JP3029711B2 - Rare earth magnet manufacturing method - Google Patents

Rare earth magnet manufacturing method

Info

Publication number
JP3029711B2
JP3029711B2 JP3208659A JP20865991A JP3029711B2 JP 3029711 B2 JP3029711 B2 JP 3029711B2 JP 3208659 A JP3208659 A JP 3208659A JP 20865991 A JP20865991 A JP 20865991A JP 3029711 B2 JP3029711 B2 JP 3029711B2
Authority
JP
Japan
Prior art keywords
magnet
water
powder
rare earth
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3208659A
Other languages
Japanese (ja)
Other versions
JPH06251915A (en
Inventor
文秋 菊井
稔 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP3208659A priority Critical patent/JP3029711B2/en
Publication of JPH06251915A publication Critical patent/JPH06251915A/en
Application granted granted Critical
Publication of JP3029711B2 publication Critical patent/JP3029711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、R−Co系磁石ある
いはR−Fe−B系磁石等の希土類磁石粉末を、有毒の
有機溶媒を使用しない湿式微粉砕にて製造する希土類磁
石の製造方法に係り、水を溶媒として用いて湿式微粉砕
するに際して、水に特定量の錯形成剤と還元剤を添加し
て微粉砕後の粉末中の不溶性不純物量を0.1ppm以
下にし、永久磁石の磁石特性の劣化及び腐食を防止した
希土類磁石の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth magnet for producing a rare earth magnet powder such as an R--Co magnet or an R--Fe--B magnet by wet pulverization without using a toxic organic solvent. In connection with, when performing wet pulverization using water as a solvent, a specific amount of a complexing agent and a reducing agent are added to water to reduce the amount of insoluble impurities in the powder after pulverization to 0.1 ppm or less, The present invention relates to a method for manufacturing a rare earth magnet in which deterioration and corrosion of magnet properties are prevented.

【0002】[0002]

【従来の技術】従来、R−Co系磁石の製造に用いる磁
石粉末は、Ca還元法あるいは粉砕法にて原料粉末を得
ていた。また、R−Fe−B系磁石等の希土類磁石の製
造に用いる磁石粉末は、電解により還元された希土類原
料を用いて、溶解して鋳型に鋳造し所要磁石組成の合金
塊を作成し、これを粉砕して所要粒度の合金粉末とする
溶解・粉砕法(特開昭60−63304号公報、特開昭
60−1190701号公報)がある。この溶解・粉砕
法は、鋳塊の粗粉砕工程で容易に酸化防止が可能な粉砕
ができるため、比較的低含有酸素量の合金粉末が得られ
る。
2. Description of the Related Art Conventionally, as a magnetic powder used for producing an R-Co magnet, a raw material powder has been obtained by a Ca reduction method or a pulverization method. In addition, magnet powder used for manufacturing rare earth magnets such as R-Fe-B magnets is melted and cast into a mold using a rare earth raw material reduced by electrolysis to form an alloy lump having a required magnet composition. And pulverization to obtain an alloy powder having a required particle size (JP-A-60-63304, JP-A-60-1190701). This melting and pulverization method can easily perform oxidation-preventive pulverization in the ingot coarse pulverization step, so that an alloy powder having a relatively low oxygen content can be obtained.

【0003】かかる希土類磁石用磁石粉末は、所要粒度
にするためいずれも機械粉砕により粗粉砕後、さらにト
ルエン、メタノール、ヘキサン等の有機溶媒を用いて、
アトライター等内にて湿式微粉砕することが一般的であ
る。
[0003] Such a rare earth magnet powder is roughly pulverized by mechanical pulverization in order to obtain a required particle size, and then further treated with an organic solvent such as toluene, methanol or hexane.
It is common to carry out wet pulverization in an attritor or the like.

【0004】[0004]

【発明が解決しようとする課題】この湿式微粉砕に用い
る前記有機溶媒は有毒で危険性が高く、また公害上の問
題があるため、最近、水を溶媒とした湿式微粉砕法が提
案されており、水を溶媒として用いることは安全性及び
コストの点で有機溶媒に対してすぐれている
The above-mentioned organic solvent used for the wet pulverization is toxic and dangerous, and has a problem of pollution. Therefore, a wet pulverization method using water as a solvent has recently been proposed. Use of water as a solvent is superior to organic solvents in terms of safety and cost

【0005】しかし、水には一般にO2量10ppm〜
20ppmを含有するため、微粉砕時に溶媒に水を用い
て、希土類磁石、特にNd−Fe−B系磁石の製造に適
用する場合、溶媒の水中のO2により、生成された微粉
砕粉が腐食され、また、溶媒の水中にNd(OH)3
FeOOH等の不溶性不純物が生成し、この微粉砕粉か
ら得られる永久磁石の磁石特性の劣化及び腐食を招来す
る問題があり、実用化が困難であった。
However, water generally has an O 2 content of 10 ppm or less.
To contain 20 ppm, using water as a solvent during milling, when applied rare earth magnet, especially production of Nd-Fe-B magnets, the O 2 in water solvent, the generated finely pulverized powder corrosion And Nd (OH) 3 ,
Insoluble impurities such as FeOOH are generated, and there is a problem that the magnet properties of the permanent magnet obtained from the finely pulverized powder are deteriorated and corroded, so that practical use has been difficult.

【0006】この発明は、R−Co系磁石あるいはR−
Fe−B系磁石等の希土類磁石粉末を、有毒の有機溶媒
を使用しない湿式微粉砕にて製造する希土類磁石の製造
方法の提供を目的とし、水を溶媒に用いて湿式微粉砕し
た際に永久磁石の磁石特性の劣化及び腐食させる不純物
量を低減できる希土類磁石の製造方法の提供を目的とし
ている。
The present invention relates to an R-Co magnet or an R-Co magnet.
The purpose of the present invention is to provide a method for producing a rare earth magnet in which a rare earth magnet powder such as an Fe-B based magnet is produced by wet pulverization without using a toxic organic solvent. It is an object of the present invention to provide a method for manufacturing a rare earth magnet that can reduce the deterioration of the magnet properties of the magnet and the amount of impurities to be corroded.

【0007】[0007]

【課題を解決するための手段】この発明は、希土類磁石
の製造時、微粉砕工程において、溶媒として水を用いた
場合、水中に含まれるO2量の低減と共に溶液中の不溶
性不純物の生成沈殿を防止するため、種々検討した結
果、水中に含まれるO2量の低減と共に溶液中に溶出す
るFe、R(特にNd)の不溶性沈殿物の生成を防止す
る方法として、溶媒としての水に特定量の錯形成剤と還
元剤を添加し、あるいはさらに前記水中に不活性ガスを
吹き込みバブリングすることにより、溶媒中の水に含ま
れるO2量の低減と共に、前記不溶性沈殿物を溶液中に
溶存させ、微粉砕後の濾過により微粉砕粉回収の際に、
不純物を濾過液として系外に除去できることを知見し完
成したものである。
According to the present invention, when water is used as a solvent in a pulverization step in the production of a rare earth magnet, the amount of O 2 contained in the water is reduced and the generation of insoluble impurities in the solution is reduced. As a result of various investigations to prevent the formation of insoluble precipitates of Fe and R (especially Nd) that elute in the solution together with the reduction of the amount of O 2 contained in the water, water was specified as water as a solvent. by adding an amount of complexing agent and reducing agent, or even bubbling blowing an inert gas into the water, along with the reduction of O 2 content in the water in the solvent, the insoluble precipitate in the solution of dissolved At the time of fine powder recovery by filtration after fine pulverization,
It has been found out that impurities can be removed outside the system as a filtrate.

【0008】すなわち、この発明は、湿式微粉砕にてR
−Co系磁石あるいはR−Fe−B系磁石等の希土類磁
石粉末を得る希土類磁石の製造方法において、錯形成剤
を0.001〜1mol/l及び還元剤として10g/
l以下のNa2SO3を添加した水、あるいはさらに前記
水中に不活性ガスを噴射して水中のO2量を1ppm以
下に低減した水を溶媒に用いて湿式微粉砕し、微粉砕後
の濾過分離した粉末中の不溶性不純物量を0.1ppm
以下にすることを特徴とする希土類磁石の製造方法であ
る。
[0008] That is, the present invention provides a wet fine pulverizing method.
In a method for producing a rare-earth magnet for obtaining a rare-earth magnet powder such as a -Co-based magnet or an R-Fe-B-based magnet, a complex-forming agent is used in an amount of 0.001 to 1 mol / l and a reducing agent of 10 g /
1 or less of Na 2 SO 3 or water in which an inert gas is injected into the water to reduce the amount of O 2 in the water to 1 ppm or less as a solvent. 0.1 ppm of insoluble impurities in powder separated by filtration
A method for manufacturing a rare earth magnet, characterized in that:

【0009】[0009]

【作用】詳述するとこの発明は、希土類磁石の製造時の
湿式微粉砕工程前に、溶媒となる水に錯形成剤を0.0
01〜1mol/l、還元剤として10g/l以下のN
2SO3を添加して、あるいはさらにArガス又はN2
ガス等不活性ガスを吹き込んでバブリングして、溶媒の
水中のO2量を1ppm以下に低減した後、前記処理水
を溶媒として湿式微粉砕した際の溶液中の不溶性不純物
量を0.1ppm以下にすることにより、微粉砕後の濾
過時に不純物を濾過液として系外に除去し、濾過分離し
た粉末中の不溶性不純物量を0.1ppm以下にするこ
とができ、得られる希土類磁石の磁石特性の劣化及び腐
食防止に多大な効果を発揮する。
More specifically, the present invention provides a method of manufacturing a rare-earth magnet, which comprises adding a complexing agent to water as a solvent before the wet pulverization step at the time of manufacturing the rare-earth magnet.
01 to 1 mol / l, N of 10 g / l or less as a reducing agent
a 2 SO 3 is added, or Ar gas or N 2
After bubbling by blowing an inert gas such as a gas to reduce the amount of O 2 in the solvent water to 1 ppm or less, the amount of insoluble impurities in the solution when wet-milling using the treated water as a solvent is 0.1 ppm or less. By doing so, impurities can be removed from the system as a filtrate during filtration after pulverization, and the amount of insoluble impurities in the powder separated by filtration can be reduced to 0.1 ppm or less. It has a great effect on deterioration and corrosion prevention.

【0010】この発明において、溶媒としての水には、
中性あるいはアルカリ性の水が好ましく、アルカリ性の
水としては、濃アンモニアを300ml/l以下、Na
OH、KOH、Ca(OH)2、KH2PO4、NaHP
4、NaHCO3、NaCH3COO 100ml/l
以下等のうち少なくとも1種を添加して得られる。ま
た、溶媒としてアルカリ性の水を使用することにより、
酸性、中性溶液よりもNd、Fe等の溶出を低減でき、
原料粉末の腐食による磁石特性劣化の防止及び耐食性の
改善向上を図ることができる。
In the present invention, water as a solvent includes:
Neutral or alkaline water is preferable. As the alkaline water, concentrated ammonia is 300 ml / l or less,
OH, KOH, Ca (OH) 2, KH 2 PO 4, NaHP
O 4 , NaHCO 3 , NaCH 3 COO 100 ml / l
It is obtained by adding at least one of the following. Also, by using alkaline water as a solvent,
Elution of Nd, Fe, etc. can be reduced more than acidic and neutral solutions,
It is possible to prevent deterioration of the magnet properties due to corrosion of the raw material powder and to improve and improve the corrosion resistance.

【0011】さらに、水道水等の使用が可能であり、水
道水としては電導率200μs/cm・25℃以下、不
純物はCl40ppm以下、Si15ppm以下、Ca
40ppm以下、Mg10ppm以下が好ましく、さら
にイオン交換、蒸留等の処理により電導率を1μs/c
m・25℃以下に低減した方がよい。
Further, tap water or the like can be used. Conductivity of tap water is 200 μs / cm · 25 ° C. or less, impurities are 40 ppm or less of Cl, 15 ppm or less of Si,
40 ppm or less, Mg 10 ppm or less is preferable, and the conductivity is set to 1 μs / c by treatment such as ion exchange and distillation.
It is better to reduce the temperature to m · 25 ° C. or less.

【0012】この発明の特徴である水に添加する錯形成
剤としては、原料粉末の構成元素と錯形成するカルボン
酸系配位子又はアミン系配位子何れでもよいが、カルボ
ン酸系配位子としてはコハク酸、マレイン酸等が好まし
く、またアミン系配位子としてはEDTA、DTPA等
が好ましい。錯形成剤の添加量は水1lに対して0.0
01〜1molが好ましく、錯形成剤量が0.001m
ol/l未満では錯形成が十分でなく、1mol/lを
超えると効果上は問題ないが経済上好ましくない。
The complexing agent to be added to water, which is a feature of the present invention, may be either a carboxylic acid ligand or an amine ligand which forms a complex with the constituent elements of the raw material powder. As the ligand, succinic acid, maleic acid and the like are preferable, and as the amine-based ligand, EDTA and DTPA are preferable. The addition amount of the complexing agent is 0.0
The amount is preferably from 1 to 1 mol, and the amount of the complexing agent is 0.001 m.
When it is less than ol / l, complex formation is not sufficient, and when it exceeds 1 mol / l, there is no problem in effect, but it is economically unfavorable.

【0013】この発明は、錯形成剤の添加と共に還元剤
としてNa2SO3を10g/l以下添加することを特徴
とするが、10g/lを超える添加では効果の向上は認
められず、経済的に好ましくない。
The present invention is characterized in that Na 2 SO 3 is added as a reducing agent in an amount of not more than 10 g / l together with the addition of a complexing agent. Is not preferred.

【0014】さらに、この発明において、湿式微粉砕す
る前に錯形成剤と還元剤を含有する溶媒の水中にAr、
2ガス等の不活性ガスを噴射、バブリングすることに
より溶媒の水中に含まれるO2量を低減し、得られる微
粉砕粉の腐食を低減することができる。
Further, in the present invention, Ar or Ar is added to a solvent containing a complexing agent and a reducing agent before the wet pulverization.
By jetting and bubbling an inert gas such as N 2 gas, the amount of O 2 contained in the solvent water can be reduced, and the corrosion of the obtained finely pulverized powder can be reduced.

【0015】この発明において、Arガス、N2ガス等
の不活性ガスによるバブリング条件としてはガス圧力
1.0〜3.0kg/cm2、吹き込み時間10分〜6
0分、ガス流量3〜20l/minが好ましい。ガス圧
力が1.0kg/cm2未満では十分なガス導入ができ
ず、3.0kg/cm2を超えると水の飛散があり好ま
しくない。また、吹き込み時間が10分未満ではO2
去が十分でなく、60分を超えると経済的でない。ま
た、ガス流量として3l/min未満では十分なO2
去ができず、20l/minを超えると経済的に好まし
くない。
In the present invention, bubbling conditions with an inert gas such as an Ar gas or a N 2 gas include a gas pressure of 1.0 to 3.0 kg / cm 2 and a blowing time of 10 minutes to 6 minutes.
The gas flow rate is preferably 3 to 20 l / min for 0 minute. When the gas pressure is less than 1.0 kg / cm 2 , sufficient gas cannot be introduced. When the gas pressure exceeds 3.0 kg / cm 2 , water is scattered, which is not preferable. If the blowing time is less than 10 minutes, the removal of O 2 is not sufficient, and if it exceeds 60 minutes, it is not economical. Further, if the gas flow rate is less than 3 l / min, it is not possible to sufficiently remove O 2 , and if it exceeds 20 l / min, it is not economically preferable.

【0016】[0016]

【実施例】実施例1 溶解・粉砕法により得られた35.5t%Nd−6
3.4t%Fe−1.1t%B組成の磁石用原料粉
末を、内容積100lのアトライター内に12mm直径
の鋼製ボールと共に入れ、さらに錯形成剤として酒石酸
0.02ml/l、還元剤のNa2SO3を5g/l含有
し、O2含有量が1.3ppmの水を所要量溶媒として
用い、これを回転数80rpm、3時間回転させる微粉
砕を行い、粉砕完了後に濾過して平均粒径3.4μmの
微粉砕粉末を得た。得られた微粉砕粉末中のR,Fe等
の不溶性不純物量は、ICP測定法により測定したとこ
ろ0.03ppmであった。
EXAMPLES obtained in Example 1 dissolved and pulverizing method 35.5 w t% Nd-6
3.4 w t% Fe-1.1 w t% a raw material powder for a magnet B composition, put together steel ball 12mm diameter in attritor having an inner volume of 100l, further tartrate as complexing agent 0.02 ml / 1, water containing 5 g / l of reducing agent Na 2 SO 3 and O 2 content of 1.3 ppm was used as a required solvent, and this was rotated at 80 rpm for 3 hours to perform fine grinding, and grinding was completed. Thereafter, the mixture was filtered to obtain a finely pulverized powder having an average particle size of 3.4 μm. The amount of insoluble impurities such as R and Fe in the obtained finely pulverized powder was 0.03 ppm as measured by an ICP measurement method.

【0017】また、この微粉砕粉末を金型に装入し、約
10kOeの磁界中で配向し、磁界に直角方向に約1.
5ton/cm2 の圧力で成型し、15mm×20m
m×8mmの成型体を作成した。この成型体を1100
℃×2時間のAr雰囲気中条件で焼結し、引き続いて6
00℃×2時間の時効処理を行った。得られた試験片磁
石の磁石特性を表1に示す。
Further, this finely pulverized powder is charged into a mold, oriented in a magnetic field of about 10 kOe, and placed in a direction perpendicular to the magnetic field for about 1.10 kOe.
Molded at a pressure of 5 ton / cm 2 , 15mm x 20m
A molded body of mx 8 mm was prepared. 1100
Sintering in an Ar atmosphere at 2 ° C. × 2 hours.
An aging treatment was performed at 00 ° C. for 2 hours. Table 1 shows the magnet properties of the obtained test piece magnets.

【0018】実施例2 溶解・粉砕法により得られた35.5t%Nd−6
3.4t%Fe−1.2t%B組成の磁石用原料粉
末を、内容積100lのアトライター内に9.5mm直
径の鋼製ボールと共に入れ、さらに錯形成剤と還元剤を
含有した水を所要量溶媒として用い、これを回転数80
rpm、3時間回転させる微粉砕を行い、粉砕完了後に
濾過して平均粒径3.4μmの微粉砕粉末を得た。な
お、溶媒の水は、事前に酒石酸0.02ml/l、DT
PA0.02ml/l並びにNa2SO32g/lを添加
し、NaOHにてpHを11に調整し、さらに水中にA
rガスをガス圧力2.0kg/cm2、ガス流量5l/
min、吹き込み時間1時間の条件でバブリングして、
2含有量を0.5ppmに低減した。溶媒の水のO 2
有量は未添加時に12ppmであった
[0018] obtained in Example 2 dissolved and pulverizing method 35.5 w t% Nd-6
The 3.4 w t% Fe-1.2 w t% B raw material powder for a magnet composition, put together steel balls 9.5mm diameter in the attritor having an inner volume of 100l, a further complexing agent and reducing agent The contained water is used as a required amount of solvent,
After the pulverization was completed, the mixture was filtered after completion of the pulverization to obtain a finely pulverized powder having an average particle size of 3.4 μm. The solvent water was previously prepared with tartaric acid 0.02 ml / l, DT
0.02 ml / l of PA and 2 g / l of Na 2 SO 3 were added, the pH was adjusted to 11 with NaOH, and
r gas at a gas pressure of 2.0 kg / cm 2 and a gas flow rate of 5 l /
min, bubbling under the condition of blowing time 1 hour,
The O 2 content was reduced to 0.5 ppm. Contains O 2 in water of solvent
The content was 12 ppm when not added .

【0019】得られた微粉砕粉末中のR,Fe等の不溶
性不純物量は、ICP測定法により測定したところ0.
02ppmであった。さらに実施例1と同様方法で、成
形、焼結、磁石化して得た磁石の磁石特性を表1に示
す。
The amount of insoluble impurities such as R, Fe, etc. in the obtained finely pulverized powder was determined by ICP measurement method to be 0.1%.
It was 02 ppm. Further, Table 1 shows the magnet properties of the magnet obtained by molding, sintering, and magnetizing in the same manner as in Example 1.

【0020】実施例3 微粉砕工程で溶媒の錯形成剤及び還元剤を添加した水に
バブリングを施さない以外は、実施例2と同一の原料粉
末を同一の製造工程で微粉砕粉末化したところ、得られ
た微粉砕粉末中のR,Fe等の不溶性不純物量は、IC
P測定法により測定したところ0.07ppmであっ
た。さらに実施例1と同様方法で、成形、焼結、磁石化
して得た磁石の磁石特性を表1に示す。
Example 3 The same raw material powder as in Example 2 was pulverized in the same production step except that bubbling was not performed on water to which a complexing agent and a reducing agent were added in the pulverization step. The amount of insoluble impurities such as R and Fe in the obtained finely pulverized powder is determined by IC
It was 0.07 ppm when measured by the P measurement method. Further, Table 1 shows the magnet properties of the magnet obtained by molding, sintering, and magnetizing in the same manner as in Example 1.

【0021】比較例1 微粉砕工程で溶媒の水に還元剤を添加しない以外は、実
施例1と同一の原料粉末を同一の製造工程で微粉砕粉末
化したところ、得られた微粉砕粉末中のR,Fe等の不
溶性不純物量は、ICP測定法により測定したところ
0.08ppmであった。さらに実施例1と同様方法
で、成形、焼結、磁石化して得た磁石の磁石特性を表1
に示す。
Comparative Example 1 The same raw material powder as in Example 1 was pulverized in the same production process except that the reducing agent was not added to the solvent water in the pulverization step. The amount of insoluble impurities such as R, Fe and the like was 0.08 ppm as measured by an ICP measurement method. Table 1 shows the magnet properties of the magnet obtained by molding, sintering, and magnetizing in the same manner as in Example 1.
Shown in

【0022】比較例2 微粉砕工程で溶媒の水に錯形成剤及び還元剤を添加しな
い以外は、実施例1と同一の原料粉末を同一の製造工程
で微粉砕粉末化したところ、得られた微粉砕粉末中の
R,Fe等の不溶性不純物量は、ICP測定法により測
定したところ5000ppmであった。さらに実施例1
と同様方法で、成形、焼結、磁石化して得た磁石の磁石
特性を表1に示す。
Comparative Example 2 The same raw material powder as in Example 1 was pulverized into powder by the same production process except that the complexing agent and the reducing agent were not added to the solvent water in the pulverization process. The amount of insoluble impurities such as R and Fe in the finely pulverized powder was 5000 ppm as measured by an ICP measurement method. Example 1
Table 1 shows the magnet properties of the magnets obtained by molding, sintering, and magnetizing in the same manner as described above.

【0023】比較例3 微粉砕工程で溶媒の水に代えて有機溶媒としてシクロヘ
キサンを用いる以外は、実施例1と同一の原料粉末を同
一の製造工程で微粉砕粉末化したところ、得られた微粉
砕粉末中のR,Fe等の不溶性不純物量は、ICP測定
法により測定したところ3.0ppmであった。さらに
実施例1と同様方法で、成形、焼結、磁石化して得た磁
石の磁石特性を表1に示す。
Comparative Example 3 The same raw material powder as in Example 1 was pulverized in the same production process except that cyclohexane was used as an organic solvent in place of water as the solvent in the pulverization process. The amount of insoluble impurities such as R and Fe in the pulverized powder was 3.0 ppm as measured by an ICP measurement method. Further, Table 1 shows the magnet properties of the magnet obtained by molding, sintering, and magnetizing in the same manner as in Example 1.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】この発明は、特定量の錯形成剤と還元剤
を添加した水、あるいはさらに不活性ガスをバブリング
した水を溶媒にして湿式微粉砕するため、従来の有機溶
媒を用いた微粉砕法に対し、安全性が高く、且つ低コス
トで磁石特性も従来の有機溶媒を用いた場合の磁石と同
等以上の磁石特性の希土類磁石が得られた。
According to the present invention, the wet pulverization is carried out using water to which a specific amount of a complexing agent and a reducing agent are added, or water in which an inert gas is bubbled, and thus a conventional fine powder using an organic solvent is used. Compared with the pulverization method, a rare-earth magnet having high safety, low cost, and magnet properties equal to or better than those of a magnet using a conventional organic solvent was obtained.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 1/06 B02C 23/06 B22F 9/04 C22C 38/00 303 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H01F 1/06 B02C 23/06 B22F 9/04 C22C 38/00 303

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 湿式微粉砕にてR−Co系磁石あるいは
R−Fe−B系磁石等の希土類磁石粉末を得る希土類磁
石の製造方法において、錯形成剤を0.001〜1mo
l/l及び還元剤として10g/l以下のNa2SO3
添加した水を溶媒に用いて湿式微粉砕し、微粉砕後の濾
過分離した粉末中の不溶性不純物量を0.1ppm以下
にすることを特徴とする希土類磁石の製造方法。
1. A method for producing a rare earth magnet for obtaining a rare earth magnet powder such as an R—Co magnet or an R—Fe—B magnet by wet pulverization.
Wet pulverization using l / l and water to which 10 g / l or less of Na 2 SO 3 as a reducing agent is added as a solvent to reduce the amount of insoluble impurities in the powder separated by filtration after the pulverization to 0.1 ppm or less. A method for producing a rare earth magnet, comprising:
【請求項2】 湿式微粉砕にてR−Co系磁石あるいは
R−Fe−B系磁石等の希土類磁石粉末を得る希土類磁
石の製造方法において、錯形成剤を0.001〜1mo
l/l及び還元剤として10g/l以下のNa2SO3
添加し、かつ前記水中に不活性ガスを噴射して水中のO
2量を1ppm以下に低減した水を溶媒に用いて湿式微
粉砕し、微粉砕後の濾過分離した粉末中の不溶性不純物
量を0.1ppm以下にすることを特徴とする希土類磁
石の製造方法。
2. A method for producing a rare earth magnet which obtains a rare earth magnet powder such as an R—Co magnet or an R—Fe—B magnet by wet pulverization.
l / l and 10 g / l or less of Na 2 SO 3 as a reducing agent are added, and an inert gas is injected into the water to reduce O 2 in the water.
2. A method for producing a rare-earth magnet, comprising: wet-pulverizing water, the amount of which has been reduced to 1 ppm or less, as a solvent, and reducing the amount of insoluble impurities in the finely-pulverized and filtered powder to 0.1 ppm or less.
JP3208659A 1991-07-24 1991-07-24 Rare earth magnet manufacturing method Expired - Lifetime JP3029711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3208659A JP3029711B2 (en) 1991-07-24 1991-07-24 Rare earth magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3208659A JP3029711B2 (en) 1991-07-24 1991-07-24 Rare earth magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH06251915A JPH06251915A (en) 1994-09-09
JP3029711B2 true JP3029711B2 (en) 2000-04-04

Family

ID=16559921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3208659A Expired - Lifetime JP3029711B2 (en) 1991-07-24 1991-07-24 Rare earth magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP3029711B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419935Y2 (en) * 1987-07-02 1992-05-07

Also Published As

Publication number Publication date
JPH06251915A (en) 1994-09-09

Similar Documents

Publication Publication Date Title
KR20000048146A (en) Rare earth/iron/boron-based per manent magnet alloy composition
WO1999060580A1 (en) FEEDSTOCK POWDER FOR R-Fe-B MAGNET AND PROCESS FOR PRODUCING R-Fe-B MAGNET
JPH11319752A (en) Recovery of valued composition from rare earth element-containing substance and alloy powder obtained thereby
JP2001355050A (en) R-t-b-c based rare earth magnet powder and bond magnet
JP3029711B2 (en) Rare earth magnet manufacturing method
JP3096105B2 (en) Rare earth magnet manufacturing method
JP4862269B2 (en) Rare earth-transition metal-nitrogen based magnet powder, method for producing the same, composition for bonded magnet using the same, and bonded magnet
JP2766681B2 (en) Production method of rare earth-iron-boron alloy powder for sintered magnet
JP4305182B2 (en) R-T-B-C Rare Earth Quenched Alloy Magnet Manufacturing Method
JPH0559165B2 (en)
JPH0547530A (en) Manufacturing method of rare earth magnet
JPH0536511A (en) Manufacture of rare earth magnet
JP3863643B2 (en) Method for producing alloy powder for rare earth magnet
JPH05234789A (en) Molding method and manufacture of sintered magnet
JP3459477B2 (en) Production method of raw material powder for rare earth magnet
JP3715331B2 (en) Method for producing raw powder for anisotropic bonded magnet
JPH11307330A (en) Manufacture of r-fe-b system magnet
JP4506981B2 (en) Manufacturing method of rare earth sintered magnet
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPS6398107A (en) Manufacture of rare earth permanent magnet
JPH05234733A (en) Sintered magnet
JPS624806A (en) Production of alloy powder for rare earth magnet
JP2020164925A (en) Alloy for r-t-b-based permanent magnet and manufacturing method of r-t-b-based permanent magnet
JPH0586441B2 (en)
JPH1017908A (en) Production of alloy powder for rare earth sintered magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 12