JPH0718366A - Production of r-fe-b permanent magnet material - Google Patents

Production of r-fe-b permanent magnet material

Info

Publication number
JPH0718366A
JPH0718366A JP19288693A JP19288693A JPH0718366A JP H0718366 A JPH0718366 A JP H0718366A JP 19288693 A JP19288693 A JP 19288693A JP 19288693 A JP19288693 A JP 19288693A JP H0718366 A JPH0718366 A JP H0718366A
Authority
JP
Japan
Prior art keywords
alloy
permanent magnet
magnetic field
treatment
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19288693A
Other languages
Japanese (ja)
Other versions
JP3415208B2 (en
Inventor
Yuji Kaneko
裕治 金子
Naoyuki Ishigaki
尚幸 石垣
Hiroki Tokuhara
宏樹 徳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16298620&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0718366(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP19288693A priority Critical patent/JP3415208B2/en
Priority to DE69318147T priority patent/DE69318147T2/en
Priority to AT93308184T priority patent/ATE165477T1/en
Priority to RU93049098A priority patent/RU2113742C1/en
Priority to EP93308184A priority patent/EP0633581B1/en
Priority to TW082108554A priority patent/TW272293B/zh
Priority to KR93021615A priority patent/KR0131060B1/en
Priority to CN93115008A priority patent/CN1076115C/en
Publication of JPH0718366A publication Critical patent/JPH0718366A/en
Publication of JP3415208B2 publication Critical patent/JP3415208B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To develop a sintered alloy permanent magnet having high performance by using a raw material obtd. by collapsing the cost strip of an Fe base alloy contg. specified amounts of rare earth elements and B by hydrogen occlusion, subjecting it to dehydrogenation treatment and thereafter executing pulverizing in an inert gas. CONSTITUTION:An Fe base alloy contg., by atoms, 10 to 30% of at least one kind among rare earth elements R including Y and 2 to 28% B is formed into a cost strip with 0.03 to 10mm thickness having a structure in which rare earth enriched phases are finely dispersed into <=5mum by a single roll method or a double roll method, which is naturally collapsed by the expansion of the volume by hydrogen occluseen, Next, it is heated to 100 to 750 deg.C, is subjected to dehydrogenation treatment and is pulverized in an inert gas atmosphere into fine powder of 1 to 10mum. This fine powder is charged to a mold at 1.4 to 3.0g/cm<3> density and is instantaneously applied with a pulse magnetic field of >=10KOe. After that, compacting, sintering and aging treatment are executed to develop a sintered permanent magnet excellent in both maximum energy product and coercive force.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、R(但しRはYを含
む希土類元素のうち、少なくとも1種を含有)、Fe、
Bを主成分とする永久磁石材料の製造方法に係り、R、
Fe、Bを主成分とする合金溶湯を単ロール法あるいは
双ロール法等のストリップキャスティング法にて特定板
厚のRリッチ相が微細に分離した均質組織を有する鋳片
を得、これをR含有Fe合金のH2吸蔵性を利用して鋳
片を自然崩壊させ、さらに脱H2処理して安定化させ
て、効率よい微粉砕を可能にし、微粉末にパルス磁界を
かけて配向させた後、成形して焼結することにより、磁
石特性の1つである最大エネルギー積値(BH)max
(MGOe);Aと保磁力iHc(kOe)の特性値;
Bの合計値A+Bが59以上の値を示す高性能R−Fe
−B系永久磁石を得る製造方法に関する。
The present invention relates to R (provided that R contains at least one rare earth element including Y), Fe,
A method for manufacturing a permanent magnet material containing B as a main component,
A molten alloy containing Fe and B as a main component is obtained by a strip casting method such as a single roll method or a twin roll method to obtain a slab having a homogeneous structure in which an R-rich phase having a specific plate thickness is finely separated, and containing the R content. After the slab is naturally disintegrated by utilizing the H 2 occlusion property of the Fe alloy and further stabilized by de-H 2 treatment, efficient pulverization is enabled, and fine powder is oriented by applying a pulse magnetic field. , The maximum energy product value (BH) max which is one of the magnet characteristics by molding and sintering
(MGOe); A and coercive force iHc (kOe) characteristic value;
High-performance R-Fe showing a total value A + B of B of 59 or more
-A manufacturing method for obtaining a B-based permanent magnet.

【0002】[0002]

【従来の技術】今日、高性能永久磁石として代表的なR
−Fe−B系永久磁石(特開昭59−46008号)
は、三元系正方晶化合物の主相とRリッチ相を有する組
織にて高い磁石特性が得られ、一般家庭の各種電器製品
から大型コンピュータの周辺機器まで幅広い分野で使用
され、用途に応じた種々の磁石特性を発揮するよう種々
の組成のR−Fe−B系永久磁石が提案されている。し
かしながら、電気・電子機器の小型・軽量化ならびに高
機能化の要求は強く、R−Fe−B系永久磁石のより一
層の高性能化とコストダウンが要求されている。
2. Description of the Related Art Today, R is a typical high-performance permanent magnet.
-Fe-B system permanent magnet (JP-A-59-46008)
Has high magnet characteristics due to the structure of the ternary tetragonal compound having the main phase and the R-rich phase, and is used in a wide range of fields from various household electrical appliances to large computer peripherals, depending on the application. R-Fe-B based permanent magnets of various compositions have been proposed so as to exhibit various magnet characteristics. However, there are strong demands for smaller and lighter electric and electronic devices and for higher functionality, and further higher performance and cost reduction of R-Fe-B based permanent magnets are required.

【0003】R−Fe−B系焼結磁石の残留磁束密度
(Br)を高めるためには、1)強磁性相であり、主相
のR2Fe14B相の存在量を多くすること、2)焼結体
の密度を主相の理論密度まで高めること、3)さらに主
相結晶粒の、磁化容易軸方向の配向度を高めることが要
求される。すなわち、前記1)項の達成のためには、磁
石の組成を上記R2Fe14Bの化学量論的組成に近づけ
ることが重要であるが、上記組成の合金を溶解し、鋳型
に鋳造した合金塊を、出発原料としてR−Fe−B系焼
結磁石を作製しようとすると、合金塊に晶出したα−F
eや、R−rich相が局部的に遍在していることなど
から、特に微粉砕時に粉砕が困難となり、組成ずれを生
ずる等の問題があった。詳述すると、前記合金塊をH2
吸蔵、脱H2処理して機械的微粉砕をおこなう場合(特
開昭60−63304号、特開昭63−33505
号)、合金塊に晶出したα−Feはそのまま粉砕時に残
留し、その展延性の性質のために粉砕を妨げ、又局部的
に遍在したR−rich相はH2吸蔵処理によって、水
素化物を生成し、微細な粉末となるため、機械的な微粉
砕時に酸化が促進されたり、またジェットミルを用いた
粉砕では優生的に飛散することにより組成ずれを生ず
る。
In order to increase the residual magnetic flux density (Br) of the R-Fe-B system sintered magnet, 1) increase the abundance of the R 2 Fe 14 B phase, which is a ferromagnetic phase and is the main phase, 2) It is required to increase the density of the sintered body to the theoretical density of the main phase, and 3) to further increase the degree of orientation of the main phase crystal grains in the easy axis direction of magnetization. That is, in order to achieve the above item 1), it is important to bring the composition of the magnet close to the stoichiometric composition of R 2 Fe 14 B, but the alloy having the above composition is melted and cast into a mold. When an alloy mass was used as a starting material to produce an R-Fe-B system sintered magnet, α-F crystallized in the alloy mass was produced.
Since e and the R-rich phase are locally ubiquitous, there is a problem that pulverization becomes difficult especially during fine pulverization and compositional deviation occurs. More specifically, the alloy ingot is treated with H 2
In the case of occluding and dehydrogenating H 2 and performing mechanical pulverization (Japanese Patent Laid-Open No. 63-63304, Japanese Patent Laid-Open No. 63-33505)
No.), α-Fe crystallized in the alloy lump remains as it is at the time of crushing, and because of its spreadability, it hinders crushing, and the locally ubiquitous R-rich phase is hydrogenated by H 2 occlusion treatment. Compounds are formed into fine powders, so that oxidation is promoted during mechanical fine pulverization, and in the pulverization using a jet mill, compositional deviation occurs due to euphoric scattering.

【0004】また、前記1)項の達成のためR2Fe14
Bの化学量論的組成に近づけた合金粉末を用いて焼結体
を作製しようとすると、焼結体の作製工程において不可
避な酸化により、液相焼結を引き起こすためのNd−r
ich相が酸化物を生成するため消費されて焼結できな
かったり、上記R2Fe14B相の存在量を増加によって
必然的に、Nd−rich相やB−rich相の存在量
が減少するので、焼結体の製造をより一層困難なものに
していた。さらに、前記3)項については、通常R−F
e−B系永久磁石の製造方法において、主相結晶粒の磁
化容易軸方向を揃えるために、磁界中でプレス成形する
方法が採用されている。その際、磁界の印加方向とプレ
ス加圧する方向とによって、残留磁束密度(Br)値が
変化したり、また、印加磁界の強度によっても影響を受
けることが知られている。
In order to achieve the above item 1), R 2 Fe 14
When an attempt is made to produce a sintered body by using an alloy powder having a stoichiometric composition of B, Nd-r for causing liquid phase sintering due to unavoidable oxidation in the production process of the sintered body.
The ich phase is consumed because it forms an oxide and cannot be sintered, or the abundance of the R 2 Fe 14 B phase is increased, which inevitably reduces the abundance of the Nd-rich phase and the B-rich phase. Therefore, the production of the sintered body has been made more difficult. Further, regarding the above item 3), the normal R-F
In the manufacturing method of the e-B permanent magnet, a method of press molding in a magnetic field is adopted in order to align the easy-axis directions of the main phase crystal grains. At that time, it is known that the residual magnetic flux density (Br) value changes depending on the direction in which the magnetic field is applied and the direction in which the press is applied, and is also influenced by the strength of the applied magnetic field.

【0005】[0005]

【発明が解決しようとする課題】最近、鋳塊粉砕法によ
るR−Fe−B系合金粉末の欠点たる結晶粒の粗大化、
α−Feの残留、偏析を防止するために、R−Fe−B
系合金溶湯を双ロール法により、特定板の鋳片となし、
前記鋳片を通常の粉末冶金法に従って、鋳片をスタンン
プミル・ジョークラッシャーなどで粗粉砕後、さらにデ
ィスクミル、ボールミル、アトライター、ジェットミル
など機械的粉砕法により平均粒径が3〜5μmの粉末に
微粉砕後、磁場中プレス、焼結時効処理する製造方法が
提案(特開昭63−317643号公報)されている。
しかし、前記方法では従来の鋳型に鋳造した鋳塊粉砕法
の場合に比し、微粉砕時の粉砕能率の飛躍的な向上は望
めず、また微粉砕時、粒界粉砕のみならず、粒内粉砕も
起こるため、磁気特性の大幅の向上も達成できなかっ
た。また、R−rich相が酸化に対して安定なRH2
になっていないため、さらにR−rich相の微細で表
面積が大きいために耐酸化性に劣り、工程中に酸化が進
み高磁石特性が得られない。また、R−Fe−B系永久
磁石材料に対するコストダウンの要求が強く、効率よく
高性能永久磁石を製造することが、極めて重要になって
いる。このため、極限に近い特性を引き出すための製造
条件の改良が必要となっている。
Recently, coarsening of crystal grains, which is a defect of the R-Fe-B alloy powder by the ingot crushing method,
In order to prevent α-Fe from remaining and segregating, R-Fe-B
The molten alloy is made into a slab of a specific plate by the twin roll method,
The slab is roughly pulverized by a standard powder metallurgy method with a stamp mill, jaw crusher, etc., and then mechanically pulverized with a disc mill, a ball mill, an attritor, a jet mill or the like to obtain a powder having an average particle size of 3 to 5 μm. In Japanese Patent Application Laid-Open No. 63-317643, there is proposed a manufacturing method in which after pulverization, pressing in a magnetic field and sintering aging treatment are performed.
However, in the above method, as compared with the case of the ingot crushing method of casting in a conventional mold, it is not possible to expect a dramatic improvement in the pulverization efficiency during fine pulverization, and during fine pulverization, not only grain boundary pulverization but also intragranular Since crushing also occurs, it was not possible to achieve a significant improvement in magnetic properties. In addition, the R-rich phase is RH 2 which is stable against oxidation.
In addition, since the R-rich phase is fine and has a large surface area, the oxidation resistance is poor, and oxidation progresses during the process, and high magnet characteristics cannot be obtained. Further, there is a strong demand for cost reduction of R-Fe-B based permanent magnet materials, and it has become extremely important to efficiently produce high-performance permanent magnets. Therefore, it is necessary to improve the manufacturing conditions to bring out the characteristics that are close to the limit.

【0006】この発明は、上述したR−Fe−B系永久
磁石材料の製造方法における問題点を解消し、効率よい
微粉砕を可能にし、かつ耐酸化性に優れ、しかも磁石の
結晶粒の微細化により高いiHcを発現し、さらに各結
晶粒の磁化容易方向の配向度を高めて、(BH)max
値(MGOe);Aと、iHc値(kOe);Bの合計
値、A+B≧59の値を示す高性能R−Fe−B系永久
磁石材料の製造方法の提供を目的としている。
The present invention solves the above-mentioned problems in the method for producing an R-Fe-B system permanent magnet material, enables efficient fine pulverization, is excellent in oxidation resistance, and has fine crystal grains of the magnet. By increasing the degree of iHc, and further increasing the degree of orientation of each crystal grain in the easy magnetization direction, (BH) max
The object of the present invention is to provide a method for producing a high-performance R-Fe-B-based permanent magnet material exhibiting a total value (MGOe); A and an iHc value (kOe); B and a value of A + B ≧ 59.

【0007】[0007]

【課題を解決するための手段】発明者らは、まずR−F
e−B系合金を出発原料として微粉砕能率の向上、かつ
耐酸化性にすぐれ、磁石合金の磁気特性、特にiHcの
向上を目的に、粉砕方法について種々検討した結果、組
織が微細かつ均等なR−Fe−B系合金を水素吸蔵させ
た後、脱H2処理して安定化させた合金粉末を微粉砕し
た場合、微粉砕能は従来の約2倍にも向上し、且つ微粉
末にパルス磁界をかけて配向させた後、成形して焼結す
ることにより、(BH)max値とiHc値の合計値が
59以上の値を有し、かつ焼結磁石のiHcが向上する
ことを知見した。すなわち、ストリップキャスティング
された特定板厚のRリッチ相が微細に分離した組織を有
する特定組成のR−Fe−B系合金にH2吸蔵させる
と、微細に分散されたRリッチ相が水素化物を生成して
体積膨張することにより、前記合金を自然崩壊させるこ
とができ、その結果、微粉砕により、合金塊を構成して
いる主相の結晶粒を細分化することが可能となり、粒度
分布が均一な粉末を作製することができる。
The inventors of the present invention firstly investigated the R-F.
As a result of various studies on the pulverization method using the e-B alloy as the starting material, the fine pulverization efficiency was improved, the oxidation resistance was excellent, and the magnetic properties of the magnet alloy, particularly iHc, were studied. after the R-Fe-B alloy is a hydrogen absorbing, when finely pulverized alloy powder is stabilized by removing H 2 treatment, milling ability is improved to about twice that of conventional, and a fine powder By orienting by applying a pulsed magnetic field, shaping and sintering, the total value of (BH) max value and iHc value has a value of 59 or more, and iHc of the sintered magnet is improved. I found out. That is, when H 2 is occluded in an R-Fe-B-based alloy having a specific composition having a structure in which the strip-cast R-rich phase having a specific plate thickness is finely separated, the finely dispersed R-rich phase converts a hydride. By generating and expanding the volume, the alloy can be spontaneously collapsed, and as a result, it becomes possible to finely pulverize the crystal grains of the main phase constituting the alloy lump, resulting in a particle size distribution. A uniform powder can be produced.

【0008】特に、この際Rリッチ相が微細に分散さ
れ、しかもR2Fe14B相が微細であることが重要であ
る。しかも通常の鋳型を用いて合金塊を溶製する方法で
は、合金組成をR2Fe14Bの化学量論的組成に近づけ
た場合、Fe初晶の晶出が避け難く、次工程の微粉砕能
を大きく低下させる要因になってしまう。そのため、合
金塊を均質化させる目的で熱処理を加えて、α−Feを
消失させる手段がとられるが、主相結晶粒の粗大化と、
Rリッチ相の偏析も進むため、焼結磁石のiHc向上を
図ることが困難となる。また、主相結晶粒の磁化容易軸
方向を揃える、すなわち、配向度を高めることも高Br
化を達成するための必須条件である。そのため、粉末冶
金的手法で製造される永久磁石材料、たとえば、ハード
フェライト磁石、Sm−Co磁石ならびにR−Fe−B
磁石では、その粉末を磁界中でプレスする方式が採られ
ている。
In this case, it is particularly important that the R-rich phase is finely dispersed and the R 2 Fe 14 B phase is fine. Moreover, in the method of smelting an alloy ingot by using an ordinary mold, when the alloy composition is brought close to the stoichiometric composition of R 2 Fe 14 B, crystallization of Fe primary crystal is difficult to avoid and fine pulverization in the next step is performed. It becomes a factor that greatly reduces the performance. Therefore, heat treatment is applied for the purpose of homogenizing the alloy ingot, and a means for eliminating α-Fe is taken, but with the coarsening of the main phase crystal grains,
Since segregation of the R-rich phase also progresses, it is difficult to improve the iHc of the sintered magnet. In addition, it is also possible to align the easy magnetization axis directions of the main phase crystal grains, that is, to increase the degree of orientation with high Br
Is an essential condition to achieve Therefore, permanent magnet materials manufactured by powder metallurgical methods, such as hard ferrite magnets, Sm-Co magnets, and R-Fe-B.
The magnet employs a method of pressing the powder in a magnetic field.

【0009】しかしながら、磁界を発生させるために通
常のプレス装置(油圧プレス、機械プレス)に配置され
ているコイルおよび電源では、高々10kOe〜20k
Oeの磁界しか発生することしかできず、より高い磁界
を発生させるためには、コイルの巻数を多くする必要が
あり、また高い電源を必要とするための装置の大型化を
必要とする。本発明者らは、プレス時の磁界強度と焼結
体のBrとの関係を解析したところ、磁界強度を高くす
ればする程、高Br化でき、瞬間的に強磁界を発生させ
ることの可能なパルス磁界を用いることによって、より
一層高Br化できることを知見した。さらに、パルス磁
界を用いる方法においては、一旦パルス磁界で瞬間的に
配向させることが重要で、さらに、粉末を静水圧プレス
によって成形することが可能であり、パルス磁界と電磁
石による静磁界との組み合せによって、磁界中プレス成
形することも可能であることを知見した。
However, in the coil and the power source arranged in the usual press device (hydraulic press, mechanical press) for generating the magnetic field, at most 10 kOe to 20 k.
Only the magnetic field of Oe can be generated, and in order to generate a higher magnetic field, it is necessary to increase the number of turns of the coil, and it is necessary to increase the size of the device that requires a high power supply. The present inventors analyzed the relationship between the magnetic field strength during pressing and Br of the sintered body, and the higher the magnetic field strength, the higher the Br and the instantaneous generation of a strong magnetic field. It was found that the Br can be further increased by using a different pulse magnetic field. Furthermore, in the method using a pulsed magnetic field, it is important to momentarily orientate once with the pulsed magnetic field, and it is possible to shape the powder by a hydrostatic press, and the combination of the pulsed magnetic field and the static magnetic field by an electromagnet can be combined. It was found that it is also possible to perform press molding in a magnetic field.

【0010】この発明は、R(但しRはYを含む希土類
元素のうち、少なくとも1種)10at%〜30at
%、B2at%〜28at%、残部Fe(但しFeの1
部をCo、Niの1種または2種にて置換できる)及び
不可避的不純物からなる合金溶湯をストリップキャステ
ィング法にて板厚0.03mm〜10mmの薄板でRリ
ッチ相が5μm以下に微細に分離した組織を有する鋳片
に鋳造後、前記鋳片を吸排気可能な容器に収容し、該容
器内の空気をH2ガスにて置換した後、該容器内に20
0Torr〜50kg/mm2のH2ガスを供給して得ら
れた崩壊合金粉を脱H2処理した後、不活性ガス気流中
で微粉砕して得た平均粒径が1〜10μmの微粉末をモ
ールド内に充填密度1.4〜3.0g/cm3に充填
し、瞬間的に10kOe以上のパルス磁界をかけて配向
させた後、成形し、焼結、時効処理することを特徴とす
るR−Fe−B系永久磁石材料の製造方法である。ま
た、この発明は、上記の構成において、水素吸蔵により
得られた崩壊合金粉末を100℃〜750℃に加熱して
脱H2処理することを特徴とするR−Fe−B系永久磁
石材料の製造方法を併せて提案する。
According to the present invention, R (where R is at least one of rare earth elements including Y) is 10 at% to 30 at.
%, B2 at% to 28 at%, balance Fe (however, Fe of 1
Part can be replaced with 1 or 2 kinds of Co and Ni) and an alloy melt consisting of unavoidable impurities is finely separated by strip casting method into a thin plate with a plate thickness of 0.03 mm to 10 mm and an R-rich phase of 5 μm or less. After casting into a slab having the above structure, the slab is housed in a container capable of sucking and exhausting air, and the air in the container is replaced with H 2 gas.
After removing H 2 processes the resulting collapse alloy powder by supplying H 2 gas of 0Torr~50kg / mm 2, the fine powder having an average particle size obtained by finely pulverized in an inert gas flow is 1~10μm Is filled in a mold at a packing density of 1.4 to 3.0 g / cm 3 , and is momentarily applied with a pulse magnetic field of 10 kOe or more for orientation, followed by molding, sintering, and aging treatment. It is a method for producing an R-Fe-B based permanent magnet material. Further, the present invention provides an R-Fe-B based permanent magnet material, characterized in that, in the above-mentioned constitution, the collapsed alloy powder obtained by hydrogen absorption is heated to 100 ° C to 750 ° C to perform H 2 removal treatment. A manufacturing method is also proposed.

【0011】この発明によるR−Fe−B系永久磁石の
磁気特性は、BH(max)が50MGOe以上の場合
は、iHcは10kOe以上であり、又BH(max)
が45MGOe以上の場合は、iHcは15kOe以上
で、組成、製造条件等を適宜選択することにより所要の
磁気特性を得ることができる。
The magnetic characteristics of the R-Fe-B system permanent magnet according to the present invention are such that iHc is 10 kOe or more when BH (max) is 50 MGOe or more, and BH (max).
Is 45 MGOe or more, iHc is 15 kOe or more, and the required magnetic characteristics can be obtained by appropriately selecting the composition, manufacturing conditions and the like.

【0012】この発明の特定組成のRリッチ相が微細に
分離した組織を有する磁石材料の鋳片は、特定組成の合
金溶湯を単ロール法、あるいは双ロール法によるストリ
ップキャスティング法にて製造される。得られた鋳片は
板厚が0.03mm〜10mmの薄板材であり、所望の
鋳片板厚により、単ロール法と双ロール法を使い分ける
が、板厚が厚い場合は双ロール法を、また板厚が薄い場
合は単ロール法を採用したほうが好ましい。鋳片の板厚
を0.03mm〜10mmに限定した理由は、0.03
mm未満では急冷効果が大となり、結晶粒径が3μmよ
り小となり、粉末化した際に酸化しやすくなるため、磁
気特性の劣化を招来するので好ましくなく、また10m
mを超えると、冷却速度が遅くなり、α−Feが晶出し
やすく、結晶粒径が大となり、Ndリッチ相の偏在も生
じるため、磁気特性が低下するので好ましくないことに
よる。
The cast slab of the magnetic material having the structure in which the R-rich phase of the specific composition is finely separated according to the present invention is produced by the alloy casting of the specific composition by the strip casting method by the single roll method or the twin roll method. . The obtained slab is a thin plate material having a plate thickness of 0.03 mm to 10 mm, and the single roll method and the twin roll method are used properly depending on the desired slab plate thickness, but when the plate thickness is thick, the twin roll method is used. Further, when the plate thickness is thin, it is preferable to adopt the single roll method. The reason for limiting the plate thickness of the cast slab to 0.03 mm to 10 mm is 0.03
If it is less than 10 mm, the rapid cooling effect becomes large, the crystal grain size becomes smaller than 3 μm, and it becomes easy to oxidize when pulverized, resulting in deterioration of magnetic properties, which is not preferable.
If it exceeds m, the cooling rate becomes slow, α-Fe is likely to crystallize, the crystal grain size becomes large, and the Nd-rich phase is unevenly distributed, which deteriorates the magnetic properties, which is not preferable.

【0013】この発明のストリップキャスティング法に
より得られた特定組成のR−Fe−B系合金の断面組織
は主相のR2Fe14B結晶が従来の鋳型に鋳造して得ら
れた鋳塊のものに比べて、約1/10以上も微細であ
り、例えば、その短軸方向の寸法は0.1μm〜50μ
m、長軸方向は5μm〜200μmの微細結晶であり、
かつその主相結晶粒を取り囲むようにRリッチ相が微細
に分散されており、局部に遍在している領域において
も、その大きさは20μm以下である。Rリッチ相が5
μm以下に微細に分離することによって、H2吸蔵処理
時にRリッチ相が水素化物を生成した際の体積膨張が均
一に発生して細分化されるため、微粉砕にて主相の結晶
粒が細分化されて粒度分布が均一な微粉末が得られる。
前記鋳片はそのままでH2吸蔵処理してもよいが、所要
の大きさに破断して、金属面を露出させてH2吸蔵処理
したほうが好ましい。
The cross-sectional structure of the R-Fe-B type alloy having a specific composition obtained by the strip casting method of the present invention is that of the ingot obtained by casting the main phase R 2 Fe 14 B crystal in a conventional mold. The size is about 1/10 or more finer than that of the one, and for example, the dimension in the minor axis direction is 0.1 μm to 50 μm.
m, the long axis direction is a fine crystal of 5 μm to 200 μm,
In addition, the R-rich phase is finely dispersed so as to surround the main phase crystal grains, and the size is 20 μm or less even in the locally ubiquitous region. R-rich phase is 5
By finely separating to less than μm, volume expansion when the R-rich phase forms a hydride is uniformly generated during the H 2 occlusion treatment, and the R-rich phase is finely divided. A fine powder having a uniform particle size distribution is obtained.
The slab may be subjected to H 2 occlusion treatment as it is, but it is preferable to break it into a desired size and expose the metal surface to perform H 2 occlusion treatment.

【0014】H2吸蔵処理には、例えば、所定大きさに
破断した0.03mm〜10mm厚みの鋳片を原料ケー
ス内に挿入し、上記原料ケースを蓋を締めて密閉できる
容器内に装入して密閉したのち、容器内を十分に真空引
きした後、200Torr〜50kg/cm2の圧力の
2ガスを供給して、該鋳片にH2を吸蔵させる。このH
2吸蔵反応は、発熱反応であるため、容器の外周には冷
却水を供給する冷却配管が周設して容器内の昇温を防止
しながら、所定圧力のH2ガスを一定時間供給すること
により、H2ガスが吸収されて該鋳片は自然崩壊して粉
化する。さらに、粉化した合金を冷却したのち、真空中
で脱H2ガス処理する。前記処理の合金粉末は粒内に微
細亀裂が内在するので、ポール・ミル、ジェットミル等
で短時間で微粉砕され、1μm〜80μmの所要粒度の
合金粉末を得ることができる。
For H 2 occlusion treatment, for example, a slab of 0.03 mm to 10 mm in thickness, which is broken into a predetermined size, is inserted into a raw material case, and the raw material case is inserted into a container which can be closed by closing a lid. Then, the inside of the container is sufficiently evacuated, and then H 2 gas having a pressure of 200 Torr to 50 kg / cm 2 is supplied to occlude H 2 in the slab. This H
(2) Since the occlusion reaction is an exothermic reaction, a cooling pipe for supplying cooling water is provided around the outer periphery of the container to prevent the temperature inside the container from rising and to supply H 2 gas at a predetermined pressure for a certain period of time. As a result, H 2 gas is absorbed, and the slab is spontaneously disintegrated and pulverized. Further, after cooling the powdered alloy, it is subjected to H 2 degassing treatment in vacuum. Since the alloy powder of the above treatment has fine cracks in the grains, it can be pulverized in a short time by a pole mill, a jet mill or the like to obtain an alloy powder having a required grain size of 1 μm to 80 μm.

【0015】この発明において、上記処理容器内を予め
不活性ガスで空気を置換し、その後H2ガスで不活性ガ
スを置換してもよい。また、鋳塊の破断大きさは、小さ
いほど、H2粉砕の圧力を小さくでき、また、H2ガス圧
力は、減圧下でも破断した鋳塊はH2吸収し粉化される
が、圧力が大気圧より高くなるほど、粉化されやすくな
る。しかし、200Torr未満では粉化性が悪くな
り、50kg/cm2を超えるとH2吸収による粉化の点
では好ましいが、装置や作業の安全性からは好ましくな
いため、H2ガス圧力は200Torr〜50kg/c
2とする。量産性からは、2kg/cm2〜10kg/
cm2が好ましい。 この発明において、H2吸蔵による粉
化の処理時間は、前記密閉容器の大きさ、破断塊の大き
さ、H2ガス圧力により変動するが、5分以上は必要で
ある。
In the present invention, the inside of the processing container is previously
Replace the air with an inert gas, then H2Inert gas
May be replaced. In addition, the fracture size of the ingot is small
How much H2The crushing pressure can be reduced, and H2Gas pressure
The force is H2Absorbed and powdered
However, as the pressure becomes higher than atmospheric pressure, it becomes easier to be pulverized.
It However, if it is less than 200 Torr, the powderability is poor.
50 kg / cm2H is exceeded2Points of pulverization by absorption
However, it is not preferable from the viewpoint of safety of equipment and work.
Because, H2Gas pressure is 200 Torr to 50 kg / c
m2And 2 kg / cm for mass production2-10kg /
cm2Is preferred. In this invention, H2Powder by occlusion
The processing time for liquefaction depends on the size of the closed container and the size of the broken mass.
H2It depends on the gas pressure, but it takes more than 5 minutes
is there.

【0016】H2吸蔵により粉化した合金粉末を冷却
後、真空中で1次の脱H2ガス処理する。さらに、真空
中またはアルゴンガス中において、粉化合金を100℃
〜750℃に加熱し、0.5時間以上の2次脱H2ガス
処理すると、粉化合金中のH2ガスは完全に除去できる
とともに、長期保存に伴う粉末あるいはプレス成形体の
酸化を防止して、得られる永久磁石の磁気特性の低下を
防止できる。この発明による100℃以上に加熱する脱
水素処理は、すぐれた脱水素効果を有しているために上
記の真空中での1次脱水素処理を省略し、崩壊粉を直接
100℃以上の真空中またはアルゴンガス雰囲気中で脱
水素処理してもよい。すなわち、前述したH2吸蔵反応
用容器内でH2吸蔵・崩壊反応させた後、得られた崩壊
粉を続いて同容器の雰囲気中で100℃以上に加熱する
脱水素処理を行うことができる。あるいは、真空中での
脱水素処理後、処理容器から取り出して崩壊粉を微粉砕
したのち、再度処理容器で100℃以上に加熱するこの
発明の脱水素処理を施してもよい。上記の脱水素処理に
おける加熱温度は、100℃未満では崩壊合金粉内に残
存するH2を除去するのに長時間を要して量産的でな
い。また、750℃を超える温度では液相が出現し、粉
末が固化してしまうため、微粉砕が困難になったり、プ
レス時の成形性を悪化させるので、焼結磁石の製造の場
合には好ましくない。また、焼結磁石の焼結性を考慮す
ると、好ましい脱水素処理温度は200℃〜600℃で
ある。また、処理時間は処理量によって変動するが0.
5時間以上は必要である。
After cooling the alloy powder pulverized by the H 2 occlusion, the primary H 2 degassing treatment is performed in a vacuum. Further, the powdered alloy is heated to 100 ° C. in vacuum or argon gas.
Was heated to to 750 ° C., preventing the two Tsugida' H 2 gas treatment over 0.5 hours, with H 2 gas in the pulverized alloy can be completely removed, the oxidation of the powder or pressed bodies due to long-term storage As a result, it is possible to prevent deterioration of the magnetic properties of the obtained permanent magnet. Since the dehydrogenation treatment of heating to 100 ° C. or higher according to the present invention has an excellent dehydrogenation effect, the above primary dehydrogenation treatment in vacuum is omitted, and the disintegrated powder is directly vacuumed at 100 ° C. or higher. You may perform a dehydrogenation process inside or in an argon gas atmosphere. That can be done with H 2 After absorption and degradation reactions, dehydrogenation treatment which subsequently resulting collapse powder is heated to above 100 ° C. in an atmosphere of the container in the container for H 2 occlusion reaction described above . Alternatively, after dehydrogenation treatment in a vacuum, the dehydrogenation treatment of the present invention may be carried out in which the disintegrated powder is taken out from the treatment container, finely crushed and then heated to 100 ° C. or higher in the treatment container. If the heating temperature in the above dehydrogenation treatment is less than 100 ° C., it takes a long time to remove H 2 remaining in the disintegrated alloy powder and is not mass-produced. Further, at a temperature of higher than 750 ° C., a liquid phase appears and the powder is solidified, which makes fine pulverization difficult and deteriorates the formability at the time of pressing. Therefore, it is preferable in the case of producing a sintered magnet. Absent. Further, considering the sinterability of the sintered magnet, the preferable dehydrogenation treatment temperature is 200 ° C to 600 ° C. Further, the processing time varies depending on the processing amount, but is 0.
At least 5 hours is required.

【0017】次に微粉砕には、不活性ガス(例えば、N
2、Ar)によるジェット・ミルにて微粉砕を行う。勿
論、有機溶媒(例えば、ベンゼンやトルエン等)を用い
たボールミルや、アトライター粉砕を用いることも可能
である。微粉砕での粉末の平均粒度は、1μm〜10μ
mが好ましい。1μm未満になると粉砕した粉末が極め
て活性となり著しく酸化されやすく、発火等の恐れが生
ずる。また、10μmを超えると粉砕されない粗大粒子
が残存し、保磁力が低下したり、焼結の進行が遅く密度
の低下を引き起こすことになる。より好ましくは、2〜
4μmの平均粒度の微粉末にすることである。
Next, for fine pulverization, an inert gas (for example, N 2
2. Fine pulverize with a jet mill using Ar). Of course, it is also possible to use a ball mill using an organic solvent (for example, benzene, toluene, etc.) or attritor grinding. The average particle size of the finely pulverized powder is 1 μm to 10 μm.
m is preferred. If it is less than 1 μm, the pulverized powder becomes extremely active and is prone to be easily oxidized, which may cause ignition. On the other hand, if it exceeds 10 μm, coarse particles that are not crushed will remain, and the coercive force will decrease, or the progress of sintering will be slow, and the density will decrease. More preferably, 2
A fine powder having an average particle size of 4 μm.

【0018】磁界を用いたプレスには、つぎの方法を提
案する。微粉砕した粉末を不活性ガス雰囲気中でモール
ドに充填する。モールドは、非磁性の金属、酸化物から
作製したもののほか、プラスチックやゴム等の有機化合
物でも良い。粉末の充填密度は、その粉末の静止状態の
嵩密度(充填密度1.4g/cm3)から、タッピング
後の固め嵩密度(充填密度3.0g/cm3)の範囲が
好ましい。従って充填密度は1.4〜3.0g/cm3
に限定する。これを、空心コイル、コンデンサー電源に
よるパルス磁界を加えて粉末の配向を行う。配向の際、
上下パンチを用いて圧縮を行いながら、繰り返し、パル
ス磁界を加えてもよい。パルス磁界の強度は大きければ
大きい程良く、最低10kOe以上は必要とする。パル
ス磁界の時間は、図2の時間と磁界強さのグラフに示す
如く、1μmsec〜10secが好ましく、さらには
5μmsec〜100mmsecが好ましく、パルス磁
界の印加回数は1〜10回、さらに、好ましくは1〜5
回である。配向後の粉末は、静水圧プレスによって固め
ることができる。この際、可塑性のあるモールドを使用
した場合には、そのまま、静水圧プレスを行うことが可
能である。また、パルス磁界による配向とプレスとを連
続的に行うためには、ダイス内部にパルス磁界を発生さ
せるコイルを埋め込み、パルス磁界を用いて配向させた
後、通常の磁界中プレス方法で成形することも可能であ
る。
For pressing using a magnetic field, the following method is proposed. The finely pulverized powder is filled in a mold in an inert gas atmosphere. The mold may be made of non-magnetic metal or oxide, or may be an organic compound such as plastic or rubber. The packing density of the powder is preferably in the range of the bulk density of the powder in a static state (packing density 1.4 g / cm 3 ) to the solidified bulk density after tapping (packing density 3.0 g / cm 3 ). Therefore, the packing density is 1.4 to 3.0 g / cm 3.
Limited to The powder is oriented by applying a pulsed magnetic field from an air-core coil or a condenser power supply. During orientation,
A pulse magnetic field may be repeatedly applied while performing compression using the upper and lower punches. The higher the strength of the pulsed magnetic field, the better, and at least 10 kOe or more is required. The time of the pulse magnetic field is preferably 1 μmsec to 10 sec, more preferably 5 μmsec to 100 mmsec as shown in the graph of time and magnetic field strength in FIG. 2, and the pulse magnetic field is applied 1 to 10 times, more preferably 1 ~ 5
Times. The powder after orientation can be hardened by isostatic pressing. At this time, when a plastic mold is used, the isostatic pressing can be performed as it is. In order to continuously perform the orientation and the pressing by the pulsed magnetic field, a coil for generating the pulsed magnetic field is embedded in the die, the orientation is performed by using the pulsed magnetic field, and then the ordinary magnetic field pressing method is used for molding. Is also possible.

【0019】以下に、この発明における、希土類・ボロ
ン・鉄系永久磁石合金用鋳塊の組成限定理由を説明す
る。この発明の永久磁石合金用鋳塊に含有される希土類
元素Rはイットリウム(Y)を包含し、軽希土類及び重
希土類を包含する希土類元素である。Rとしては、軽希
土類をもって足り、特にNd,Prが好ましい。また通
常Rのうち1種もって足りるが、実用上は2種以上の混
合物(ミッシユメタル、ジジム等)を入手上の便宜等の
理由により用いることができ、Sm,Y,La,Ce,
Gd等は他のR、特にNd,Pr等との混合物として用
いることができる。なお、このRは純希土類元素でなく
てもよく、工業上入手可能な範囲で製造上不可避な不純
物を含有するものでも差し支えない。Rは、R−Fe−
B系永久磁石を製造する合金鋳塊の必須元素であって、
10原子%未満では高磁気特性、特に高保磁力が得られ
ず、30原子%を越えると残留磁束密度(Br)が低下
して、すぐれた特性の永久磁石が得られない。よって、
Rは10原子%〜30原子%の範囲とし、特に好ましい
範囲はRは12〜15at%である。
The reasons for limiting the composition of the ingot for rare earth / boron / iron-based permanent magnet alloy in the present invention will be described below. The rare earth element R contained in the ingot for permanent magnet alloy of the present invention is a rare earth element including yttrium (Y) and including light rare earth and heavy rare earth. As R, a light rare earth element is sufficient, and Nd and Pr are particularly preferable. Usually, one kind of R is sufficient, but in practice, a mixture of two or more kinds (Missille metal, didymium, etc.) can be used for the reason of convenience of acquisition, Sm, Y, La, Ce,
Gd and the like can be used as a mixture with other R, especially Nd and Pr. It should be noted that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within the industrially available range. R is R-Fe-
Is an essential element of the alloy ingot for producing the B-based permanent magnet,
If it is less than 10 atom%, high magnetic properties, particularly high coercive force, cannot be obtained, and if it exceeds 30 atom%, the residual magnetic flux density (Br) is lowered and a permanent magnet having excellent characteristics cannot be obtained. Therefore,
R is in the range of 10 atom% to 30 atom%, and a particularly preferable range of R is 12 to 15 at%.

【0020】Bは、R−Fe−B系永久磁石を製造する
合金鋳塊の必須元素であって、2原子%未満では高い保
磁力(iHc)は得られず、28%原子を越えると残留
磁束密度(Br)が低下するため、すぐれた永久磁石が
得られない。よって、Bは2原子%〜28原子%の範囲
と特に好ましい範囲は4〜8at%である。
B is an essential element of the alloy ingot for producing the R-Fe-B system permanent magnet. If it is less than 2 atom%, a high coercive force (iHc) cannot be obtained, and if it exceeds 28% atom, it remains. Since the magnetic flux density (Br) decreases, an excellent permanent magnet cannot be obtained. Therefore, B is in the range of 2 at% to 28 at% and a particularly preferable range is 4 to 8 at%.

【0021】Feは42原子%未満では残理磁束密度
(Br)が低下し、88原子を超えると高い保磁力が得
られないため、Feは77〜84at%が好ましく。さ
らに好ましくはFe77原子%〜84原子%である。ま
た、Feの一部をCo、Niの1種又は2種で置換する
理由は、永久磁石の温度特性を向上させる効果及び耐食
性を向上させる効果が得られるためであるが、Co、N
iの1種又は2種はFeの50%を越えると高い保磁力
が得られず、すぐれた永久磁石が得られない。よって、
CoはFeの50%を上限とする。
When Fe is less than 42 atomic%, the residual magnetic flux density (Br) is lowered, and when it exceeds 88 atom, a high coercive force cannot be obtained. Therefore, Fe is preferably 77 to 84 at%. More preferably, it is Fe 77 atomic% -84 atomic%. The reason for substituting a part of Fe with one or two of Co and Ni is that the effect of improving the temperature characteristics of the permanent magnet and the effect of improving corrosion resistance can be obtained.
If 1 or 2 of i exceeds 50% of Fe, a high coercive force cannot be obtained, and an excellent permanent magnet cannot be obtained. Therefore,
Co has an upper limit of 50% of Fe.

【0022】この発明の合金鋳塊において、高い残留磁
束密度と高い保磁力を共に有するすぐれた永久磁石を得
るためには、R12原子%〜15原子%、B4原子%〜
8原子%、Fe77原子%〜84原子%が好ましい。ま
た、この発明による合金鋳塊は、R、B、Feの他、工
業的生産上不可避的不純物の存在を許容できるが、Bの
一部を4.0原子%以下のC、3.5原子%以下のP、
2.5原子%以下のS、3.5原子%以下のCuのうち
少なくとも1種、合計量で4.0原子%以下で置換する
ことにより、磁石合金の製造性改善、低価格化が可能で
ある。さらに、前記R、B、Fe合金あるいはCoを含
有するR−Fe−B合金に、9.5原子%以下のAl、
4.5原子%以下のTi、9.5原子%以下のV、8.
5原子%以下のCr、8.0原子%以下のMn、5原子
%以下のBi、12.5原子%以下のNb、10.5原
子%以下のTa、9.5原子%以下のMo、9.5原子
%以下のW、2.5原子%以下のSb、7原子%以下の
Ge、35原子%以下のSn、5.5原子%以下のZ
r、5.5原子%以下のHfのうち少なくとも1種添加
含有させることにより、永久磁石合金の高保磁力が可能
になる。この発明のR−B−Fe系永久磁石において、
結晶相は主相が正方晶であることが不可欠であり、特
に、微細で均一な合金粉末を得て、すぐれた磁気特性を
有する焼結永久磁石を作成するのに効果的である。
In order to obtain an excellent permanent magnet having both a high residual magnetic flux density and a high coercive force in the alloy ingot of the present invention, R12 atom% to 15 atom% and B4 atom% to
8 atomic% and Fe77 atomic% -84 atomic% are preferable. Further, the alloy ingot according to the present invention can tolerate the presence of impurities unavoidable in industrial production in addition to R, B and Fe, but a part of B is 4.0 atom% or less of C, 3.5 atom or less. % Or less P,
By substituting at least one of S of 2.5 atomic% or less and Cu of 3.5 atomic% or less with a total amount of 4.0 atomic% or less, the manufacturability of the magnet alloy can be improved and the cost can be reduced. Is. Further, in the R, B, Fe alloy or the R-Fe-B alloy containing Co, 9.5 atomic% or less of Al,
4.5 atomic% or less Ti, 9.5 atomic% or less V, 8.
5 atomic% or less Cr, 8.0 atomic% or less Mn, 5 atomic% or less Bi, 12.5 atomic% or less Nb, 10.5 atomic% or less Ta, 9.5 atomic% or less Mo, W of 9.5 atomic% or less, Sb of 2.5 atomic% or less, Ge of 7 atomic% or less, Sn of 35 atomic% or less, Z of 5.5 atomic% or less.
High coercive force of the permanent magnet alloy becomes possible by adding and containing at least one of Hf of r and 5.5 at% or less. In the RB-Fe based permanent magnet of the present invention,
It is essential that the main phase of the crystal phase is a tetragonal crystal, and it is particularly effective for obtaining a fine and uniform alloy powder and producing a sintered permanent magnet having excellent magnetic properties.

【0023】この発明による合金の微粉砕粉末の粒度
は、平均粒度80μmを越えると、永久磁石の作成時に
すぐれた磁気特性、とりわけ高い保磁力が得られず、ま
た、平均粒度が1μm未満では、焼結磁石とした場合の
製作工程、すなわち、プレス成形、焼結、時効処理工程
における酸化が著しく、すぐれた磁気特性が得られない
ため、1〜80μmの平均粒度とする。さらに、すぐれ
た磁気特性を得るには、平均粒度2〜10μmの合金粉
末が最も望ましい。
If the particle size of the finely pulverized powder of the alloy according to the present invention exceeds the average particle size of 80 μm, excellent magnetic properties, especially high coercive force, cannot be obtained when producing a permanent magnet, and if the average particle size is less than 1 μm, The average particle size is 1 to 80 μm because oxidation is remarkable in the manufacturing process of a sintered magnet, that is, in the press molding, sintering, and aging processes, and excellent magnetic properties cannot be obtained. Further, in order to obtain excellent magnetic properties, alloy powder having an average particle size of 2 to 10 μm is most desirable.

【0024】[0024]

【作用】この発明は、ストリップキャスティングされた
特定板厚の特定組成を有するR−Fe−B系合金にH2
吸蔵させることにより、微細に分散されたRリッチ相が
水素化物を生成して体積膨張させて前記合金を自然崩壊
させ、その後微粉砕にて合金塊を構成している主相の結
晶粒を細分化することが可能となり、粒度分布が均一な
粉末を作製することができ、この際Rリッチ相が微細に
分散され、かつR2Fe14B相も微細化され、脱H2処理
して安定化させた合金粉末を微粉砕した場合、微粉砕能
は従来の約2倍にも向上するため、製造効率が大幅に向
上するともに、パルス磁界を用いて瞬間的に配向した
後、プレス成形、焼結することにより、Br、BH(m
ax)及びiHcを著しく改善向上したR−Fe−B系
永久磁石が得られる。
According to the present invention, H 2 is added to an R-Fe-B type alloy having a specific composition with a specific plate thickness which has been strip cast.
By the occlusion, the finely dispersed R-rich phase produces a hydride and volume-expands to spontaneously collapse the alloy, and then finely pulverizes the crystal grains of the main phase constituting the alloy lump to subdivide them. It is possible to produce a powder having a uniform particle size distribution, in which case the R-rich phase is finely dispersed, and the R 2 Fe 14 B phase is also finely divided, and stable after de-H 2 treatment. When finely pulverized alloyed alloy powder is finely pulverized, the fine pulverization ability is about twice as high as the conventional one. Therefore, the production efficiency is significantly improved, and after instantaneously orienting using a pulse magnetic field, press molding, By sintering, Br, BH (m
It is possible to obtain an R-Fe-B based permanent magnet with significantly improved ax) and iHc.

【0025】[0025]

【実施例】【Example】

実施例1 高周波溶解炉にて溶解して得られたNd13.4−B
6.0−Fe80.6組成の合金溶湯を直径200mm
の銅製ロール2本を併設した双ロール式ストリップキャ
スターを用い、板厚約1mmの薄板状鋳片を得た。前記
鋳片内の結晶粒径は短軸方向の寸法0.5μm〜15μ
m、長軸方向寸法は5μm〜80μmであり、Rリッチ
相は主相を取り囲むように3μm程度に微細に分離して
存在する。前記鋳片を50mm角以下に破断後、前記破
断片1000gを吸排気可能な密閉容器内に収容し、前
記容器内にN2ガスを30分間流入して、空気と置換し
た後、該容器内に3kg/cm2のH2ガスを2時間供給
してH2吸臓により鋳片を自然崩壊させて、その後真空
中で500℃に5時間保持して脱H2処理した後、室温
まで冷却し、さらに100メッシュまで粗粉砕した。次
いで、前記粗粉砕を採取した800gをジェットミルで
粉砕して平均粒度3.5μmの合金粉末を得た。得られ
た合金粉末を用いて、ゴム質のモールドに原料粉末を充
填し、パルス磁界60kOeを瞬間的に付加して、配向
させた後、静水圧プレス装置にて2.5T/cm2の圧
力で静水圧プレスした。モールドから取り出した成形体
を1090℃で3時間の条件にて焼結し、600℃で1
時間の時効処理を行って、永久磁石を得た。得られた永
久磁石の磁石特性を表1に表す。
Example 1 Nd13.4-B obtained by melting in a high frequency melting furnace
200-mm diameter molten alloy of 6.0-Fe80.6 composition
Using a twin roll type strip caster provided with two copper rolls, a thin plate-shaped cast piece having a plate thickness of about 1 mm was obtained. The crystal grain size in the slab is 0.5 μm to 15 μm in the short axis direction.
m, the dimension in the major axis direction is 5 μm to 80 μm, and the R-rich phase is present in a finely separated state of about 3 μm so as to surround the main phase. After breaking the slab into 50 mm square or less, 1000 g of the broken piece was housed in a closed container capable of sucking and exhausting, and N 2 gas was allowed to flow into the container for 30 minutes to be replaced with air, and then, inside the container. 3kg / cm 2 of H 2 gas was supplied for 2 hours to spontaneously disintegrate the slab by the H 2 sucker, and then it was kept at 500 ° C. for 5 hours in vacuum to remove H 2 and then cooled to room temperature. And further crushed to 100 mesh. Next, 800 g of the coarsely pulverized sample was pulverized with a jet mill to obtain an alloy powder having an average particle size of 3.5 μm. Using the obtained alloy powder, a raw material powder was filled in a rubber mold, and a pulsed magnetic field of 60 kOe was momentarily applied and oriented, and then a pressure of 2.5 T / cm 2 was applied by a hydrostatic press machine. It was hydrostatically pressed. The molded body taken out from the mold is sintered at 1090 ° C. for 3 hours, and then sintered at 600 ° C. for 1 hour.
Aging treatment for time was performed to obtain a permanent magnet. Table 1 shows the magnetic properties of the obtained permanent magnets.

【0026】実施例2 実施例1で得られた粉末を、図1に示す如く、上下パン
チ1,2の外周部に静磁界用コイル3,4を配置し、ダ
イス5内にパルス磁界用コイル6を配設して、原料粉末
7にパルス磁界と通常の静磁界とを併用して作用させる
ことができるプレス装置を用いて、まず、約30kOe
のパルス磁界で配向させた後、約12kOeの磁界中で
プレス成形した。その後、成形体は実施例1と同一の条
件で、焼結、時効処理を行った。得られた永久磁石の磁
石特性を第1表に示す。
Example 2 As shown in FIG. 1, the powder obtained in Example 1 was replaced with static magnetic field coils 3 and 4 on the outer peripheral portions of the upper and lower punches 1 and 2, and a pulse magnetic field coil was placed in a die 5. 6 is provided and a pressing device capable of acting on the raw material powder 7 in combination with a pulse magnetic field and a normal static magnetic field is used.
After aligning with a pulsed magnetic field of, a press molding was performed in a magnetic field of about 12 kOe. Thereafter, the molded body was sintered and aged under the same conditions as in Example 1. Table 1 shows the magnetic properties of the obtained permanent magnets.

【0027】実施例3 実施例1と同様にNd13.0−Dy0.5−B6.5
−Co1.0−Fe7の合金をストリップキャスティン
グし、薄板状鋳片を得た。これを50mm角以下に破断
後、1000gを実施例1と同様にH2吸蔵により自然
崩壊させた後、真空中で6時間の脱H2処理した。これ
を粗粉砕後、ジェットミル粉砕して、平均粒度3.5μ
mの粉末を得た。得られた粉末を実施例1と同様にパル
ス磁界配向、静水圧プレスして、成形体を作製し、同様
に焼結熱処理を行った。得られた永久磁石の磁石特性を
表1に示した。
Example 3 Nd13.0-Dy0.5-B6.5 as in Example 1.
An alloy of -Co1.0-Fe7 was strip-cast to obtain a thin plate-shaped cast piece. After breaking this to 50 mm square or less, 1000 g was spontaneously disintegrated by H 2 occlusion in the same manner as in Example 1 and then subjected to H 2 removal treatment in vacuum for 6 hours. This is roughly crushed and then jet-milled to give an average particle size of 3.5μ.
m powder was obtained. The obtained powder was subjected to pulse magnetic field orientation and hydrostatic pressing in the same manner as in Example 1 to prepare a molded body, and similarly sintered and heat treated. Table 1 shows the magnetic properties of the obtained permanent magnets.

【0028】比較例1 実施例1で得られた粉末を通常の磁界中プレス装置で約
12kOeの磁界中でプレス成形し、その後、実施例1
と同一条件で焼結・時効処理を行った。得られた永久磁
石の磁石特性を表1に示した。
Comparative Example 1 The powder obtained in Example 1 was press-molded in a magnetic field of about 12 kOe by a usual magnetic field press machine, and then Example 1 was used.
Sintering and aging treatment were performed under the same conditions as above. Table 1 shows the magnetic properties of the obtained permanent magnets.

【0029】比較例2 高周波溶解炉にて溶解して得られたNd13.4−B
6.0−Fe80.6組成の合金溶湯を鉄製鋳型に鋳造
した。得られた合金塊の組織を観察したところ、初晶F
eの晶出が認められたため、1050℃で10時間熱処
理して均質化処理を行った。鋳塊の結晶粒径は、短軸方
向30〜150μm、長軸方向100〜数mmにもな
り、R−リッチ相が局部的150μm程度の大きさで偏
析していた。この合金塊を粗砕後、実施例1と同様の方
法でH2吸蔵処理、脱H2処理して、粗粉末を得た。さら
に、実施例1と同一の条件でジエットミル粉砕し、平均
粒径約3.7μmの合金で得られた粉末を約12kOe
の磁界中でプレス成形し、実施例1と同一の条件で、焼
結、熱処理を行った。得られた永久磁石の特性を表1に
示す。
Comparative Example 2 Nd13.4-B obtained by melting in a high frequency melting furnace
A molten alloy having a composition of 6.0-Fe80.6 was cast in an iron mold. When the structure of the obtained alloy ingot was observed, primary crystal F
Since crystallization of e was observed, heat treatment was performed at 1050 ° C. for 10 hours to perform homogenization treatment. The crystal grain size of the ingot was 30 to 150 μm in the minor axis direction and 100 to several mm in the major axis direction, and the R-rich phase was locally segregated with a size of about 150 μm. After this alloy ingot was crushed, H 2 occlusion treatment and H 2 removal treatment were carried out in the same manner as in Example 1 to obtain a coarse powder. Further, the powder obtained by pulverizing with a jet mill under the same conditions as in Example 1 and having an average particle diameter of about 3.7 μm was about 12 kOe.
Press molding was performed in the magnetic field of No. 1, and sintering and heat treatment were performed under the same conditions as in Example 1. The properties of the obtained permanent magnet are shown in Table 1.

【0030】比較例3 実施例1と同一組成、同一板厚のストリップキャスティ
ング鋳片を50mm以下に粗粉砕後、H2吸蔵処理、脱
2処理することなく、前記粗粉砕粉1000gをスタ
ンプミルにて1時間粉砕して100メッシュの粗粉砕粉
となした後、ジェットミル粉砕し、平均粒径約3.8μ
mの合金粉末を得た。前記合金粉末を約12kOe磁界
中での磁界中プレス、焼結、時効処理を行って永久磁石
を得た。得られた永久磁石の磁気特性を表1に表す。
Comparative Example 3 A strip casting slab having the same composition and the same plate thickness as in Example 1 was roughly crushed to 50 mm or less, and then 1000 g of the roughly crushed powder was stamp-milled without H 2 occlusion treatment and de-H 2 treatment. After crushing for 1 hour to make 100 mesh coarse crushed powder, crushed by jet mill, average particle diameter of about 3.8μ
m alloy powder was obtained. The alloy powder was pressed in a magnetic field in a magnetic field of about 12 kOe, sintered, and aged to obtain a permanent magnet. Table 1 shows the magnetic properties of the obtained permanent magnets.

【0031】比較例4 Nd13.0−Dy0.5−B6.5−Co1.0−F
e79の組成の合金を比較例2と同様の手法で鋳造し
た。得られた合金塊には、Fe初晶が晶出していたた
め、1050℃×6Hrの熱処理を行った。この合金塊
を粗粉砕後、実施例1と同時にH2吸蔵処理し、真空中
で脱H2処理を行った。これを粗粉砕後、ジェットミル
粉砕して、平均粒径約3.7μmの粉末を得た。さら
に、約12kOeの磁界中で磁界中プレスした後、実施
例1と同一条件で、焼結・熱処理を行った。得られた永
久磁石の磁気特性を表1に表す。
Comparative Example 4 Nd13.0-Dy0.5-B6.5-Co1.0-F
An alloy having the composition of e79 was cast by the same method as in Comparative Example 2. Since primary Fe crystals had crystallized in the obtained alloy ingot, heat treatment was performed at 1050 ° C. × 6 Hr. After roughly crushing this alloy ingot, H 2 occlusion treatment was carried out at the same time as in Example 1, and H 2 removal treatment was performed in vacuum. This was roughly crushed and then crushed with a jet mill to obtain a powder having an average particle size of about 3.7 μm. Furthermore, after pressing in a magnetic field in a magnetic field of about 12 kOe, sintering and heat treatment were performed under the same conditions as in Example 1. Table 1 shows the magnetic properties of the obtained permanent magnets.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】この発明による製造方法は、特定組成を
有するR−Fe−B系合金溶湯をストリップキャスティ
ングにて特定板厚の鋳片となし、この鋳片にH2吸蔵さ
せて自然崩壊させることにより、その後、脱H2処理し
て安定化させた合金粉末を微粉砕にて合金塊を構成して
いる主相の結晶粒を細分化することが可能となり、粒度
分布が均一な粉末を、従来の約2倍程度の効率で作製す
ることができ、粉砕時にRリッチ相とR2Fe14B相も
微細化され、パルス磁界を用いてプレスすることによ
り、磁石化すると耐酸化性にすぐれ、磁石合金の磁気特
性、特に最大エネルギー積値(BH)max(MGO
e);Aと保磁力iHc(kOe)の特性値;Bの合計
値A+Bが59以上の値を示す高性能R−Fe−B系永
久磁石が得られる。
According to the manufacturing method of the present invention, an R-Fe-B alloy melt having a specific composition is formed into a slab having a specific plate thickness by strip casting, and the slab is allowed to occlude H 2 and spontaneously disintegrate. by, then, it becomes possible to subdivide the crystal grains of the main phase constituting an alloy ingot alloy powder was stabilized by removing H 2 treated with finely ground, particle size distribution uniform powder , R-rich phase and R 2 Fe 14 B phase are also miniaturized at the time of crushing, and can be made magnetized by using a pulsed magnetic field to improve oxidation resistance. Excellent magnetic properties of magnetic alloys, especially maximum energy product value (BH) max (MGO
e); A high-performance R-Fe-B system permanent magnet having a characteristic value of A and coercive force iHc (kOe); B of which total value A + B is 59 or more is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】パルス磁界と通常の静磁界とを併用して作用さ
せることができるプレス装置の説明図である。
FIG. 1 is an explanatory diagram of a press device that can act by using a pulse magnetic field and a normal static magnetic field together.

【図2】パルス磁界の時間と磁界強さとの関係を示すグ
ラフである。
FIG. 2 is a graph showing a relationship between time of a pulsed magnetic field and magnetic field strength.

【符号の説明】[Explanation of symbols]

1,2 パンチ 3,4 静磁界用コイル 5 ダイス 6 パルス磁界用コイル 7 原料粉末 1, 2 Punch 3, 4 Static magnetic field coil 5 Dice 6 Pulse magnetic field coil 7 Raw material powder

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 R(但しRはYを含む希土類元素のう
ち、少なくとも1種)10at%〜30at%、B2a
t%〜28at%、残部Fe(但しFeの1部をCo、
Niの1種または2種にて置換できる)及び不可避的不
純物からなる合金溶湯をストリップキャスティング法に
て板厚0.03mm〜10mmの薄板でRリッチ相が5
μm以下に微細に分離した組織を有する鋳片に鋳造後、
前記鋳片を吸排気可能な容器に収容し、該容器内の空気
をH2ガスにて置換した後、該容器内に200Torr
〜50kg/mm2のH2ガスを供給して得られた崩壊合
金粉を脱H2処理した後、不活性ガス気流中で微粉砕し
て得た平均粒径が1〜10μmの微粉末をモールド内に
充填密度1.4〜3.0g/cm3に充填し、瞬間的に
10kOe以上のパルス磁界をかけて配向させた後、成
形し、焼結、時効処理することを特徴とするR−Fe−
B系永久磁石材料の製造方法。
1. R (provided that R is at least one of rare earth elements including Y) 10 at% to 30 at%, B2a
t% to 28 at%, balance Fe (however, a part of Fe is Co,
Ni alloy can be replaced by 1 type or 2 types of Ni) and unavoidable impurities, and a strip-casting method is used to form a thin plate having a plate thickness of 0.03 mm to 10 mm and an R-rich phase of 5
After casting into a slab having a finely divided structure of less than μm,
The slab was housed in a container capable of sucking and exhausting air, and the air in the container was replaced with H 2 gas, and then 200 Torr was stored in the container.
The collapsing alloy powder obtained by supplying H 2 gas of ˜50 kg / mm 2 is subjected to de-H 2 treatment and then pulverized in an inert gas stream to obtain fine powder having an average particle size of 1 to 10 μm. It is characterized in that it is filled in a mold to a packing density of 1.4 to 3.0 g / cm 3 , and is momentarily applied with a pulse magnetic field of 10 kOe or more for orientation, followed by molding, sintering and aging treatment. -Fe-
A method for manufacturing a B-based permanent magnet material.
【請求項2】 水素吸蔵により得られた崩壊合金粉末を
100℃〜750℃に加熱して脱H2処理することを特
徴とする請求項1に記載のR−Fe−B系永久磁石材料
の製造方法。
2. The R—Fe—B based permanent magnet material according to claim 1, wherein the decay alloy powder obtained by hydrogen storage is heated to 100 ° C. to 750 ° C. for de-H 2 treatment. Production method.
JP19288693A 1993-07-06 1993-07-06 Method for producing R-Fe-B permanent magnet material Expired - Lifetime JP3415208B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP19288693A JP3415208B2 (en) 1993-07-06 1993-07-06 Method for producing R-Fe-B permanent magnet material
EP93308184A EP0633581B1 (en) 1993-07-06 1993-10-14 R-Fe-B permanent magnet materials and process of producing the same
AT93308184T ATE165477T1 (en) 1993-07-06 1993-10-14 R-FE-B PERMANENT MAGNET MATERIALS AND THEIR PRODUCTION PROCESSES
RU93049098A RU2113742C1 (en) 1993-07-06 1993-10-14 Permanent-magnet materials and their manufacturing processes
DE69318147T DE69318147T2 (en) 1993-07-06 1993-10-14 R-Fe-B permanent magnet materials and their manufacturing processes
TW082108554A TW272293B (en) 1993-07-06 1993-10-15
KR93021615A KR0131060B1 (en) 1993-07-06 1993-10-15 R-fe-b permanent magnet material & processing method
CN93115008A CN1076115C (en) 1993-07-06 1993-10-15 R-Fe-B permanent magnet materials and process of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19288693A JP3415208B2 (en) 1993-07-06 1993-07-06 Method for producing R-Fe-B permanent magnet material

Publications (2)

Publication Number Publication Date
JPH0718366A true JPH0718366A (en) 1995-01-20
JP3415208B2 JP3415208B2 (en) 2003-06-09

Family

ID=16298620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19288693A Expired - Lifetime JP3415208B2 (en) 1993-07-06 1993-07-06 Method for producing R-Fe-B permanent magnet material

Country Status (1)

Country Link
JP (1) JP3415208B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482353B1 (en) 1999-11-12 2002-11-19 Sumitomo Special Metals Co., Ltd. Method for manufacturing rare earth magnet
US6527874B2 (en) 2000-07-10 2003-03-04 Sumitomo Special Metals Co., Ltd. Rare earth magnet and method for making same
JP2006108591A (en) * 2004-10-08 2006-04-20 Tdk Corp Rare-earth sintered magnet and manufacturing method therefor
US7141126B2 (en) 2000-09-19 2006-11-28 Neomax Co., Ltd. Rare earth magnet and method for manufacturing the same
DE10119772B4 (en) * 2000-04-21 2014-02-20 Hitachi Metals, Ltd. Powder press apparatus and method for producing a rare earth magnet using the same
US20150302960A1 (en) * 2012-11-09 2015-10-22 Xiamen Tungsten Co., Ltd. Manufacturing method of a powder for compacting rare earth magnet and the rare earth magnet omitting jet milling process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482353B1 (en) 1999-11-12 2002-11-19 Sumitomo Special Metals Co., Ltd. Method for manufacturing rare earth magnet
DE10119772B4 (en) * 2000-04-21 2014-02-20 Hitachi Metals, Ltd. Powder press apparatus and method for producing a rare earth magnet using the same
US6527874B2 (en) 2000-07-10 2003-03-04 Sumitomo Special Metals Co., Ltd. Rare earth magnet and method for making same
US7141126B2 (en) 2000-09-19 2006-11-28 Neomax Co., Ltd. Rare earth magnet and method for manufacturing the same
JP2006108591A (en) * 2004-10-08 2006-04-20 Tdk Corp Rare-earth sintered magnet and manufacturing method therefor
US20150302960A1 (en) * 2012-11-09 2015-10-22 Xiamen Tungsten Co., Ltd. Manufacturing method of a powder for compacting rare earth magnet and the rare earth magnet omitting jet milling process

Also Published As

Publication number Publication date
JP3415208B2 (en) 2003-06-09

Similar Documents

Publication Publication Date Title
EP0633581B1 (en) R-Fe-B permanent magnet materials and process of producing the same
US5788782A (en) R-FE-B permanent magnet materials and process of producing the same
JPH0340082B2 (en)
WO1999060580A1 (en) FEEDSTOCK POWDER FOR R-Fe-B MAGNET AND PROCESS FOR PRODUCING R-Fe-B MAGNET
JPH0424401B2 (en)
JP3777199B2 (en) Method for producing high performance R-Fe-B permanent magnet material
JP3148581B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JP3415208B2 (en) Method for producing R-Fe-B permanent magnet material
JPH0685369B2 (en) Permanent magnet manufacturing method
JP3611870B2 (en) Method for producing R-Fe-B permanent magnet material
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JP3474684B2 (en) High performance R-Fe-BC system magnet material with excellent corrosion resistance
JPH0682575B2 (en) Rare earth-Fe-B alloy magnet powder
JP2005197301A (en) Rare earth sintered magnet and manufacturing method thereof
JPH0745412A (en) R-fe-b permanent magnet material
JP3383448B2 (en) Method for producing R-Fe-B permanent magnet material
JPH08111307A (en) Production of material powder for r-fe-b based permanent magnet
JP3157660B2 (en) Method for producing R-Fe-B permanent magnet material
JPH0920953A (en) Production of r-fe-b-c permanent magnet material excellent in corrosion resistance
JPH0617535B2 (en) Method of manufacturing permanent magnet material
JPH0524975B2 (en)
JPH06349618A (en) Manufacture of r-fe-b permanent magnet material
Trout Permanent Magnets based on the Lanthanides
JP3148573B2 (en) Method for producing R-Fe-BC-based permanent magnet material having excellent corrosion resistance
JP2005197300A (en) Rare earth sintered magnet and manufacturing method thereof

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100404

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110404

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120404

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130404

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 11

EXPY Cancellation because of completion of term