JPH1129370A - Joint structure between ceramic part and the metal part - Google Patents

Joint structure between ceramic part and the metal part

Info

Publication number
JPH1129370A
JPH1129370A JP18529297A JP18529297A JPH1129370A JP H1129370 A JPH1129370 A JP H1129370A JP 18529297 A JP18529297 A JP 18529297A JP 18529297 A JP18529297 A JP 18529297A JP H1129370 A JPH1129370 A JP H1129370A
Authority
JP
Japan
Prior art keywords
external lead
metal layer
ceramic member
semiconductor element
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18529297A
Other languages
Japanese (ja)
Inventor
Atsushi Tanaka
淳 田中
Kifumi Mitani
軌文 三谷
Shigetomo Ikeda
成智 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP18529297A priority Critical patent/JPH1129370A/en
Publication of JPH1129370A publication Critical patent/JPH1129370A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Landscapes

  • Ceramic Products (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that a metal member cannot be firmly brazed to the metallized metal layer formed on the ceramic member due to the difference in the thermal expansion coefficient between the ceramic material and the metallic material. SOLUTION: The jointing structure between the ceramic member 1 and the metallic member 6 is prepared by brazing the metallic member 6 of iron-nickel- cobalt alloy to the metallized metal layer 4 covering the ceramic member 1 via a brazing mateal 7 melting over 600 deg.C. In this case, the ceramic member 1 has <=5.5×10<-6> / deg.C coefficient of thermal expansion (between room temperature or 800 deg.C) and metallic member 6 has a crystal size of <=100 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はセラミック部材に被
着させたメタライズ金属層と、鉄ーニッケルーコバルト
合金から成る金属部材との接合構造に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joint structure between a metallized metal layer applied to a ceramic member and a metal member made of an iron-nickel-cobalt alloy.

【0002】[0002]

【従来の技術】従来、例えば、半導体素子を収容するた
めの半導体素子収納用パッケージは、通常、酸化アルミ
ニウム質焼結体から成り、その上面の略中央部に半導体
素子を収容するための凹部及び該凹部周辺から外周縁に
かけて導出されたタングステン、モリブデン、マンガン
等の高融点金属粉末から成るメタライズ金属層を有する
絶縁基体と、半導体素子を外部電気回路に電気的に接続
するために前記メタライズ金属層に銀ロウ等のロウ材を
介してロウ付けされた鉄ーニッケルーコバルト合金から
成る外部リード端子と、蓋体とから構成されており、絶
縁基体の凹部底面に半導体素子を接着材を介して接着固
定するとともに該半導体素子の各電極をボンディングワ
イヤを介してメタライズ金属層に接続し、しかる後、絶
縁基体上面に蓋体を接合させ、絶縁基体と蓋体とから成
る容器内部に半導体素子を気密に封止することによって
最終製品としての半導体装置となる。
2. Description of the Related Art Conventionally, for example, a package for accommodating a semiconductor element for accommodating a semiconductor element is usually made of an aluminum oxide sintered body, and a recess for accommodating the semiconductor element is provided substantially at the center of the upper surface thereof. An insulating base having a metallized metal layer made of a refractory metal powder of tungsten, molybdenum, manganese or the like led out from the periphery of the concave portion to the outer peripheral edge; and the metallized metal layer for electrically connecting a semiconductor element to an external electric circuit. An external lead terminal made of an iron-nickel-cobalt alloy brazed through a brazing material such as silver brazing, and a lid, and a semiconductor element is attached to the bottom surface of the concave portion of the insulating base via an adhesive. Attach and fix and connect each electrode of the semiconductor element to the metallized metal layer via a bonding wire. It is bonded, the semiconductor device as a final product by sealing a semiconductor element hermetically in the container interior made of an insulating base and the lid.

【0003】なお、前記外部リード端子を構成する鉄ー
ニッケルーコバルト合金は鉄ーニッケルーコバルト合金
から成るインゴット(塊)に圧延加工法及び打ち抜き加
工法等、従来周知の金属加工法を採用することによって
所定の板状に形成し、しかる後、これを所定温度(約1
000℃)で加熱処理をし、焼き鈍しすることによって
製作されており、鉄ーニッケルーコバルト合金から成る
外部リード端子はその結晶径が約200μmとなってい
る。
[0003] The iron-nickel-cobalt alloy constituting the external lead terminal employs a conventionally known metal working method such as a rolling method and a punching method for an ingot made of an iron-nickel-cobalt alloy. In this manner, the plate is formed into a predetermined plate shape, and thereafter, is heated to a predetermined temperature (about 1
000 ° C.) and annealed. The external lead terminals made of an iron-nickel-cobalt alloy have a crystal diameter of about 200 μm.

【0004】しかしながら、近時、半導体素子は高密度
化、高速化が急激に進み、該半導体素子を上記従来の半
導体素子収納用パッケージに収容した場合、以下に述べ
る欠点を有したものとなる。
However, recently, semiconductor devices have rapidly increased in density and speed, and when the semiconductor devices are housed in the above-mentioned conventional semiconductor device housing package, the semiconductor devices have the following disadvantages.

【0005】即ち、(1)絶縁基体を構成する酸化アル
ミニウム質焼結体の熱伝導率が約20W/m・Kと低い
ため、絶縁基体が半導体素子の作動時に発生する熱を大
気中に良好に放散させることができず、半導体素子が該
半導体素子の発する熱によって高温となり、半導体素子
に熱破壊を起こさせたり、特性に熱変化を与え、誤動作
を生じさせたりする、(2)絶縁基体を構成する酸化ア
ルミニウム質焼結体の比誘電率が約10(室温1MH
z)と高いため、絶縁基体に設けたメタライズ金属層を
伝わる電気信号の伝搬速度が遅く、そのため信号の高速
伝搬を要求する半導体素子はその収容が不可となる、

等の欠点を有していた。
[0005] (1) Since the thermal conductivity of the aluminum oxide sintered body constituting the insulating base is as low as about 20 W / m · K, the heat generated by the insulating base during operation of the semiconductor element is excellent in the atmosphere. (2) Insulating substrate, which cannot be dissipated to the semiconductor element, and the semiconductor element is heated by the heat generated by the semiconductor element, so that the semiconductor element is destroyed by heat or a property is changed by heat to cause a malfunction. Has a relative dielectric constant of about 10 (1 MH at room temperature).
z), the propagation speed of the electric signal transmitted through the metallized metal layer provided on the insulating base is low, so that a semiconductor element requiring high-speed propagation of the signal cannot be accommodated.

And the like.

【0006】そこで上記欠点を解消するために半導体素
子収納用パッケージの絶縁基体を熱伝導率が25W/m
・K以上と高く、比誘電率が8.5(室温1MHz)以
下と低い窒化アルミニウム質焼結体や窒化珪素質焼結体
等で形成することが検討されている。
Therefore, in order to solve the above-mentioned disadvantage, the insulating base of the package for housing the semiconductor element has a thermal conductivity of 25 W / m.
The formation of an aluminum nitride-based sintered body or a silicon nitride-based sintered body having a high dielectric constant of at least K and a low relative dielectric constant of 8.5 (room temperature of 1 MHz) or less is being studied.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、窒化ア
ルミニウム質焼結体や窒化珪素質焼結体等はその熱膨張
係数が5.5×10-6/℃(室温〜800℃)以下と低
く、外部リード端子を構成する鉄ーニッケルーコバルト
合金の熱膨張係数(9.9×10-6/℃:室温〜800
℃)と大きく相違すること及び外部リード端子を構成す
る鉄ーニッケルーコバルト合金の結晶径が200μmと
大きく伸延性に劣ること等から絶縁基体に被着させたメ
タライズ金属層に外部リード端子を銀ロウ等のロウ材を
介してロウ付けする際、絶縁基体と外部リード端子との
間に、該絶縁基体と外部リード端子の熱膨張係数の相違
に起因して大きな熱応力が発生するとともにこの熱応力
によって外部リード端子を絶縁基体に被着させたメタラ
イズ金属層に強固にロウ付けすることができず、また同
時に絶縁基体と外部リード端子との間に発生した熱応力
によって絶縁基体にクラックや割れ等が発生したりする
という欠点を誘発した。
However, aluminum nitride sintered bodies and silicon nitride sintered bodies have a low coefficient of thermal expansion of 5.5 × 10 −6 / ° C. (room temperature to 800 ° C.) or less. Thermal expansion coefficient of iron-nickel-cobalt alloy constituting the external lead terminal (9.9 × 10 −6 / ° C .: room temperature to 800
C)) and the crystal diameter of the iron-nickel-cobalt alloy constituting the external lead terminal is as large as 200 μm and the ductility is inferior. For example, the external lead terminal is formed on the metallized metal layer adhered to the insulating substrate. When brazing via a brazing material such as brazing, a large thermal stress is generated between the insulating base and the external lead terminals due to the difference in the thermal expansion coefficient between the insulating base and the external lead terminals, and this thermal stress is generated. The external lead terminals cannot be firmly brazed to the metallized metal layer adhered to the insulating substrate due to the stress, and at the same time, the insulating substrate has cracks and cracks due to the thermal stress generated between the insulating substrate and the external lead terminals. And so on.

【0008】即ち、従来の熱膨張係数が5.5×10-6
/℃以下(室温〜800℃)のセラミック部材と、熱膨
張係数が9.9×10-6/℃(室温〜800℃)の鉄ー
ニッケルーコバルト合金から成る金属部材との接合にお
いては、金属部材をセラミック部材に被着させたメタラ
イズ金属層に強固にロウ付けすることができず、また熱
の印加によりセラミック部材が破損するという欠点を有
していた。
That is, the conventional coefficient of thermal expansion is 5.5 × 10 −6.
/ C (room temperature to 800C) and a metal member made of an iron-nickel-cobalt alloy having a thermal expansion coefficient of 9.9 x 10-6 / C (room temperature to 800C), The metal member cannot be firmly brazed to the metallized metal layer adhered to the ceramic member, and the ceramic member is damaged by application of heat.

【0009】本発明は上記欠点に鑑み案出されたもの
で、その目的はセラミック部材にクラックや割れ等を発
生するのを有効に防止しつつ、セラミック部材に被着さ
せたメタライズ金属層に鉄ーニッケルーコバルト合金か
ら成る金属部材を極めて強固にロウ付けすることができ
るセラミック部材と金属部材の接合構造を提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks. It is an object of the present invention to provide a metallized metal layer adhered to a ceramic member while effectively preventing cracks and cracks from occurring in the ceramic member. It is an object of the present invention to provide a joining structure of a ceramic member and a metal member, which can extremely strongly braze a metal member made of a nickel-cobalt alloy.

【0010】[0010]

【課題を解決するための手段】本発明はセラミック部材
に被着させたメタライズ金属層に、鉄ーニッケルーコバ
ルト合金から成る金属部材を融点が600℃以上のロウ
材を介してロウ付けして成るセラミック部材と金属部材
の接合構造であって、前記セラミック部材の熱膨張係数
が5.5×10-6/℃(室温〜800℃)であり、かつ
金属部材の結晶径が100μm以下であることを特徴と
するものである。
According to the present invention, a metal member made of an iron-nickel-cobalt alloy is brazed to a metallized metal layer adhered to a ceramic member via a brazing material having a melting point of 600 ° C. or more. The ceramic member has a thermal expansion coefficient of 5.5 × 10 −6 / ° C. (room temperature to 800 ° C.), and the metal member has a crystal diameter of 100 μm or less. It is characterized by the following.

【0011】本発明のセラミック部材と金属部材の接合
構造によれば、金属部材を形成する鉄ーニッケルーコバ
ルト合金の結晶径を100μm以下とし、伸延性が良好
なものとしたことから熱膨張係数が5.5×10-6/℃
(室温〜800℃)以下のセラミック部材と、熱膨張係
数が9.9×10-6/℃(室温〜800℃)の金属部材
とをロウ付けする際、セラミック部材と金属部材との間
に両者の熱膨張係数の相違に起因して大きな熱応力が発
生したとしてもその熱応力は金属部材に伸びを生じさせ
ることによって有効に吸収され、その結果、セラミック
部材に被着させたメタライズ金属層に金属部材を強固に
ロウ付けさせることが可能となる。
According to the joint structure of the ceramic member and the metal member of the present invention, the crystal diameter of the iron-nickel-cobalt alloy forming the metal member is set to 100 μm or less and the extensibility is improved, so that the coefficient of thermal expansion is improved. Is 5.5 × 10 -6 / ° C.
When brazing a ceramic member (room temperature to 800 ° C.) or less and a metal member having a thermal expansion coefficient of 9.9 × 10 −6 / ° C. (room temperature to 800 ° C.), Even if a large thermal stress is generated due to the difference in thermal expansion coefficient between the two, the thermal stress is effectively absorbed by causing the metal member to elongate, and as a result, the metallized metal layer applied to the ceramic member The metal member can be firmly brazed.

【0012】また同時にセラミック部材と金属部材との
間に両者の熱膨張係数の相違に起因して大きな熱応力が
発生したとしてもその熱応力は金属部材に伸びを生じさ
せることによって有効に吸収されることからセラミック
部材にクラックや割れ等を生じることもない。
Further, even if a large thermal stress is generated between the ceramic member and the metal member due to a difference in thermal expansion coefficient between the ceramic member and the metal member, the thermal stress is effectively absorbed by causing the metal member to elongate. Therefore, there is no occurrence of cracks or cracks in the ceramic member.

【0013】[0013]

【発明の実施の形態】次に本発明のセラミック部材と金
属部材の接合構造を半導体素子を収容する半導体素子収
納用パッケージのセラミック部材から成る絶縁基体と金
属部材から成る外部リード端子との接合を例に採って説
明する。図1は内部に半導体素子を収容するための半導
体素子収納用パッケージの一実施例を示す断面図であ
り、図中、1はセラミック部材から成る絶縁基体、2は
蓋体である。この絶縁基体1と蓋体2とで内部に半導体
素子3を収容する容器が構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the joining structure of a ceramic member and a metal member of the present invention will be described with reference to the joining of an insulating base made of a ceramic member of a package for housing a semiconductor element and an external lead terminal made of a metal member. This will be described using an example. FIG. 1 is a cross-sectional view showing one embodiment of a semiconductor element housing package for housing a semiconductor element therein. In the figure, reference numeral 1 denotes an insulating base made of a ceramic member, and 2 denotes a lid. The insulating base 1 and the lid 2 constitute a container for housing the semiconductor element 3 inside.

【0014】前記絶縁基体1は、例えば、窒化アルミニ
ウム95重量%、酸化イットリウム5重量%から成る窒
化アルミニウム質焼結体や、窒化珪素90重量%、酸化
アルミニウム5重量%、酸化イットリウム5重量%から
成る窒化珪素質焼結体等から成り、その上面中央部に半
導体素子3を収容するための空所を形成する凹部1aが
設けてあり、該凹部1a底面には半導体素子3がロウ
材、ガラス、樹脂等の接着材を介して接着固定される。
The insulating substrate 1 is made of, for example, an aluminum nitride sintered body composed of 95% by weight of aluminum nitride and 5% by weight of yttrium oxide, or 90% by weight of silicon nitride, 5% by weight of aluminum oxide, and 5% by weight of yttrium oxide. A concave portion 1a is formed in the center of the upper surface to form a cavity for accommodating the semiconductor element 3, and the semiconductor element 3 is formed of a brazing material, glass, or the like on the bottom surface of the concave portion 1a. , And is bonded and fixed via an adhesive such as resin.

【0015】前記絶縁基体1は、例えば、窒化アルミニ
ウム質焼結体により形成されている場合、主原料として
の窒化アルミニウム(AIN)に焼結助剤としてのイツ
トリアやカルシア及び適当な有機溶剤、溶媒を添加混合
して泥紫状となすとともにこれを従来周知のドクターブ
レード法やカレンダーロール法を採用することによって
グリーンシート(生シート)を形成し、しかる後、前記
グリーンシートに適当な打ち抜き加工を施すとともに複
数枚積層し、高温(約1800℃)で焼成することによ
って製作される。
When the insulating substrate 1 is made of, for example, an aluminum nitride sintered body, aluminum nitride (AIN) as a main raw material is mixed with sintering aids such as yttria and calcia and a suitable organic solvent or solvent. To form a green sheet (green sheet) by employing a conventionally known doctor blade method or calender roll method, and then subjecting the green sheet to appropriate punching processing It is manufactured by applying and laminating a plurality of sheets and firing at a high temperature (about 1800 ° C.).

【0016】前記窒化アルミニウム質焼結体から成る絶
縁基体1はその熱伝導率が150W/m・K以上であ
り、熱を伝え易いことから絶縁基体1の凹部1a底面に
接着固定した半導体素子3が作動時に熱を発したとして
も、該半導体素子3の発した熱は絶縁基体1を介して大
気中に良好に放出され、その結果、半導体素子3を常に
適温として半導体素子3を長期間にわたり正常、かつ安
定に作動させることができる。
The insulating substrate 1 made of the aluminum nitride sintered body has a thermal conductivity of 150 W / m · K or more and is easy to conduct heat. Generates heat during operation, the heat generated by the semiconductor element 3 is satisfactorily released into the atmosphere via the insulating substrate 1, so that the semiconductor element 3 is always kept at an appropriate temperature and the semiconductor element 3 is maintained for a long period of time. It can operate normally and stably.

【0017】また前記絶縁基体1はその上面中央部に設
けた凹部1aの周辺から外周縁にかけて複数個のメタラ
イズ金属層4が被着形成されており、該メタライズ金属
層4の凹部1a周辺部には半導体素子3の電極がボンデ
イングワイヤ5を介して電気的に接続され、また絶縁基
体1の外周縁に導出する部位には外部リード端子6が銀
ロウ等のロウ材7を介してロウ付けされている。
The insulating substrate 1 is formed with a plurality of metallized metal layers 4 formed from the periphery of the concave portion 1a provided at the center of the upper surface to the outer peripheral edge, and is formed around the concave portion 1a of the metallized metal layer 4. The electrodes of the semiconductor element 3 are electrically connected via bonding wires 5, and external lead terminals 6 are brazed to a portion extending to the outer peripheral edge of the insulating base 1 via a brazing material 7 such as silver brazing. ing.

【0018】前記絶縁基体1に設けたメタライズ金属層
4は外部電気回路に接続される外部リード端子6と半導
体素子3の各電極とを電気的に導通させる作用を為し、
タングステン、モリブデン、マンガン等の金属粉末で形
成されている。
The metallized metal layer 4 provided on the insulating base 1 functions to electrically connect the external lead terminals 6 connected to an external electric circuit to the respective electrodes of the semiconductor element 3,
It is formed of a metal powder such as tungsten, molybdenum, and manganese.

【0019】前記メタライズ金属層4は、例えば、タン
グステン等の金属粉末に有機溶剤、溶媒を添加混合して
得た金属ペーストを絶縁基体1となるグリーンシートに
予め従来周知のスクリーン印刷法により所定パターンに
印刷塗布しておくことによって絶縁基体1の凹部1a周
辺から外周縁にかけて所定パターンに被着形成される。
The metallized metal layer 4 is formed, for example, by applying a metal paste obtained by adding an organic solvent and a solvent to a metal powder such as tungsten on a green sheet serving as the insulating substrate 1 in a predetermined pattern by a conventionally well-known screen printing method. Is printed and applied on the insulating substrate 1 to form a predetermined pattern from the periphery of the concave portion 1a to the outer peripheral edge.

【0020】前記絶縁基体1に設けたメタライズ金属層
4は、絶縁基体1を構成する窒化アルミニウム質焼結体
や窒化珪素質焼結体の比誘電率が8.5(室温1MH
z)以下と低いことからメタライズ金属層4を伝わる電
気信号の伝搬速度が速いものとなり、その結果、絶縁基
体1の凹部1a底面に電気信号の高速伝搬を要求する高
速駆動を行う半導体素子の収容が可能となる。
The metallized metal layer 4 provided on the insulating base 1 has a relative dielectric constant of 8.5 (room temperature 1 MH) of the aluminum nitride sintered body or silicon nitride based sintered body forming the insulating base 1.
z) Since it is as low as below, the propagation speed of the electric signal transmitted through the metallized metal layer 4 is increased, and as a result, the semiconductor element which performs high-speed driving that requires high-speed propagation of the electric signal is accommodated in the bottom surface of the concave portion 1a of the insulating base 1. Becomes possible.

【0021】なお、前記メタライズ金属層4はその露出
する外表面にニッケル、金等の耐蝕性に優れ、かつロウ
材と濡れ性の良い金属をメッキ法により1.0乃至2
0.0μmの厚みに被着させておくとメタライズ金属層
4の酸化腐食を有効に防止することができるとともにメ
タライズ金属層4とボンデイングワイヤ5及び外部リー
ド端子6とのロウ付け接合を強固なものとなすことがで
きる。従って、前記メタライズ金属層4はその表面にニ
ッケル、金等の耐蝕性に優れ、かつロウ材と濡れ性の良
い金属をメッキ法により1.0乃至20.0μmの厚み
に被着させておくことが好ましい。
The metallized metal layer 4 is coated on its exposed outer surface with a metal having excellent corrosion resistance such as nickel and gold and a good wettability with a brazing material by a plating method.
When the metallized metal layer 4 is applied to a thickness of 0.0 μm, oxidation corrosion of the metallized metal layer 4 can be effectively prevented and the brazed joint between the metallized metal layer 4 and the bonding wires 5 and the external lead terminals 6 is firmly bonded. Can be made. Therefore, the metallized metal layer 4 should be coated with a metal having excellent corrosion resistance such as nickel and gold and a good wettability with a brazing material to a thickness of 1.0 to 20.0 μm by plating. Is preferred.

【0022】また前記絶縁基体1に被着させたメタライ
ズ金属層4には外部リート端子6が銀ロウ等のロウ材7
を介してロウ付けされており、該外部リード端子6は半
導体素子3の各電極を外部電気回路に電気的に接続する
作用を為す。
The metallized metal layer 4 adhered to the insulating base 1 has an external lead terminal 6 on which a brazing material 7 such as silver brazing is used.
The external lead terminal 6 functions to electrically connect each electrode of the semiconductor element 3 to an external electric circuit.

【0023】前記外部リード端子6は鉄−ニッケルーコ
バルト合金から成り、鉄−ニッケルーコバルト合金のイ
ンゴット(塊)を圧延加工法や打ち抜き加工法等、従来
周知の金属加工法を採用し、所定の板状に形成するとと
もに所定の温度で熱処理し、焼き鈍しすることによって
製作される。
The external lead terminal 6 is made of an iron-nickel-cobalt alloy, and a well-known metal working method such as a rolling method or a punching method is used to form an ingot of the iron-nickel-cobalt alloy. It is manufactured by heat-treating at a predetermined temperature and annealing.

【0024】更に前記外部リード端子6はその結晶径を
100μm以下の伸延性が優れたものとなしてあり、そ
のためこの外部リード端子6を絶縁基体1に被着形成し
たメタライズ金属層4に銀ロウ等のロウ材7を介してロ
ウ付けする際、絶縁基体1の熱膨張係数(5.5×10
-6/℃以下:室温〜800℃)と、鉄−ニッケルーコバ
ルト合金から成る外部リード端子6の熱膨張係数(9.
9×10-6/℃:室温〜800℃)が大きく相違し、絶
縁基体1と外部リード端子6との間に両者の熱膨張係数
の相違に起因して大きな熱応力が発生したとしてもその
熱応力は外部リード端子6に伸びを生じさせることによ
って有効に吸収され、その結果、絶縁基体1に被着させ
たメタライズ金属層4に外部リード端子6を強固にロウ
付けすることが可能となる。
Further, the external lead terminal 6 has an excellent extensibility with a crystal diameter of 100 μm or less. Therefore, the external lead terminal 6 is formed on the metallized metal layer 4 formed on the insulating substrate 1 by silver brazing. When brazing through a brazing material 7 such as, for example, the thermal expansion coefficient (5.5 × 10
−6 / ° C. or less: room temperature to 800 ° C.) and the thermal expansion coefficient of the external lead terminal 6 made of an iron-nickel-cobalt alloy (9.
9 × 10 −6 / ° C .: room temperature to 800 ° C.), and even if a large thermal stress is generated between the insulating base 1 and the external lead terminal 6 due to a difference in thermal expansion coefficient between the two. Thermal stress is effectively absorbed by causing the external lead terminal 6 to elongate, and as a result, the external lead terminal 6 can be firmly brazed to the metallized metal layer 4 attached to the insulating base 1. .

【0025】また同時に絶縁基体1と外部リード端子6
との間に両者の熱膨張係数の相違に起因して大きな熱応
力が発生したとしてもその熱応力は外部リード端子6に
伸びを生じさせることによって有効に吸収されることか
ら絶縁基体1にクラックや割れ等を生じることもない。
At the same time, the insulating base 1 and the external lead terminals 6
Even if a large thermal stress is generated due to the difference in the thermal expansion coefficient between the two, the thermal stress is effectively absorbed by causing the external lead terminal 6 to elongate. There is no occurrence of cracks or the like.

【0026】前記外部リード端子6はその結晶径が10
0μmを超えると外部リード端子6の伸延性が悪くな
り、その結果、外部リード端子6を絶縁基体1に被着形
成したメタライズ金属層4に銀ロウ等のロウ材を介して
ロウ付けする際、外部リード端子6と絶縁基体1との間
に発生する熱応力によって絶縁基体1に被着させたメタ
ライズ金属層4と外部リード端子6との接合強度が弱く
なったり、絶縁基体1にクラックや割れ等が発生してし
まう。従って、前記外部リード端子6はその結晶径が1
00μm以下に特定される。
The external lead terminal 6 has a crystal diameter of 10
If the thickness exceeds 0 μm, the extensibility of the external lead terminals 6 deteriorates. As a result, when the external lead terminals 6 are brazed to the metallized metal layer 4 formed on the insulating base 1 via a brazing material such as silver brazing, Due to the thermal stress generated between the external lead terminal 6 and the insulating base 1, the bonding strength between the metallized metal layer 4 adhered to the insulating base 1 and the external lead terminal 6 is weakened, or the insulating base 1 is cracked or broken. Etc. will occur. Therefore, the external lead terminal 6 has a crystal diameter of 1
It is specified to be not more than 00 μm.

【0027】また前記外部リード端子6の結晶径を10
0μm以下とするのは鉄ーニッケルーコバルト合金から
成るインゴット(塊)に圧延加工法及び打ち抜き加工法
等、従来周知の金属加工法を採用することによって所定
の板状の外部リード端子6を得、しかる後、これに加熱
処理を施し、焼き鈍しする際の温度を900℃以下とす
ることによって行われる。
The external lead terminal 6 has a crystal diameter of 10
The reason why the thickness is set to 0 μm or less is to obtain a predetermined plate-shaped external lead terminal 6 by employing a conventionally known metal working method such as a rolling method and a punching method on an ingot made of an iron-nickel-cobalt alloy. Thereafter, heat treatment is performed on the resultant, and the annealing is performed at a temperature of 900 ° C. or less.

【0028】なお、前記外部リード端子6の結晶径は金
属顕微鏡を用いることによって測定される。
The crystal diameter of the external lead terminal 6 is measured by using a metal microscope.

【0029】更に前記外部リード端子6の絶縁基体1に
被着させたメタライズ金属層4へのロウ付けは、例え
ば、絶縁基体1に被着させたメタライズ金属層4上に外
部リード端子6を間に銀ロウから成るロウ材7の箔を挟
んで載置させ、しかる後、前記ロウ材7の箔を780℃
〜900℃の温度に加熱し、ロウ材7を溶融させること
によって行われる。
Further, the brazing of the external lead terminals 6 to the metallized metal layer 4 adhered to the insulating substrate 1 is performed, for example, by interposing the external lead terminals 6 on the metallized metal layer 4 adhered to the insulating substrate 1. The foil of the brazing material 7 made of silver brazing is placed between them, and then the foil of the brazing material 7 is heated to 780 ° C.
This is performed by heating to a temperature of about 900 ° C. to melt the brazing material 7.

【0030】また更に前記外部リード端子6はその露出
する外表面にニッケル、金等の耐蝕性に優れ、かつロウ
材と濡れ性の良い金属をメッキ法により1.0乃至2
0.0μmの厚みに被着させておくと外部リード端子6
の酸化腐食を有効に防止することができるとともに外部
リード端子6の外部電気回路へのロウ材を介しての電気
的接続が良好となる。従って、前記外部リード端子6は
その表面にニッケル、金等の耐蝕性に優れ、かつロウ材
と濡れ性の良い金属をメッキ法により1.0乃至20.
0μmの厚みに被着させておくことが好ましい。
Further, the external lead terminal 6 is coated with a metal having excellent corrosion resistance such as nickel and gold and a good wettability with a brazing material by a plating method on the exposed outer surface.
If it is applied to a thickness of 0.0 μm, the external lead terminals 6
Of the external lead terminals 6 to the external electric circuit via the brazing material is improved. Therefore, the external lead terminals 6 are made of a metal having excellent corrosion resistance such as nickel and gold and a good wettability with a brazing material by a plating method.
Preferably, it is applied to a thickness of 0 μm.

【0031】かくして上述の半導体素子収納用パッケー
ジによれば絶縁基体1の凹部1a底面に半導体素子3を
ロウ材、ガラス、樹脂等の接着剤を介して取着するとと
もに該半導体素子3の各電極をボンデイングワイヤ5を
介してメタライズ金属層4に電気的に接続し、しかる
後、絶縁基体1の上面に蓋体2を樹脂、ガラス等の封止
材を介して接合させ、絶縁基体1と蓋体2とから成る容
器内部に半導体素子3を気密に収容することによって製
品としで半導体装置が完成する。
Thus, according to the above-mentioned package for accommodating a semiconductor element, the semiconductor element 3 is attached to the bottom surface of the concave portion 1a of the insulating base 1 via an adhesive such as brazing material, glass, resin, etc. Is electrically connected to the metallized metal layer 4 via the bonding wire 5, and then the lid 2 is joined to the upper surface of the insulating base 1 via a sealing material such as resin or glass. The semiconductor device 3 is completed as a product by hermetically housing the semiconductor element 3 inside the container including the body 2.

【0032】尚、本発明は上述した半導体素子を収容す
る半導体素子収納用パッケージに限定されるものではな
く、本発明の要旨を逸脱しない範囲であれば種々の変更
は可能であり、熱膨張係数が5.5×10-6/℃以下
(室温〜800℃)のセラミック部材と鉄ーニッケルー
コバルト合金から成る金属部材とを融点が600℃以上
のロウ材を介してロウ付けする全ての製品に適用可能で
ある。
The present invention is not limited to the semiconductor device housing package for housing the above-described semiconductor device, and various modifications can be made without departing from the scope of the present invention. All products in which a ceramic member having a temperature of 5.5 × 10 −6 / ° C. or less (room temperature to 800 ° C.) and a metal member made of an iron-nickel-cobalt alloy are brazed through a brazing material having a melting point of 600 ° C. or more. Applicable to

【0033】[0033]

【発明の効果】本発明のセラミック部材と金属部材の接
合構造によれば、金属部材を形成する鉄ーニッケルーコ
バルト合金の結晶径を100μm以下とし、伸延性が良
好なものとしたことから熱膨張係数が5.5×10-6
℃(室温〜800℃)以下のセラミック部材と、熱膨張
係数が9.9×10-6/℃(室温〜800℃)の金属部
材とをロウ付けする際、セラミック部材と金属部材との
間に両者の熱膨張係数の相違に起因して大きな熱応力が
発生したとしてもその熱応力は金属部材に伸びを生じさ
せることによって有効に吸収され、その結果、セラミッ
ク部材に被着させたメタライズ金属層に金属部材を強固
にロウ付けさせることが可能となる。
According to the joint structure of the ceramic member and the metal member of the present invention, the crystal diameter of the iron-nickel-cobalt alloy forming the metal member is set to 100 μm or less and the extensibility is improved. Expansion coefficient is 5.5 × 10 -6 /
When brazing a ceramic member having a thermal expansion coefficient of 9.9 × 10 −6 / ° C. (room temperature to 800 ° C.) or less between a ceramic member and a metal member having a thermal expansion coefficient of 9.9 ° C. (room temperature to 800 ° C.) or less. Even if a large thermal stress is generated due to the difference in thermal expansion coefficient between the two, the thermal stress is effectively absorbed by causing the metal member to elongate, and as a result, the metallized metal deposited on the ceramic member The metal member can be firmly brazed to the layer.

【0034】また同時にセラミック部材と金属部材との
間に両者の熱膨張係数の相違に起因して大きな熱応力が
発生したとしてもその熱応力は金属部材に伸びを生じさ
せることによって有効に吸収されることからセラミック
部材にクラックや割れ等を生じることもない。
At the same time, even if a large thermal stress is generated between the ceramic member and the metal member due to a difference in thermal expansion coefficient between the ceramic member and the metal member, the thermal stress is effectively absorbed by causing the metal member to elongate. Therefore, there is no occurrence of cracks or cracks in the ceramic member.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセラミック部材と金属部材の接合構造
を、半導体素子を収容する半導体素子収納用パッケージ
のセラミック部材から成る絶縁基体と金属部材から成る
外部リード端子との接合を例に採って説明するための断
面図である。
FIG. 1 shows a joining structure of a ceramic member and a metal member of the present invention, taking as an example the joining of an insulating base made of a ceramic member and an external lead terminal made of a metal member of a semiconductor element housing package for housing a semiconductor element. It is sectional drawing for demonstrating.

【符号の説明】[Explanation of symbols]

1・・・・・絶縁基体 2・・・・・蓋体 3・・・・・半導体素子 4・・・・・メタライズ金属層 6・・・・・外部リード端子 7・・・・・ロウ材 DESCRIPTION OF SYMBOLS 1 ... Insulating base 2 ... Lid 3 ... Semiconductor element 4 ... Metallized metal layer 6 ... External lead terminal 7 ... Brazing material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 23/50 H01L 23/50 V ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 23/50 H01L 23/50 V

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】セラミック部材に被着させたメタライズ金
属層に、鉄ーニッケルーコバルト合金から成る金属部材
を融点が600℃以上のロウ材を介してロウ付けして成
るセラミック部材と金属部材の接合構造であって、前記
セラミック部材の熱膨張係数が5.5×10-6/℃以下
(室温〜800℃)であり、かつ金属部材の結晶径が1
00μm以下であることを特徴とするセラミック部材と
金属部材の接合構造。
1. A ceramic member formed by brazing a metal member made of an iron-nickel-cobalt alloy to a metallized metal layer adhered to a ceramic member via a brazing material having a melting point of 600 ° C. or more. The ceramic member has a thermal expansion coefficient of 5.5 × 10 −6 / ° C. or less (room temperature to 800 ° C.) and a metal member having a crystal diameter of 1 mm.
A joining structure between a ceramic member and a metal member, which is not more than 00 μm.
JP18529297A 1997-07-10 1997-07-10 Joint structure between ceramic part and the metal part Pending JPH1129370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18529297A JPH1129370A (en) 1997-07-10 1997-07-10 Joint structure between ceramic part and the metal part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18529297A JPH1129370A (en) 1997-07-10 1997-07-10 Joint structure between ceramic part and the metal part

Publications (1)

Publication Number Publication Date
JPH1129370A true JPH1129370A (en) 1999-02-02

Family

ID=16168314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18529297A Pending JPH1129370A (en) 1997-07-10 1997-07-10 Joint structure between ceramic part and the metal part

Country Status (1)

Country Link
JP (1) JPH1129370A (en)

Similar Documents

Publication Publication Date Title
JP3404277B2 (en) Package for storing semiconductor elements
JPH03196664A (en) Package for semiconductor device
JPH1129370A (en) Joint structure between ceramic part and the metal part
JP2735708B2 (en) Ceramic wiring board
JP2750248B2 (en) Package for storing semiconductor elements
JPH05160284A (en) Semiconductor device containing package
JP2746813B2 (en) Package for storing semiconductor elements
JP3426741B2 (en) Package for storing semiconductor elements
JPH06334077A (en) Package for containing semiconductor element
JP2001342081A (en) Junction structure of ceramic member and metallic member and electrostatic chuck and package for storage of semiconductor device
JP2792636B2 (en) Package for storing semiconductor elements
JP2948991B2 (en) Package for storing semiconductor elements
JP2783735B2 (en) Package for storing semiconductor elements
JPH0669364A (en) Package for accommodation of semiconductor element
JP3176267B2 (en) Package for storing semiconductor elements
JP2873105B2 (en) Package for storing semiconductor elements
JP3176251B2 (en) Package for storing semiconductor elements
JP2717727B2 (en) Package for storing semiconductor elements
JP2514911Y2 (en) Package for storing semiconductor devices
JP2784094B2 (en) Package for storing semiconductor elements
JPH06169025A (en) Semiconductor element housing package
JP3323010B2 (en) Package for storing semiconductor elements
JP2784129B2 (en) Package for storing semiconductor elements
JP2813072B2 (en) Package for storing semiconductor elements
JP2813073B2 (en) Package for storing semiconductor elements

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207