JPS62257705A - Manufacture of rco5 rare-earth cobalt magnet - Google Patents

Manufacture of rco5 rare-earth cobalt magnet

Info

Publication number
JPS62257705A
JPS62257705A JP61099351A JP9935186A JPS62257705A JP S62257705 A JPS62257705 A JP S62257705A JP 61099351 A JP61099351 A JP 61099351A JP 9935186 A JP9935186 A JP 9935186A JP S62257705 A JPS62257705 A JP S62257705A
Authority
JP
Japan
Prior art keywords
pulverization
water
powder
rco5
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61099351A
Other languages
Japanese (ja)
Inventor
Tetsuto Yoneyama
米山 哲人
Akira Fukuno
亮 福野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP61099351A priority Critical patent/JPS62257705A/en
Publication of JPS62257705A publication Critical patent/JPS62257705A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the processing by using a medium of water and to improve the magnetic characteristics by pulverizing RCo5 rare-earth cobalt permanent magnet alloy within water, drying the fine powder thus obtained and making a permanent magnet from it. CONSTITUTION:RCo5 rare-earth cobalt permanent magnet alloy is pulverized with a medium of water. The fine powder thus obtained is uniformly oxidized by the pulverization. The fine powder, after dried, is processed by an ordinary method to produce a permanent magnet. Since water instead of toluene is used as the medium for pulverization, the pulverization can be carried out more easily while the surface of alloy powder is oxidized and the magnetic characteristics can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はRCo5系希土類コバルト磁石の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an RCo5 rare earth cobalt magnet.

〔従来の技術〕[Conventional technology]

RCo5系希土類コバルト磁石、(RはYを含む希土類
金属を意味する)は、単磁区粒子による保磁力発生機構
を利用した磁石であるため、その製造のためには微粉末
を調製する工程が必要である。
RCo5-based rare earth cobalt magnets (R means rare earth metal containing Y) are magnets that utilize a coercive force generation mechanism using single-domain particles, so a process of preparing fine powder is required to manufacture them. It is.

従来、微粉末調製は原料となるRCo、系合金を有機溶
剤中で数ミクロンまで粉砕することにより行なわれてい
る。
Conventionally, fine powder preparation has been carried out by pulverizing raw materials such as RCo and alloys to several microns in an organic solvent.

特開昭49−86896号によると、SmCo5インゴ
ットをハンマークラッシャーで粗粉砕し、粗粉末をトル
エンを用いたアルミナセラミック質ポット中で微粉砕し
て粒度5〜8μの粉末が調製されている。
According to JP-A No. 49-86896, a powder having a particle size of 5 to 8 microns is prepared by coarsely crushing an SmCo5 ingot with a hammer crusher, and finely crushing the coarse powder in an alumina ceramic pot using toluene.

特開昭49−3196号によるとアセトンと自動うすを
用いてRCo、粉末が得られている。このRCo5粉末
には、0.IN塩酸浸せき、水洗、真空乾燥の処理が順
次節される。
According to JP-A-49-3196, RCo powder is obtained using acetone and an automatic thinner. This RCo5 powder contains 0. The treatments of IN hydrochloric acid immersion, water washing, and vacuum drying are performed in sequence.

上述のように微粉砕工程において有機溶剤中で粉砕を行
なうのは希土類金属の酸化による磁気特性の劣化を避け
ることが必要であると従来解されていたためである。
As mentioned above, the reason why pulverization is carried out in an organic solvent in the pulverization process is because it has been conventionally understood that it is necessary to avoid deterioration of magnetic properties due to oxidation of rare earth metals.

またRCoz系合金粉表面を酸化させることにより保磁
力等の磁気特性が改善されることが知られている。RC
o、系合金粉の表面を酸化させる方法として、例えば、
合金粉を空気中で加熱して合金粉表面を酸化させる方法
(特開昭51−55722号)や、合金粉を水を混入し
た有機溶剤中に浸?iL、その水分により合金粉表面を
酸化させる方法等が提案されている。
It is also known that magnetic properties such as coercive force can be improved by oxidizing the surface of RCoz alloy powder. R.C.
o. As a method of oxidizing the surface of the alloy powder, for example,
There is a method of heating alloy powder in the air to oxidize the surface of the alloy powder (Japanese Patent Application Laid-Open No. 51-55722), and a method of soaking alloy powder in an organic solvent mixed with water. A method of oxidizing the surface of the alloy powder using iL and its moisture has been proposed.

上記した従来技術には次のような問題点がある。The above-mentioned conventional technology has the following problems.

(1)有機溶剤中で粉砕すると、粉末の残留カーボン量
が増加し、製品の磁気特性が劣化する。また、粉砕装置
を防Φ本構造にしなければならず、ハンドリングも複雑
になる。
(1) When pulverized in an organic solvent, the amount of residual carbon in the powder increases and the magnetic properties of the product deteriorate. In addition, the crushing device must have a Φ-proof structure, and handling becomes complicated.

(2)不活性雰囲気中で粉砕すると、粉末が発火する危
険性が高い。
(2) If crushed in an inert atmosphere, there is a high risk that the powder will catch fire.

(3)合金粉を空気中で加熱すると、均一に酸化させる
ことが困難であり、発火の危険性も高い。
(3) When alloy powder is heated in air, it is difficult to oxidize it uniformly and there is a high risk of ignition.

(4)合金粉を水を混入した有機溶剤中に浸漬した場合
、有機溶剤中への水の分散が難しく、合金粉を均一に酸
化させることは困難である。また、RCo5系合金は耐
酸化性が高いので酸化に時間がかかる。
(4) When alloy powder is immersed in an organic solvent mixed with water, it is difficult to disperse the water into the organic solvent, and it is difficult to uniformly oxidize the alloy powder. Furthermore, since the RCo5 alloy has high oxidation resistance, it takes time to oxidize.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術で採用されていた方法により、微粉末の残留炭
素量゛を少なくしようとすると、不活性ガス雰囲気中粉
砕法が採用されることになるが、発火の危険性があるこ
とのほかに、N2ガスやArガスを、高圧でしかも多量
に必要とするため、粉砕コストが上界する。さらに、気
流粉砕機(ジェットミル)などの高価な設備を必要とす
る。
In an attempt to reduce the amount of residual carbon in fine powder using the conventional method, pulverization in an inert gas atmosphere was adopted, but in addition to the risk of ignition, Since N2 gas and Ar gas are required at high pressure and in large quantities, the cost of pulverization increases. Furthermore, it requires expensive equipment such as a jet mill.

また従来技術によりRCo5系合金粉表面を酸化しよう
とすると均一酸化が難しいために、酸化による磁気特性
向上効果が十分ではない。
Further, when attempting to oxidize the surface of RCo5 alloy powder using the conventional technology, it is difficult to oxidize uniformly, so that the effect of improving magnetic properties by oxidation is not sufficient.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はRCo5系希土類コバルト磁石合金を水中で微
粉砕し、得られた粉末を乾燥し通常の方法で磁石とする
ことを特徴とする。
The present invention is characterized in that an RCo5-based rare earth cobalt magnet alloy is pulverized in water, and the resulting powder is dried and made into a magnet using a conventional method.

以下、本発明の構成要件を説明する。Hereinafter, the constituent elements of the present invention will be explained.

RCo5系希土類コバルト永久磁石合金は、RCo5金
属間化合物を主成分とする永久磁石合金である。
The RCo5-based rare earth cobalt permanent magnet alloy is a permanent magnet alloy whose main component is an RCo5 intermetallic compound.

この合金組成は何ら限定されず、Y、La、Ce。This alloy composition is not limited at all and may include Y, La, and Ce.

3m、pr、ミツシュメタルのほぼ1モルに対してCo
 5モルより構成される組成などすべてのものを含む。
3m, pr, Co for approximately 1 mole of Mitshu metal
This includes all compositions consisting of 5 moles.

微粉砕はRCo、金属間化合物を単磁区粒子にするため
の粉砕を指す。微粉砕はボールミル、振動ミル、アトラ
イター等の液体中の粉砕に適したあらゆる粉砕機で実施
される。ジェットミル等の気体により粉砕を行なう粉砕
機では本発明は実施されない。通常微粉砕の前に粗粉砕
が実施されるが、粗粉砕で本発明を実施しても所期の効
果は達成されない。微粉砕により得る粒度は公知の値で
あってよいが、その中でも特に平均粒度3〜5μmにお
いてすぐれた保磁力が得られる。
Fine pulverization refers to pulverization of RCo, an intermetallic compound, into single-domain particles. Fine grinding is carried out in any grinder suitable for grinding in liquids, such as ball mills, vibratory mills, attritors, etc. The present invention cannot be practiced with a pulverizer such as a jet mill that performs pulverization using gas. Coarse pulverization is usually carried out before fine pulverization, but even if the present invention is carried out with coarse pulverization, the desired effect will not be achieved. The particle size obtained by fine pulverization may be any known value, but particularly excellent coercive force can be obtained with an average particle size of 3 to 5 μm.

微粉砕の媒体となる水は水道水、工業用水などが本発明
において使用される。有機物質は本発明による効果を妨
げるために、有機物質が水に含有することが避けられな
い場合は有機物質混入量が極力低い水を使用しなければ
ならない。無機物質である酸、塩類は振動ミル等を腐食
させることがあるから、酸、塩類を水中に混合させるこ
とは好ましくない。さらに、酸、塩類は、希土類金属お
よび/またはコバルトと反応してRCo5の組成を変え
るために、好ましくはない。唯、少量の酸、塩類が水中
に含有されても本発明の効果は得られる。水の温度は0
℃以上であればよい。特に水を加温もしくは冷却する必
要はなく室温で十分なる効果が得られる。
In the present invention, tap water, industrial water, and the like are used as water as a medium for pulverization. Since organic substances interfere with the effects of the present invention, if the presence of organic substances in water is unavoidable, water with as low an amount of organic substances as possible must be used. Since acids and salts, which are inorganic substances, may corrode vibrating mills, etc., it is not preferable to mix acids and salts with water. Furthermore, acids and salts are not preferred because they react with rare earth metals and/or cobalt and change the composition of RCo5. However, even if a small amount of acid or salt is contained in water, the effects of the present invention can be obtained. water temperature is 0
It is sufficient if the temperature is above ℃. There is no need to particularly heat or cool the water, and sufficient effects can be obtained at room temperature.

微粉砕の方法は、トルエン等を使用しないとの粉砕媒体
条件が異なることを除くと通常の方法である。
The method of fine pulverization is a normal method except that the conditions of the pulverizing medium are different in that toluene and the like are not used.

上述の微粉砕により、微粉末は所定の粒度を付与されか
つ均一に酸化される。以降、水分の乾燥による除去を行
なった後焼結磁石あるいはボンド磁石を得る通常の工程
を行なう。乾燥を行なわないで、湿った微粉末を圧粉す
ると所望の圧粉密度が得られないために、乾燥工程を経
た後通常の工程で粉末を処理することが必要である。微
粉末の真空乾燥、凍結乾燥などで行なう。微粉末を永久
磁石にする工程は通常の条件で行なえばよいが、酸化が
さらに進行することは避けることが望ましい。微粉末か
ら永久磁石までの工程で起こる酸化はガス酸化であるか
ら、水中酸化に比較して不均一に進行し、せっかく得ら
れた均一酸化が失われる。
By the above-mentioned pulverization, the fine powder is given a predetermined particle size and uniformly oxidized. Thereafter, after removing moisture by drying, the usual process for obtaining a sintered magnet or a bonded magnet is performed. If wet fine powder is compacted without drying, the desired compacted powder density cannot be obtained, so it is necessary to process the powder in a normal process after passing through the drying process. This is done by vacuum drying, freeze drying, etc. of fine powder. The process of turning fine powder into a permanent magnet may be carried out under normal conditions, but it is desirable to avoid further progress of oxidation. Since the oxidation that occurs during the process from fine powder to permanent magnet is gas oxidation, it progresses unevenly compared to underwater oxidation, and the uniform oxidation that has been achieved is lost.

〔作 用〕[For production]

水中で微粉砕することにより合金粉の表面を酸化させ、
磁石化後の磁気特性を改善できる。
By pulverizing the alloy powder in water, the surface of the alloy powder is oxidized,
The magnetic properties after magnetization can be improved.

〔実施例〕〔Example〕

以下、実施例によりさらに詳しく本発明を説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

Sm 36.2 w t%、  Co 63.7w t
%のインゴットが得られるように原料を配合した後アル
ゴンガス中の高周波溶解炉で溶解してインゴットを得た
Sm 36.2 wt%, Co 63.7wt
% ingot was obtained, and then melted in a high frequency melting furnace in argon gas to obtain an ingot.

得られたインゴットをスタンプミルで粗粉砕して粒径0
.5〜1.2mの粉末を得、これを室温の水中で振動ミ
ルで微粉砕した。この際得られる粉末の平均粒径が2〜
7μmの範囲で変化するように粉砕時間を変えて微粉砕
を行なった。得られた粉末を、次に磁場15koe、圧
力1.5 ton 7cm”の条件で磁場中成形し、続
いてアルゴン雰囲気中1080℃の条件で焼結を行なっ
た。
The obtained ingot was coarsely pulverized with a stamp mill to a particle size of 0.
.. A powder of 5-1.2 m was obtained, which was milled in a vibratory mill in water at room temperature. The average particle size of the powder obtained at this time is 2~
Fine pulverization was carried out by changing the pulverization time so that the particle size varied within a range of 7 μm. The obtained powder was then compacted in a magnetic field under the conditions of a magnetic field of 15 koe and a pressure of 1.5 ton 7 cm'', followed by sintering at 1080° C. in an argon atmosphere.

比較のために、水中微粉砕をトルエン中微粉砕に変えた
ほかは上記方法と同一方法で焼結磁石を得た。
For comparison, a sintered magnet was obtained in the same manner as above except that fine pulverization in water was changed to pulverization in toluene.

焼結磁石の保磁力(iHc)、炭素量(%)および酸素
量(%)を測定した結果を第1図に示す。
FIG. 1 shows the results of measuring the coercive force (iHc), carbon content (%), and oxygen content (%) of the sintered magnet.

第1図より、トルエン中粉砕の場合は平均粒径が小さく
なるほど、炭素量は増大しているのに対し、水中粉砕の
場合は炭素量は一定であり、しかも平均粒径に関係なく
炭素含有量がトルエン中粉砕の場合より極めて低いとい
う、粉砕雰囲気による顕著な差異が認められる。水中微
粉砕の際には粉砕雰囲気から粉末に炭素は侵入しない。
From Figure 1, in the case of pulverization in toluene, the amount of carbon increases as the average particle size decreases, whereas in the case of pulverization in water, the amount of carbon remains constant, and carbon content is independent of the average particle size. A significant difference is observed due to the grinding atmosphere, with the amount being much lower than in the case of grinding in toluene. During underwater pulverization, carbon does not enter the powder from the pulverization atmosphere.

したがって炭素は主としてCo金属中の不純物であると
考えられる。
Therefore, carbon is considered to be mainly an impurity in Co metal.

また、トルエン中粉砕、水中粉砕何れの場合も酸素量は
平均粒径が小さくなるほど増大しておりまた酸素量は水
中微粉砕の場合がトルエン中粉砕よりも約2倍多い。し
たがって、酸素は粉砕雰囲気より粉末中に侵入するが、
水の方がトルエンよりも酸化性が強いことが分かる。
Further, in both cases of pulverization in toluene and pulverization in water, the amount of oxygen increases as the average particle size becomes smaller, and the amount of oxygen in pulverization in water is about twice as large as that in pulverization in toluene. Therefore, oxygen enters the powder from the grinding atmosphere, but
It can be seen that water has stronger oxidizing properties than toluene.

さらに、保磁力(iHc)は平均粒径に関係なく水中微
粉砕の方がトルエン中微粉砕よりすぐれている。
Furthermore, in terms of coercive force (iHc), pulverization in water is superior to pulverization in toluene, regardless of the average particle size.

〔発明の効果〕〔Effect of the invention〕

(1)合金粉の表面を酸化させることにより、保磁力等
の磁気特性が向上する。
(1) Magnetic properties such as coercive force are improved by oxidizing the surface of alloy powder.

(2)粉砕雰囲気を水としたのでハンドリングが容易で
あり、有機溶剤を使用する場合の危険性がなく、残留カ
ーボン量も低く抑えられる。
(2) Since water is used as the grinding atmosphere, handling is easy, there is no danger when using organic solvents, and the amount of residual carbon can be kept low.

(3)粉砕雰囲気を有機溶剤とした場合、粉砕・乾燥装
置が複雑になり廃液処理等の問題があるが、粉砕雰囲気
を水とした場合、装置類は複雑にならず廃液処理も容易
である。
(3) When the grinding atmosphere is an organic solvent, the grinding/drying equipment is complicated and there are problems with waste liquid treatment, but when the grinding atmosphere is water, the equipment is not complicated and waste liquid treatment is easy. .

【図面の簡単な説明】 第1図は微粉末の平均粒径と磁石の特性の関係を示すグ
ラフである。 微粉末の平均粒径 (um) 第1図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the relationship between the average particle size of fine powder and the characteristics of a magnet. Average particle size of fine powder (um) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、RCo_5系希土類コバルト永久磁石合金を水中で
微粉砕し、得られた微粉末を乾燥し、通常の方法で磁石
とするRCo_5系希土類コバルト磁石の製造方法。
1. A method for manufacturing an RCo_5 rare earth cobalt magnet, which involves pulverizing an RCo_5 rare earth cobalt permanent magnet alloy in water, drying the resulting fine powder, and making a magnet using a normal method.
JP61099351A 1986-05-01 1986-05-01 Manufacture of rco5 rare-earth cobalt magnet Pending JPS62257705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61099351A JPS62257705A (en) 1986-05-01 1986-05-01 Manufacture of rco5 rare-earth cobalt magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61099351A JPS62257705A (en) 1986-05-01 1986-05-01 Manufacture of rco5 rare-earth cobalt magnet

Publications (1)

Publication Number Publication Date
JPS62257705A true JPS62257705A (en) 1987-11-10

Family

ID=14245189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61099351A Pending JPS62257705A (en) 1986-05-01 1986-05-01 Manufacture of rco5 rare-earth cobalt magnet

Country Status (1)

Country Link
JP (1) JPS62257705A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129964A (en) * 1989-09-06 1992-07-14 Sps Technologies, Inc. Process for making nd-b-fe type magnets utilizing a hydrogen and oxygen treatment
US5244510A (en) * 1989-06-13 1993-09-14 Yakov Bogatin Magnetic materials and process for producing the same
EP1850355A1 (en) * 2002-05-31 2007-10-31 FUJIFILM Corporation Magnetic particle and its production method
US7384449B2 (en) 2001-09-05 2008-06-10 Fujifilm Corporation Ferromagnetic nanoparticles, material coated with dispersion of ferromagnetic nanoparticles, and magnetic recording medium using the material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244510A (en) * 1989-06-13 1993-09-14 Yakov Bogatin Magnetic materials and process for producing the same
US5129964A (en) * 1989-09-06 1992-07-14 Sps Technologies, Inc. Process for making nd-b-fe type magnets utilizing a hydrogen and oxygen treatment
US5286307A (en) * 1989-09-06 1994-02-15 Sps Technologies, Inc. Process for making Nd-B-Fe type magnets utilizing a hydrogen and oxygen treatment
US7384449B2 (en) 2001-09-05 2008-06-10 Fujifilm Corporation Ferromagnetic nanoparticles, material coated with dispersion of ferromagnetic nanoparticles, and magnetic recording medium using the material
EP1850355A1 (en) * 2002-05-31 2007-10-31 FUJIFILM Corporation Magnetic particle and its production method
US7335393B2 (en) 2002-05-31 2008-02-26 Fujifilm Corporation Magnetic particle, its production method, magnetic recording medium and its production method

Similar Documents

Publication Publication Date Title
JP5609783B2 (en) Method for producing rare earth-transition metal alloy powder
US5781843A (en) Permanent magnets and methods for their fabrication
JP2007119909A (en) Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same
JPH11319752A (en) Recovery of valued composition from rare earth element-containing substance and alloy powder obtained thereby
US5286307A (en) Process for making Nd-B-Fe type magnets utilizing a hydrogen and oxygen treatment
JPH0685369B2 (en) Permanent magnet manufacturing method
JP2011214113A (en) Method for manufacturing rare-earth-iron-nitrogen-base magnet powder and rare-earth-iron-nitrogen-base magnet obtained thereby
JPS62257705A (en) Manufacture of rco5 rare-earth cobalt magnet
US5064465A (en) Process for preparing rare earth-iron-boron alloy powders
JP3240034B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH09289127A (en) Manufacture of rare earth permanent magnet, and the rare earth permanent magnet
JPH05258928A (en) Permanent magnet and powder thereof and manufacturing method thereof
JP3049874B2 (en) Method for producing alloy powder containing rare earth metal
JPH10233306A (en) Rare-earth permanent magnet and preparation thereof
JPH1022154A (en) Manufacture of rear-earth permanent magnet
JP2000104104A (en) Manufacture of samarium-iron-nitrogen alloy powder
JPH058562B2 (en)
JPH07176413A (en) Manufacture of rare earth element magnet
JPH0582319A (en) Permanent magnet
JP2002083705A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JP2000054011A (en) Production of rare earth metal-iron-boron based sintered magnet raw material alloy powder
JPH08148317A (en) Production of rare earth magnet
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JP2006059994A (en) Rare earth-iron-manganese-nitrogen based magnet powder and its production method
JP2006060049A (en) Rare earth-iron-manganese-nitrogen based magnet powder and its production method