JPS58193331A - Treatment of alloy power of rare earth element-cobalt - Google Patents

Treatment of alloy power of rare earth element-cobalt

Info

Publication number
JPS58193331A
JPS58193331A JP57073396A JP7339682A JPS58193331A JP S58193331 A JPS58193331 A JP S58193331A JP 57073396 A JP57073396 A JP 57073396A JP 7339682 A JP7339682 A JP 7339682A JP S58193331 A JPS58193331 A JP S58193331A
Authority
JP
Japan
Prior art keywords
powder
rare earth
solution
rich
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57073396A
Other languages
Japanese (ja)
Inventor
Kimio Uchida
内田 公穂
Makoto Ushijima
誠 牛嶋
Takeshi Mizuhara
水原 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP57073396A priority Critical patent/JPS58193331A/en
Publication of JPS58193331A publication Critical patent/JPS58193331A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

PURPOSE:To make it possible to separate and recover a high grade rare earth element and Co, by a method wherein an acid or an aqueous solution thereof is added to the mechanically processed powder of a rare earth element-cobalt alloy and chemical reaction is generated to separate the reaction mixture into a rare earth element-rich precipitate and a Co ion-rich solution. CONSTITUTION:A mechanically processed powder such as a shaved powder or a cut powder generated during the processing a parmanent magnet comprising a rare earth element - Co alloy RCo (wherein R is one kind or more rare earth element including Y) and conventionally thought impossible in the utilization thereof is treated as mentioned below. That is, an acid such as hydrochloric acid or oxalic acid or an aqueous solution thereof is added to the above mentioned processed powder and chemical reaction is generated to separate the reaction mixture into a R element rich precipitate and a Co element ion solution.

Description

【発明の詳細な説明】 本発明はRCo希土類コバルト合金の機械加工によシ出
る粉からR元素お↓ひCo7clKを回収するための処
理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a processing method for recovering the R element ↓Co7clK from the powder produced during machining of an RCo rare earth cobalt alloy.

RCo希土類コバルト合金(RはY’J−富む1種類以
上の希土類金属元X)は、従来のアルニコ研石、フェラ
イト磁石をしのぐ高い磁気特性tMすることから第5の
永久磁石として注目され、その生産高は年々増加しつつ
ある。その代表的なものはRCo、。
RCo rare earth cobalt alloy (R is Y'J - rich in one or more rare earth metal elements Production volume is increasing year by year. A typical example is RCo.

R宜Coty合金(あるいは金属間化合物)である。It is a Coty alloy (or intermetallic compound).

現在種々の改良の結果、RCo希土類コバルト合金永久
磁石の磁気%性は、最大エネルギー棟が30MG・06
以上に達するもの、あるいは、保磁力が50KOe以上
に達するものが報告され、またその一部が量産されてい
る。この意味で現在のRCo希土類コバルト合金永久出
石磁石磁気特性的には需要各分野からの要求tはぼ満足
するレベルに達していると1りても過言ではない。
Currently, as a result of various improvements, the magnetic % of RCo rare earth cobalt alloy permanent magnet has a maximum energy of 30MG・06
It has been reported that magnets with a coercive force of 50 KOe or more have been reported, and some of them are being mass-produced. In this sense, it is no exaggeration to say that the magnetic properties of current RCo rare earth cobalt alloy permanent magnets have reached a level that almost satisfies the demands t from various fields of demand.

一万このRCo希土類コバルト合金永久磁石磁石上の主
成分がきわめて高価なR元素、Co元素であることから
必然的にその製造原価および製品価格が! 米のアルニ
コ磁石、フェライト磁石に比べ高価となり、このことが
改善されれはそのi%i[ia気特性と相まってRCo
希土類コバルト合金永久磁石の需要が飛躍的に増大する
ものである。
10,000 Since the main components of this RCo rare earth cobalt alloy permanent magnet are the extremely expensive R and Co elements, the manufacturing cost and product price are inevitably high! They are more expensive than American alnico magnets and ferrite magnets, and if this is improved, combined with their i%i
Demand for rare earth cobalt alloy permanent magnets will increase dramatically.

従来RCo希土類コバルト合金永久磁七のl11!造原
価を低減するため、R2O素の種類、R2O素とCo元
素の比率、他の絵肌物元索のai加等の組成的な面での
検討ならひに成形、焼結、熱処理、加工等の製造プロセ
ス的な面での検討が種々なされて睡た。
Conventional RCo rare earth cobalt alloy permanent magnetic 7 l11! In order to reduce manufacturing costs, we consider compositional aspects such as the type of R2O element, the ratio of R2O element and Co element, and the addition of AI to other Ehadamono elements, including molding, sintering, heat treatment, and processing. Various studies have been conducted on manufacturing process aspects such as:

し〃1し必要磁気特性上の制約からこれらの検討にはお
のづから限界があり、画期的な製造原価の低減となって
いないのが実状である。
However, due to constraints on the required magnetic properties, these studies have their own limits, and the reality is that they have not resulted in an epoch-making reduction in manufacturing costs.

本発明名らはBCO希土類コバルト合金永久磁石の裂m
原価低減のため、従来利用不可耗と考えられてい7jR
Co希土類コバルト合金永久磁6の加工時に発生する研
削粉、切削粉、切断粉等の機械加工粉に注目し、種々の
実験の結果これを酸、アルカリ等で化学処理することに
よジR元素およびCo元素を分離、回収することが司耗
であることt見いだした。
The name of the present invention is BCO rare earth cobalt alloy permanent magnet crack m
In order to reduce costs, 7jR, which was previously considered to be unusable,
We focused on machining powder such as grinding powder, cutting powder, and cutting powder generated during processing of Co rare earth cobalt alloy permanent magnet 6, and as a result of various experiments, di-R elements were produced by chemically treating it with acid, alkali, etc. It has been found that separating and recovering the Co element and Co element is a waste.

8Co希土類コバルト合金永久磁石會最#1!製品寸法
に仕上けるにfl @ Qlj 、切1iJlj、9]
断等の機械加工は不可避であり、その工程において研削
粉、切削粉、切断粉等の機械加工粉が発生する。そして
これら機械加工粉の主成分はR2O素とCoyr:累で
ある。
8Co Rare Earth Cobalt Alloy Permanent Magnet Society #1! To finish to product dimensions, fl @ Qlj, cut 1iJlj, 9]
Machining such as cutting is unavoidable, and machining powder such as grinding powder, cutting powder, and cutting powder is generated in the process. The main components of these machining powders are R2O and Coyr.

発生機械加工粉の量は製品形状、加工方法等の条件によ
って異なるが一般的には総原料投入量の20〜AOMM
%であると考えられる。
The amount of mechanical processing powder generated varies depending on conditions such as product shape and processing method, but generally it is 20 to AOMM of the total raw material input.
%.

従ってこれら機械加工粉〃為らR元素、Co元素か分離
、回部可能であり、またこれらが再利用可能であるなら
ば、省資源に寄与すると共に原料費の低減となシその結
果大幅な製造原価の低減が期待されることは盲うまでも
ない。
Therefore, if the R element and Co element can be separated and recycled from these mechanically processed powders, and if they can be reused, it will contribute to resource conservation and reduce raw material costs. It goes without saying that a reduction in manufacturing costs is expected.

しかしながら、これらの機械加工粉には主成分であるR
2H索、Co元素以外に加工時に混入する機 1j械油
、肩愼浴媒、接層剤、砥石粉などの不純物が多量に介在
する。また@械刀ロエ粉の主成分であるR2O素、C0
7C累は〃ロエ時に受ける加工摩擦熱あるいは加工時に
使用する冷却水によシその大部分が酸化されている。こ
のような理由から従来これらの機械加工粉を再処理し、
工業的に使用し得る品位のR元素、C07C索を分陥回
枢することは不司乾かあるいは経済的オリ点が無いと考
えられ、これら機械加工粉り放置されているのが実状で
ある。
However, these mechanically processed powders contain R, which is the main component.
In addition to the 2H wire and the Co element, there are a large amount of impurities that are mixed in during processing, such as machine oil, bath medium, coating agent, and grindstone powder. In addition, R2O element, which is the main component of Machito Loe powder, C0
Most of 7C is oxidized by the processing friction heat received during rolling or the cooling water used during processing. For this reason, conventionally these machined powders are reprocessed,
It is thought that it is unwise or economically unwise to convert industrially usable grade R element and C07C cables, and the reality is that they are left unprocessed.

本発明に、RCo希土類コバルト合金の研削粉、切削粉
および切断粉等の機械加工により出る粉から、工業的に
使用し得る品位のR2H索とCo元素會分際、回収する
処理方法上提供することを目的とするものである。
The present invention provides a processing method for recovering industrially usable grade R2H cable and Co element from powder generated by machining such as grinding powder, cutting powder, and cutting powder of RCo rare earth cobalt alloy. The purpose is to

本発明は、RCo希土類コバルト合金の研削粉、切削粉
および切l1il′r8等の機械力ロエ粉を塩酸、蓚酸
等の酸又はその水浴液で処理して冨R7C索沈lRwI
Jと冨Co元票イオン溶液に分離し、さらに分離された
冨R7C累沈l!i物、■CoCo元素イオン溶液々に
水酸化ナト1」ラム水溶液、炭酸ナトリウム水浴液等の
アルカリ水溶液あるい仁蓚酸等の酸又ねその水溶g盆硝
加して、R7c累、 Co元素のアルカリま友は酸との
化合物を生成せしめ、この生成化合物を焼成してR7C
累酸化物、Co元素酸化物を得ることを[kとするもの
である。
In the present invention, grinding powder of RCo rare earth cobalt alloy, cutting powder and mechanical powder such as cutting l1il'r8 are treated with an acid such as hydrochloric acid or oxalic acid or a water bath solution thereof to produce a rich R7C cable precipitate lRwI.
J and Tomi Co are separated into ion solution, and further separated Tomi R7C sedimentation l! ■ To the CoCo element ion solution, add a sodium hydroxide solution, an alkaline aqueous solution such as a sodium carbonate water bath solution, an acid such as oxalic acid, or an aqueous solution of oxalic acid, and add R7c, Co element. Alkali mayo generates a compound with acid and burns this generated compound to form R7C.
Obtaining a cumulative oxide and a Co element oxide is defined as [k].

RCo希土類コバルト合金のfit削粉、切削粉および
切断粉等の機械加工により出る粉からのR2H索とCo
元素の分囁、回収においてまず第一に問題になるのは慎
械刀ロエ粉中に混入している砥石粉などの不純物とR元
素、Co元素の分離である。この点本発明名らはこのR
元素、Cax素と砥石粉などの不純物との分離方法につ
いて種々の研死を1ねた結果、機械加工粉をrjR%し
くにその水溶液から回収処理する方法がこの分離の目的
に非常に有効であることを見いだした。すなわち、例え
は塩酸を機械加工粉に冷加して機械加工粉を塩酸で溶解
すると、R7H累とCo元素の大部分はR元素イオン、
Co元素イオンとして溶液中に存在し、砥石粉などの不
純物の大部分ね不溶層物残滓として残存する。
R2H cables and Co
The first problem in the separation and recovery of elements is the separation of R and Co elements from impurities such as grinding stone powder mixed in Shinkaito Roe powder. In this respect, the name of the present invention is this R
As a result of various experiments on methods for separating impurities such as elements, Cax elements, and grinding wheel powder, we found that a method of recovering and processing machined powder from its aqueous solution in a rjR% manner is very effective for this separation purpose. I discovered something. That is, for example, when hydrochloric acid is cooled to machining powder and the machining powder is dissolved in hydrochloric acid, most of the R7H and Co elements become R element ions,
It exists in the solution as Co element ions, and most of the impurities such as grindstone powder remain as insoluble layer residue.

この溶層処理においては投入塩酸の童、溶解溶液のPH
のg埋等が重要であるのは言うまでもない。また上記溶
解のために使用する酸に塩酸以外にも種々のものが使用
可能でやることは言tl−待たない。
In this solution layer treatment, the pH of the dissolved solution is
It goes without saying that g filling etc. are important. Moreover, various acids other than hydrochloric acid can be used as the acid used for the above-mentioned dissolution.

しかして、@記不溶解物残滓をろ過し除去することで、
R7C素イオンとCo元素イオンに冨んだ溶液を得るこ
とができる。
However, by filtering and removing the undissolved residue,
A solution rich in R7C elemental ions and Co elemental ions can be obtained.

次に問題なのtzR7C票イオンとCo元素イオンの分
際である。この様な211@以上のイオンを含む溶液か
ら各元素イオンを分離する方法として位、従来溶媒抽出
法という手法が一般的に採用されている。これは2種類
以上のイオンを含む浴液を油に会合接触させ、油に抽出
逼れやすい元素を溶液から分離する方法である。し力為
しこの溶媒抽出法は溶液を何回も繰り返し油に会合接触
させる必要があるため、分際に多大の時間と費用を要す
るという欠点がある。
The next problem is the separation between the tzR7C ion and the Co element ion. As a method for separating each element ion from a solution containing such ions of 211@ or more, a conventional technique called solvent extraction method is generally employed. This is a method in which a bath solution containing two or more types of ions is brought into contact with oil, and elements that are easily extracted and trapped in oil are separated from the solution. However, this solvent extraction method has the drawback of requiring a large amount of time and expense, since it is necessary to bring the solution into contact with the oil many times.

この点本発aA名らはこの溶液中OR元素イオンとC0
7C素イオンの分離方法についても種々の検討を刃口え
た結果、散を添加することによりこの問題を%決するこ
とができた。
On this point, the present authors aA et al.
As a result of various studies regarding the method of separating 7C elementary ions, we were able to solve this problem by adding powder.

R元素イオンとC07C累イオンに冨む溶液に例えは蓚
酸水溶液をfj&加することによりR2O索は蓚酸塩と
して沈殿する。この沈*Wはろ過によって(9)収可能
であシ、残った溶液はC07C累イオンに冨んだもので
ある。
For example, by adding an aqueous solution of oxalic acid to a solution rich in R element ions and C07C ions, R2O molecules precipitate as oxalate. This precipitate (9) can be collected by filtration, and the remaining solution is enriched with C07C ions.

以上のような化学処理によ、QRCo希土類コバルト合
金の機械加工粉を冨Ryc$沈殿物と冨Co7C素イオ
ン溶液に分離することが可能となる。
The chemical treatment described above makes it possible to separate the machined powder of the QRCo rare earth cobalt alloy into a rich Ryc$ precipitate and a rich Co7C elementary ion solution.

B元素の回収については安定な酸化物の形態が保管上、
取り扱い上の点からも好ましい。そして8元素酸化物の
生成は、前記R元素沈殿物を乾燥後焼成することで可能
である。
Regarding recovery of B element, stable oxide form is required for storage.
It is also preferable from the point of view of handling. The eight element oxides can be produced by drying and then firing the R element precipitate.

しかし回収R元素酸化物の品位の点からは、R元素沈殿
物をさらに水酸化ナトリウム水浴液、蓚酸などのアルカ
リ、酸で順次処理し、得られた化合物を焼成してR7C
索酸化物を得ることがより好ましい。
However, from the standpoint of the quality of the recovered R element oxide, the R element precipitate is further treated with a sodium hydroxide water bath solution, an alkali such as oxalic acid, and an acid, and the resulting compound is calcined to produce R7C.
It is more preferable to obtain oxidized carbonate.

この理由ね、RCo希土類コバルト合金中にFs。The reason for this is that Fs is present in the RCo rare earth cobalt alloy.

Cu、Hf等他の元素が不純物あるいは冷加物とし  
1て存在する場合、それらの大部分は塩酸等での浴牌時
にPH刺W!によシ砥石等の不純物と共に不溶牌物残滓
中に残留させ除去可能であるが、その一部分が溶′%溶
液中に浴出しR元素沈殿時に共沈するからである。従っ
て共沈したこれらの元素を除去するために、R元素沈殿
物を酸、アルカリで繰り返し処理しn製するのがよシ好
ましいのである。
Other elements such as Cu and Hf may act as impurities or coolants.
1, most of them are PH stings when bathing with hydrochloric acid etc. Although it is possible to remove the insoluble tile residue by leaving it together with impurities such as the grindstone, a part of it is taken out into the solution and co-precipitated when the R element is precipitated. Therefore, in order to remove these co-precipitated elements, it is highly preferable to repeatedly treat the R element precipitate with acid and alkali to produce n.

以上のようにR元素沈殿物を例えは水酸化ナトリウム水
浴液、次いで蓚酸で処理しまたこれらの工程間に数回の
水洗、ろ過を行えば、得られ九R元素修rR堪を乾燥・
焼成した場合、きわめて高品位のR元素酸化物が得られ
る。
As described above, if the R element precipitate is treated with, for example, a sodium hydroxide water bath solution and then with oxalic acid, and washed and filtered several times between these steps, the nine R element precipitates obtained can be dried and dried.
When fired, an extremely high-grade R element oxide is obtained.

しかしてR元素そのものは、R元素酸化物を還元するこ
とで容易に得られる。シカし、この還元技術は既に工業
的に広く一般KM立されているものであシ、ここではそ
の詳細について述べることね省略する。
However, the R element itself can be easily obtained by reducing the R element oxide. However, since this reduction technology has already been widely used in general KM industrially, we will not discuss its details here.

C07C索の回収についてもR元素の場合と同様の理由
で酸化物の形態が好ましい。すなわち、R元素沈殿物を
゛除去した冨Co光・素イオン溶液にアルカリ水浴液1
に添加することにより、容易にCo元素化合物を沈殿さ
せることが可能である。例えU水酸化す) IJウム水
溶液の重加でCo元素の水酸化物が沈殿し、炭酸ナトリ
ウム水溶液の冷加でにCo元素の炭酸塩が沈殿する。そ
してこれらC07CX化合物は水洗が容易でありこれら
を水洗・ろ過し、乾燥後焼成することで高品位のCo元
素酸化物が得られる。
Regarding the recovery of C07C cords, the oxide form is preferable for the same reason as in the case of the R element. That is, 1 part of the alkaline water bath solution is added to the Co light/element ion solution from which the R element precipitate has been removed.
It is possible to easily precipitate a Co element compound by adding Co to . For example, when an aqueous sodium carbonate solution is added, the hydroxide of the Co element precipitates, and when the aqueous sodium carbonate solution is cooled, a carbonate of the Co element precipitates. These C07CX compounds are easy to wash with water, and high-grade Co element oxides can be obtained by washing, filtering, drying, and firing.

以上のように本発明によpRco希土類コバルト合金の
機械加工粉からきわめて容易にR元素とC。
As described above, according to the present invention, R element and C can be obtained very easily from the machined powder of pRco rare earth cobalt alloy.

元素が高品位の酸化物の形態で分離・回収可能である。Elements can be separated and recovered in the form of high-grade oxides.

そしてこれらの酸化物は一般に既知の従来技術によって
容易にR2O索とCo元素に処理可能であるから、本発
明によって分離・回収したR元素とCo元素を再ひRC
o希土類コバルト合金の#!造に使用できる。従って本
発明によるとRCo希土類コバルト合金の製f1原価低
減の効果が著しいものである。
Since these oxides can generally be easily processed into R2O elements and Co elements by known conventional techniques, the R elements and Co elements separated and recovered by the present invention can be reprocessed by RC.
o Rare earth cobalt alloy #! Can be used for construction. Therefore, according to the present invention, the effect of reducing the manufacturing cost of RCo rare earth cobalt alloy f1 is remarkable.

以下実施例にて本発明をさらに詳しく説明する。The present invention will be explained in more detail in the following examples.

実施例t SmCo@希土類コバルト合金の含水機械加工粉を組成
分析した。この含水機械加工粉の含水率は44yt%で
あった。また水分以外の粉体の組Ii!、は8m27.
!iwt%、Coja6vt%、砥石粉などの不純物U
wt%であった。粉体の組成分析値の合計が100wt
うとならないことから、SmとCoのかなりの部分が酸
化されているものと考えられる。
Example t A hydrous machining powder of SmCo@rare earth cobalt alloy was analyzed for its composition. The moisture content of this hydrous mechanical powder was 44 yt%. Also, group Ii of powder other than water! , is 8m27.
! iwt%, Coja6vt%, impurities such as whetstone powder U
It was wt%. The total composition analysis value of powder is 100wt
It is considered that a considerable portion of Sm and Co is oxidized.

この含水機械加工粉zoooKfに水を加え、合計1.
570Jのスラリー状溶液とし、このスラリー状溶液に
290ノの35%塩酸水溶液を徐々に添加し1切削粉を
溶解した。この化学処理によってgo。
Water was added to this water-containing mechanical powder zooooKf, and a total of 1.
A slurry solution of 570 J was prepared, and 290 J of a 35% aqueous hydrochloric acid solution was gradually added to the slurry solution to dissolve one cutting powder. This chemical treatment allows go.

lの機械加工粉溶解の溶液が得られた。化学処理用のタ
ンク底にね、砥石粉等の不純物を中心成分とした不溶解
物残滓が石干残舊したが、これらはろ過で除云した。上
記溶液を分析した結果Sm9α711/I、Co 15
9i I/l テア”:)’It:、、。
A solution of 1 of machining powder was obtained. At the bottom of the tank used for chemical treatment, there were insoluble residues mainly composed of impurities such as whetstone powder, but these were removed by filtration. As a result of analyzing the above solution, Sm9α711/I, Co 15
9i I/l Thea":)'It:,,.

次にこの機械加工粉溶解溶液に5001の蓚酸水溶液を
徐々に添加して8m元票を蓚酸塩として沈殿させた。こ
の沈殿物をろ過、した後、得られたSm元素硫化物に若
干の水と5001の水酸化す) IJウム水浴液を徐々
に添加し、Sm元素を水酸化−とした。この水酸化物を
ろ過、水洗した後、これに若干の水と500ノの蓚酸水
溶液を徐々に加え、Sm元素を修Wl塩として沈殿させ
た。沈殿したSm元素の蓚aI塩を水洗、ろ過した。
Next, an aqueous solution of 5001 oxalic acid was gradually added to this machining powder solution to precipitate 8m oxalate as oxalate. After filtering this precipitate, some water and a 5001 hydroxide water bath solution were gradually added to the obtained Sm element sulfide to hydroxylate the Sm element. After this hydroxide was filtered and washed with water, some water and a 500 ml oxalic acid aqueous solution were gradually added thereto to precipitate the Sm element as a Wl salt. The precipitated Sm element Al al salt was washed with water and filtered.

以上の処理によって得られた含水スラリー状のam 7
C素の修fIt塩は440〜であった。
Am7 in the form of water-containing slurry obtained by the above treatment
The modified fIt salt of C element was 440~.

このスラリー状のSm元素の蓚酸塩を脱水・乾燥し、焼
成炉にてFIL100℃の温度で2時間焼成して酸化物
とした。得られたSm元素の酸化物の1童は150Kf
であつ次。そしてこの8m元票の酸化物を分析した結果
、工業的に従来一般に使用されているSm元素酸化物と
同品位のものであった。
This slurry-like oxalate of Sm element was dehydrated and dried, and fired in a firing furnace at a FIL temperature of 100° C. for 2 hours to form an oxide. One child of the obtained oxide of Sm element is 150 Kf
And next. As a result of analysis of this 8m oxide, it was found to be of the same quality as the Sm element oxide commonly used industrially.

−万、Sm元素を除去した後のCo元素イオンに富む浴
W#溶液にtooolの水酸化す) I)ラム水溶液を
徐々に加え、Co元素を水酸化物として沈散さぜた。沈
殿物を水洗・ろ過し、含水Co元素の水酸化物aaQl
14f得た。この含水C07C素酸化物を脱水・乾燥し
、焼成炉にてfJl、 100℃の温度で2時間焼成し
て酸化物とした。得られfcCo元素の酸化 11゜智
の1重は510Kfであった。このCo元素の酸化物を
分析した結果、工業的に従来一般に使用されているCo
元嵩酸化豐と同品位のものであった。
-10,000, After removing the Sm element, the Co element ion-rich bath W# solution was subjected to hydroxylation of toool) I) Rum aqueous solution was gradually added, and the Co element was precipitated as a hydroxide. The precipitate was washed with water and filtered, and hydrated Co element hydroxide aaQl was obtained.
I got 14f. This hydrous C07C elementary oxide was dehydrated and dried, and fired in a firing furnace at fJl and 100° C. for 2 hours to obtain an oxide. One layer of oxidation of the obtained fcCo element at 11° was 510 Kf. As a result of analyzing this oxide of Co element, we found that Co
It was of the same quality as the former bulk oxidized bamboo shoots.

実施例2 am (Cobil Feo、t Cuo、+ Hfo
、wt鵞)a、s  希土類コバルト合金の含水機械加
工粉を組成分析した。この含水機械加工粉の含水率は4
4vt91であった。また、水分以外の粉体の組成は8
m2rLS wt IG、Co 4重1wt%、F曖1
t、0wt%、Cu 40 vt %、Hf 10 v
rt %、砥石粉などの不純物2.4 wt %でめっ
た。粉体の組成分析値の合計が100W′tIsになら
ないことから、各元素のかなpの部分が酸化されている
ものと考えられる。
Example 2 am (Cobil Feo, t Cuo, + Hfo
, wt) a, s We analyzed the composition of hydrated machining powder of rare earth cobalt alloy. The moisture content of this hydrous mechanical powder is 4
It was 4vt91. In addition, the composition of the powder other than water is 8
m2rLS wt IG, Co 4x 1wt%, F vague 1
t, 0 wt%, Cu 40 vt%, Hf 10 v
rt %, and impurities such as grindstone powder were 2.4 wt %. Since the total compositional analysis value of the powder does not reach 100 W'tIs, it is considered that the kana p portion of each element is oxidized.

この含水機械加工粉zoooKfに水を加え合計1,4
00tのスラリー状溶液とし、このスラリー状浴液に$
2001の35チ塩酸水溶液を徐々に添加して切削粉を
溶解した。この化学処理によってλ40Qtの機械加工
@溶解溶液が得られた。また化学処理用夕/りの底には
砥石粉などの不純物とCu、’F・、■元素などを中心
成分とし九不溶解物鴻滓が残留したがこれらはろ過で除
去し丸。上記溶tを分析した結果Sm4 AD p/L
SCoa41 N、Fs & Q p / L、 Cu
(100墨#/1.出αoo 1p/Lで参つ九。
Add water to this water-containing mechanical powder zooooKf for a total of 1.4
00t slurry solution, and add $ to this slurry bath liquid.
A 35% hydrochloric acid aqueous solution of 2001 was gradually added to dissolve the cutting powder. This chemical treatment resulted in the machining of λ40Qt@dissolution solution. In addition, impurities such as grinding stone powder and slag, which is an insoluble substance mainly composed of elements such as Cu, F, and ■, remained at the bottom of the chemical treatment tank, but these were removed by filtration. As a result of analyzing the above melt t, Sm4 AD p/L
SCoa41 N, Fs & Q p/L, Cu
(100 ink #/1.9 out of αoo 1p/L.

次にこの機械加工粉溶解溶液に5001の蓚酸水溶液を
徐々にa7Jl]シてSm元素を蓚酸塩として沈殿させ
た。この沈殿物をろ過した後、得られたSm元素修蓚酸
塩若干の水と500ノの水酸化す) IJウム水溶液を
徐々に肉刃口し、Sm7C索全水酸化物とした。この水
酸化@をろ過、水洗した恢、これに若干の水と5001
の蓚酸水浴液を加え、Sm7[:索を蓚11tJiとし
て沈殿させた。沈殿したSm7c素の蓚酸塩を水洗・ろ
過した。
Next, an aqueous solution of 5001 oxalic acid was gradually poured into this solution of machining powder to precipitate the Sm element as oxalate. After filtering this precipitate, the obtained Sm elemental oxalate was gradually mixed with some water and 500% IJ hydroxide aqueous solution to obtain Sm7C total hydroxide. After filtering and washing this hydroxide, add some water and 5001
An oxalic acid water bath solution was added to precipitate Sm7[:Sm7] as Sm11tJi. The precipitated oxalate of Sm7c was washed with water and filtered.

以上の処理によって得られ次官水スラリー状のSm元素
の蓚酸#AはssaKgであった。
The Sm element oxalic acid #A in the form of a water slurry obtained by the above treatment was ssaKg.

このスラリー状のSm元素の蓚酸塩を脱水・乾燥し、焼
成炉にて約1100℃の温度で258間焼成して酸化物
とした。得られたSm元素の酸化物の1童は110V4
であった。そしてこのSm元素の酸化物を分析した結果
、工業的に従来一般に使用されているSrn元索酸化物
と同品位のものであった。
This slurry of oxalate of Sm element was dehydrated and dried, and fired in a firing furnace at a temperature of about 1100° C. for 258 hours to form an oxide. One child of the obtained Sm element oxide is 110V4
Met. As a result of analysis of this oxide of the Sm element, it was found to be of the same quality as the Srn element oxide commonly used industrially.

一方、8m元票を除云した後のCo元素イオンに富む溶
W#溶液に2,0OOA!の炭酸す) IJウム水溶液
を徐々に加え、Coyc累を炭酸塩として沈殿させた。
On the other hand, after removing 8m yuan, the molten W# solution rich in Co element ions contains 2,0OOA! An aqueous solution of COYC was gradually added to precipitate the COYC as carbonate.

沈殿物を水洗・ろ過し、含水Co元素の炭識塩700〜
を得た。この含水Co元元素酸塩を脱水・乾燥し、焼成
炉にてif) 1.100℃の温度で2時間焼成して酸
化物とした。得られ友Co元素の酸化物の1量ね250
Kpであった。このCo元素の酸化物を分析した粕来、
工業的に従来一般に使用されているCo元素の酸化物と
同品位のものであった。
The precipitate is washed with water and filtered, and the carbon salt of hydrated Co element is 700 ~
I got it. This hydrated Co elemental salt was dehydrated and dried, and fired in a firing furnace at a temperature of 1.100°C for 2 hours to form an oxide. The amount of oxide of Co element obtained is 250
It was Kp. Kasuki, who analyzed this oxide of Co element,
It was of the same quality as the Co element oxide commonly used industrially.

以上得られた結果を表に示すと以下の通シとなる。The results obtained above are shown in the table below.

第1表は回収Sm元素酸化物の各分析値を示す。Table 1 shows each analysis value of the recovered Sm element oxide.

表中AU従従来業的に使用されている8m元X酸化物、
Bは本楯明の実施例1に+るSmCo5の酸化物、Cは
本発明の実施例2によるSm (Co ba l F@
o、* Cuo、iHf O,001! )s、sの酸
化物についてのものである。
In the table, AU conventionally used 8m elemental X oxide,
B is an oxide of SmCo5 according to Example 1 of the present invention, and C is Sm (Cobal F@) according to Example 2 of the present invention.
o, * Cuo, iHf O,001! )s, s oxide.

第2表は回収Co元素酸化物の各分析値を示す。Table 2 shows each analytical value of the recovered Co element oxide.

表中りは従来工業的に使用されているCo元素酸化物、
Eは本発明の実施例1によるSmCogの酸化物、Fは
本発明の実施例2によるSm (Cobal Fee、
s Cue、1Hfo、ou )s、sの酸化物につい
てのものである。
In the table, Co element oxides conventionally used industrially,
E is an oxide of SmCog according to Example 1 of the present invention, F is Sm (Cobal Fee,
s Cue, 1Hfo, ou ) Regarding the oxides of s and s.

以上説明し友とおシ、本発明にょシRCo希土類コバル
ト合金を機械加工することにょシ出る粉から、R元素と
Co元素とが工業的に使用可能な品位の酸化物として各
々分離・回収が可能とな9、省資源等の工業的効果は大
なるものがある。さらに本発明はRCo希土類コバルト
合金の製造面例えば製造原価の大幅な低減にも寄与する
等の効果tVするものである。
Having explained the above, my friend and I would like to express our understanding that in accordance with the present invention, R element and Co element can be separated and recovered as oxides of industrially usable grade from the powder produced when machining RCo rare earth cobalt alloy. 9. It has great industrial effects such as resource saving. Furthermore, the present invention has advantages in terms of manufacturing RCo rare earth cobalt alloys, such as contributing to a significant reduction in manufacturing costs.

代理人弁理士 本 間   崇Representative Patent Attorney Takashi Honma

Claims (1)

【特許請求の範囲】 t  RCo希土類コバルト合金(RはY?含むIII
類以上の希土類金属元素)の研削粉、切削粉おめ、上記
機械力ロエ粉會冨R元素沈殿物と冨Co元素イオン溶液
とに分離することに%徴とする希土類コバルト合金粉の
処理方法。 2、  RCo希土希土類ルト合金(RはYを含む1種
類以上の希土類金属元素)の研削粉、切削粉および切断
粉等の機械加工粉に、塩酸、蓚酸等のイ゛。 酸又はその水溶液七飽加して化学反応を生七しめ、上記
機械加工粉を冨R7C素沈殿物と冨Co元素イオン浴液
とに分離し、この冨R元素沈殿物、冨Co元素イオン溶
液の各々に水酸化ナトリウム水浴液、炭酸ナトリウム水
溶液等のアルカリ水浴液あるいは蓚酸等の酸又はその水
溶液’tfjSmして、R元素、Co元素のアルカリま
たは酸との化合物を生成せしめ、この生成化合物を焼成
してR7C素酸化智、Co元素酸化物を得ることを特徴
とする希土類コバルト合金粉の処理方法。
[Claims] t RCo rare earth cobalt alloy (R is Y?
A method for processing rare earth cobalt alloy powder, which involves separating grinding powder, cutting powder, and the above-mentioned mechanical force into a rich Co element precipitate and a rich Co element ion solution. . 2. Add hydrochloric acid, oxalic acid, etc. to machining powder such as grinding powder, cutting powder, and cutting powder of RCo rare earth metal alloy (R is one or more rare earth metal elements including Y). Acid or its aqueous solution is saturated to induce a chemical reaction, and the mechanically processed powder is separated into a rich R7C elementary precipitate and a rich Co element ion bath solution, and this rich R element precipitate and a rich Co element ion solution are separated. A sodium hydroxide water bath solution, an alkaline water bath solution such as a sodium carbonate aqueous solution, or an acid such as oxalic acid or its aqueous solution 'tfjSm is added to each of the above to form a compound of R element and Co element with an alkali or acid. A method for processing rare earth cobalt alloy powder, which comprises firing to obtain R7C element oxide and Co element oxide.
JP57073396A 1982-05-04 1982-05-04 Treatment of alloy power of rare earth element-cobalt Pending JPS58193331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57073396A JPS58193331A (en) 1982-05-04 1982-05-04 Treatment of alloy power of rare earth element-cobalt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57073396A JPS58193331A (en) 1982-05-04 1982-05-04 Treatment of alloy power of rare earth element-cobalt

Publications (1)

Publication Number Publication Date
JPS58193331A true JPS58193331A (en) 1983-11-11

Family

ID=13516992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57073396A Pending JPS58193331A (en) 1982-05-04 1982-05-04 Treatment of alloy power of rare earth element-cobalt

Country Status (1)

Country Link
JP (1) JPS58193331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1077603C (en) * 1998-05-12 2002-01-09 住友金属矿山株式会社 Recovering method of valuable composition from rare earth element-containing material and alloy powder obtained therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1077603C (en) * 1998-05-12 2002-01-09 住友金属矿山株式会社 Recovering method of valuable composition from rare earth element-containing material and alloy powder obtained therefrom

Similar Documents

Publication Publication Date Title
US20160068929A1 (en) EXTRACTION OF RARE EARTH METALS FROM NdFeB USING SELECTIVE SULFATION ROASTING
CN108929957B (en) Method for recovering high-purity rare earth oxide from rare earth oxide-containing waste
JPH0280530A (en) Method for separating rare earth element
AU2017343891B2 (en) Process for the preparation of a concentrate of metals, rare metals and rare earth metals from residues of alumina production by bayer process or from materials with a chemical composition similar to said residues, and refinement of the concentrate so obtained
CN103555950A (en) Recycling method of samarium cobalt magnetic waste material
CN107475540A (en) A kind of technique of titanium white devil liquor recovery vanadium and titanium
US3883634A (en) Liquid-liquid extraction of germanium from aqueous solution using hydroxy-oximes
JP3716908B2 (en) Recovery method of rare earth elements from sludge containing rare earth elements
KR100220976B1 (en) Recovering method for co,ni,cu from the scrap of diamond tools
JPS58193331A (en) Treatment of alloy power of rare earth element-cobalt
RU2070596C1 (en) Method of scandium concentrates production
US4964996A (en) Liquid/liquid extraction of rare earth/cobalt values
KR890004520B1 (en) A process for the overall recovery of uranium yttrium thorium and rare earths contained in a phosphate-bearing ore
JPH03207825A (en) Method for separating and recovering rare earth elements from raw material containing rare earth elements and iron
US2937925A (en) Solvent extraction process for uranium from chloride solutions
KR100942518B1 (en) Method for recycling cobalt from cobalt scrap
SU793373A3 (en) Method of purifying zinc sulfate solutions
US3640678A (en) Yttrium purification process
CN103773953A (en) Method for gathering eluate with low rare earth concentration by adopting ionic exchange method
JP7205275B2 (en) Gallium recovery method
AU620076B2 (en) Treatment of rare earths and cobalt containing residues
JPH0222426A (en) Method for recovering rare earth element
JPS60122718A (en) Recovering method of samarium
US3393046A (en) Method for purification of zinc sulphate solutions
JPS61153201A (en) Method for regenerating scrap of magnet containing rare earth element