets forming part of scrap material
JP4240679B2 (en) * 1999-09-21 2009-03-18 ソニー株式会社 Method for producing sputtering target
US8118906B2 (en) 2007-10-29 2012-02-21 Heraeus Inc. Methodology for recycling Ru and Ru-alloy deposition targets and targets made of recycled Ru and Ru-based alloy powders
EP2857547B1 (en) * 2013-01-28 2017-08-23 JX Nippon Mining & Metals Corp. Method for making a rare-earth magnet sputtering target
CN103343234B (en) * 2013-07-19 2015-01-14 北京工业大学 Method for preparing neodymium and iron oxides by using neodymium iron boron oil sludge through regeneration and co-precipitation
WO2017034009A1 (en) 2015-08-26 2017-03-02 日立金属株式会社 Useful method for separating light rare earth elements and heavy rare earth elements
EP3807913A1 (en) * 2018-06-18 2021-04-21 ABB Schweiz AG Method for producing a magnetic powder
CN109847892A (en) * 2019-03-20 2019-06-07 兰州大学 A kind of reduction-diffusion process prepares the deimpurity device of terres rares-transition metal alloy
CN111876787B (en) * 2020-07-22 2022-03-15 宁波江丰电子材料股份有限公司 Treatment process of copper phosphorus evaporation material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2818997C2 (en) * 1978-02-17 1980-02-07 Schweizerische Aluminium Ag, Chippis (Schweiz) Process for the recovery and separation of gadolinium and gallium from scrap
DE2857381C2 (en) * 1978-04-20 1982-02-25 Fa. Hermann Wegener, 3000 Hannover Extraction of lanthanides in the manufacture of filter materials
DE3211286A1 (en) * 1981-04-02 1982-10-21 Hermann C. Starck Berlin, 1000 Berlin Process for recovering mineral acid compounds free from radiation from mineral-acid ores containing, in complex form, uranium, thorium, titanium and rare earths
JPS58193331A (en) * 1982-05-04 1983-11-11 Hitachi Metals Ltd Treatment of alloy power of rare earth element-cobalt
US4578242A (en) * 1984-07-03 1986-03-25 General Motors Corporation Metallothermic reduction of rare earth oxides
DD240756A1 (en) * 1985-09-04 1986-11-12 Akad Wissenschaften Ddr PROCESS FOR OBTAINING RARE EARTH
FR2600081A1 (en) * 1986-03-19 1987-12-18 Rhone Poulenc Chimie PROCESS FOR SEPARATING RARE EARTHS
CN1062232A (en) * 1990-12-04 1992-06-24 北京科技大学 Produce the method for rare-earth iron-boron permanent magnetic material with the rare-earth iron-boron waste material
US5314526A (en) * 1990-12-06 1994-05-24 General Motors Corporation Metallothermic reduction of rare earth fluorides
BR9104844A (en) * 1991-11-06 1993-05-11 Solvay PROCESS FOR THE SELECTIVE EXTRACTION OF CERIO FROM AN Aqueous SOLUTION OF ELEMENTS FROM RARE LANDS
CN1119216A (en) * 1994-09-22 1996-03-27 泰兴市君泰稀土实业有限公司 Process for preparing neodymium and neodymium-dysprosium compounds by recovering waste neodymium-iron-boron
JP3777226B2 (en) * 1995-09-27 2006-05-24 株式会社三徳 Method for recovering reusable rare earth-containing compounds

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068082A (en) * 2002-08-06 2004-03-04 Chiba Inst Of Technology Method for recovering rare-earth metal
JP2010042346A (en) * 2008-08-12 2010-02-25 Jfe Mineral Co Ltd Pretreatment method for recovering rare earth element from disposed fluorescent lamp and method of recovering rare earth element using solid matter obtained by the pretreatment method
KR101414967B1 (en) * 2012-03-22 2014-07-04 한국생산기술연구원 Nd Extraction Metod From Rare Earth element
CN103103361A (en) * 2013-02-28 2013-05-15 包头稀土研究院 Method for preparing rare earth oxide from rare earth polishing powder waste
CN103103361B (en) * 2013-02-28 2014-11-26 包头稀土研究院 Method for preparing rare earth oxide from rare earth polishing powder waste

Also Published As

Publication number Publication date
DE19922144A1 (en) 1999-11-25
DE19922144C2 (en) 2001-11-15
CN1237643A (en) 1999-12-08
CN1077603C (en) 2002-01-09

Similar Documents

Publication Publication Date Title
JPH11319752A (en) Recovery of valued composition from rare earth element-containing substance and alloy powder obtained thereby
US7056393B2 (en) Method of making sintered compact for rare earth magnet
EP1026706B1 (en) FEEDSTOCK POWDER FOR R-Fe-B MAGNET AND PROCESS FOR PRODUCING R-Fe-B MAGNET
JPH0685369B2 (en) Permanent magnet manufacturing method
JP2000030919A (en) MANUFACTURE OF MATERIAL POWDER FOR R-Fe-B MAGNET
JPH064885B2 (en) Production method of alloy powder for rare earth / boron / iron-based permanent magnet
JP3240034B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2005197301A (en) Rare earth sintered magnet and manufacturing method thereof
JPH0718366A (en) Production of r-fe-b permanent magnet material
JP3336028B2 (en) Method for producing rare earth-transition metal-nitrogen alloy powder
JP2008171868A (en) Manufacturing method of rare earth-iron-nitrogen-based magnetic powder
US5183494A (en) Process for manufacturing rare earth-iron-boron permanent magnet alloy powders
JP2006265610A (en) Production method for rare earth sintered magnet
JP2002217052A (en) Method of regenerating rare earth magnet
JPS62257705A (en) Manufacture of rco5 rare-earth cobalt magnet
JP2000054011A (en) Production of rare earth metal-iron-boron based sintered magnet raw material alloy powder
JPH0524975B2 (en)
JP4127128B2 (en) Rare earth-transition metal alloy powder, rare earth-transition metal-nitrogen alloy powder and method for producing the same
JP4403998B2 (en) Method for producing rare earth alloy fine powder
JPH1150110A (en) Production of alloy powder for rare earth magnet
JP2994684B2 (en) Production method of raw material for rare earth permanent magnet
JP2008001953A (en) Method for producing rare earth-iron-nitrogen-based alloy powder
JPH03162546A (en) Manufacture of permanent magnet alloy having excellent oxidation resistance
JP2005197300A (en) Rare earth sintered magnet and manufacturing method thereof
JP3029711B2 (en) Rare earth magnet manufacturing method