JPH11177156A - Machining method for thermoelectric conversion material and production of thermoelectric conversion element - Google Patents

Machining method for thermoelectric conversion material and production of thermoelectric conversion element

Info

Publication number
JPH11177156A
JPH11177156A JP9363625A JP36362597A JPH11177156A JP H11177156 A JPH11177156 A JP H11177156A JP 9363625 A JP9363625 A JP 9363625A JP 36362597 A JP36362597 A JP 36362597A JP H11177156 A JPH11177156 A JP H11177156A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
thermoelectric
semiconductor material
thermoelectric semiconductor
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9363625A
Other languages
Japanese (ja)
Inventor
Yasutoshi Noda
泰稔 野田
Yasuo Kou
燕生 康
Shinichi Moriya
信一 森谷
Masayuki Shinno
正之 新野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Original Assignee
National Aerospace Laboratory of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan filed Critical National Aerospace Laboratory of Japan
Priority to JP9363625A priority Critical patent/JPH11177156A/en
Publication of JPH11177156A publication Critical patent/JPH11177156A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance thermoelectric conversion characteristics by performing pressure deformation or extrusion plastic working of a fused or sintered thermoelectric semiconductor material while heating electrically. SOLUTION: A metal powder material 6 for one electrode of a thermoelectric conversion element, a sintered or fused mass of thermoelectric semiconductor material 5, and a metal powder material 6 for the other electrode are arranged sequentially on a punch 4 in the cavity 1 of a die 2. Punches 3, 4 are then pressed each other or one punch is pressed against the other thus compressing the powdery electrode material 6 and the semiconductor material 5. Under that state, a large current is fed between the conductive punches 3, 4 and hot working is performed. Alternatively, a punch 23 is pressed toward the outlet 24 of a die 22 to extrude the thermoelectric semiconductor material 5 while softening. In this regard, a large current is fed between the conductive punches 23, 22 to generate heat and the material is extruded by applying a pressure while controlling the working temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱エネルギーを電
力に変換する熱電変換材料の加工法と熱電変換素子の製
造方法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing a thermoelectric conversion material for converting heat energy into electric power and a method for manufacturing a thermoelectric conversion element.

【0002】[0002]

【従来の技術】熱電変換素子を製造するに当たっての熱
電変換材料の加工方法として、熱電変換材料の融体から
成長させた溶製体、あるいは粉体の焼結による焼結体が
使用されてきている。熱電変換材料の熱電変換の高効率
化のためには、材料の電気伝導度およびゼーベック係数
の増大と、熱伝導度の低減が不可欠とされている。粉末
原料の焼結による熱電変換材料の製造は、熱伝導度の制
御に特に有利であり、従来熱電変換材料の多くがこの方
法によって製造されてきた。
2. Description of the Related Art As a method of processing a thermoelectric conversion material in manufacturing a thermoelectric conversion element, an ingot grown from a melt of the thermoelectric conversion material or a sintered body obtained by sintering powder has been used. I have. In order to increase the efficiency of thermoelectric conversion of thermoelectric conversion materials, it is essential to increase the electrical conductivity and Seebeck coefficient of the material and to reduce the thermal conductivity. Production of a thermoelectric conversion material by sintering a powder raw material is particularly advantageous for controlling thermal conductivity, and many thermoelectric conversion materials have been conventionally produced by this method.

【0003】一方、近年Bi−Te系熱電変換材料の熱
電変換の高効率化を目的として、粉末材料の直接押し出
しや溶製体の押し出し、溶製体の鍛造または圧延などが
試みられ、熱電特性の向上が確認されている。このよう
な塑性加工による性能向上をはかるには、加工温度にお
ける安定した加熱と加工温度に適した工具を用いた加工
を行うことが要求される。
On the other hand, in recent years, direct extrusion of powder materials, extrusion of ingots, and forging or rolling of ingots have been attempted in order to increase the efficiency of thermoelectric conversion of Bi-Te-based thermoelectric conversion materials. Improvement has been confirmed. In order to improve the performance by such plastic working, stable heating at the working temperature and working using a tool suitable for the working temperature are required.

【0004】このような要求を満たす加工として、低温
域熱電変換素子のBiTe系(BiSbTe系を含む)
では、変形抵抗が小さいために金型ダイスを用いて、加
熱状態で押し出しにより熱電特性において満足出来るも
のが作製され、さらに押し出し後の熱処理より熱電特性
を向上させることが知られている。しかしながら、中温
ないし高温用熱電変換材料においては、低温では変形抵
抗が大きいことから、高温での加工が必要となる。この
ように高温下において、工具の耐熱性が重要となるが、
金型ダイスでは耐熱性がみたされないために、中温ない
し高温用熱電変換材料の加工は、これまで試みられてお
らず、未だこの種の熱電変換材料の製造技術の確立がな
されていない。
[0004] As a process satisfying such a demand, a BiTe type (including a BiSbTe type) of a low temperature region thermoelectric conversion element is used.
It is known that, because of its low deformation resistance, a die having a satisfactory thermoelectric property is produced by extrusion in a heated state using a die, and the thermoelectric property is further improved by heat treatment after extrusion. However, thermoelectric conversion materials for medium to high temperatures require high-temperature processing because of their high deformation resistance at low temperatures. Under such high temperatures, the heat resistance of the tool is important,
Since the die has no heat resistance, processing of a thermoelectric material for medium to high temperatures has not been attempted so far, and a technique for producing this type of thermoelectric material has not yet been established.

【0005】[0005]

【発明が解決しようとする課題】上述したように、中温
ないしは高温を扱う熱電変換素子において、その熱電変
換材料に対しても適用可能な加工方法がないことから、
この種の中温ないしは高温を扱う熱電変換材料におい
て、高効率の熱電変換素子を得る上で問題が生じてい
る。
As described above, since there is no processing method applicable to the thermoelectric conversion material in a thermoelectric conversion element that handles medium temperature or high temperature,
A problem has arisen in obtaining a high-efficiency thermoelectric conversion element in such a thermoelectric conversion material that handles medium to high temperatures.

【0006】本発明においては、熱電半導体材料による
熱電変換材料に対する加工を安定に行うことができ、高
効率の低,中,高温用の熱電変換素子を得ることができ
るようにした熱電変換材料の加工法と熱電変換素子の製
造方法を提供するものである。
According to the present invention, the thermoelectric conversion material can be stably processed by the thermoelectric semiconductor material, and a high efficiency thermoelectric conversion element for low, medium and high temperatures can be obtained. A processing method and a method for manufacturing a thermoelectric conversion element are provided.

【0007】[0007]

【課題を解決するための手段】本発明による熱電変換材
料の1の加工方法においては、熱電半導体材料の溶製体
または焼結体を通電による加熱の下で塑性加工して、熱
電変換特性の向上をはかるものである。その塑性加工
は、加圧変形加工または押し出し加工による。
In a method for processing a thermoelectric conversion material according to one aspect of the present invention, a molten or sintered body of a thermoelectric semiconductor material is subjected to plastic working under heating by energization to obtain a thermoelectric conversion characteristic. It aims to improve. The plastic working is performed by pressure deformation or extrusion.

【0008】本発明よる他の1の加工方法においては、
上述した塑性加工の後に、さらに熱処理を行う。
[0008] In another processing method according to the present invention,
After the above-mentioned plastic working, heat treatment is further performed.

【0009】また、本発明による熱電変換素子の製造方
法においては、熱電半導体材料の溶製体または焼結体
と、電極材とを圧接させた状態で、通電による加熱の下
で加圧変形加工を行って、上記熱電半導体材料による熱
電変換素子本体に電極が接合一体化された熱電変換素子
を得る。
Further, in the method of manufacturing a thermoelectric conversion element according to the present invention, the electrode material is pressed against a melted or sintered body of a thermoelectric semiconductor material, and the electrode material is pressed and deformed under heating by energization. To obtain a thermoelectric conversion element in which electrodes are joined and integrated with the thermoelectric conversion element body made of the thermoelectric semiconductor material.

【0010】上述の本発明方法によって加工した熱電変
換材料は、その熱電変換特性の向上が図られる。これ
は、通電による加熱によってその変形抵抗を低下させて
塑性加工、すなわち加圧加工あるいは押し出し加工を行
うことにより、その加圧加工あるいは押し出し加工によ
って、熱電変換材料中の結晶粒の微細化効果によって熱
電変換特性が向上すると考えられる。また、その加圧変
形加工すなわち圧縮変形加工、あるいは押し出し加工に
よる塑性加工によって加工集合組織が生成されることに
よると考えられる。この加工集合組織とは、加工によっ
て特定方向に優先的に変形が起こる組織を指称するもの
であり、材料中の結晶粒が変形方向と相関をもっている
ことから、熱電変換材料においては、熱電変換特性に優
れた結晶方向に、結晶粒を揃えることができ、ことによ
る熱電変換特性が向上すると考えられる。
[0010] The thermoelectric conversion material processed by the above-described method of the present invention has improved thermoelectric conversion characteristics. This is because plastic deformation, that is, pressing or extrusion, is performed by lowering the deformation resistance by heating by energization, and by the pressing or extrusion, the crystal grains in the thermoelectric conversion material are reduced in size. It is considered that the thermoelectric conversion characteristics are improved. Further, it is considered that a working texture is generated by plastic deformation by the press deformation, that is, the compression deformation, or the extrusion. The processed texture refers to a structure in which deformation is preferentially performed in a specific direction by processing, and since the crystal grains in the material have a correlation with the deformation direction, the thermoelectric conversion material has a thermoelectric conversion characteristic. It is considered that the crystal grains can be aligned in the crystal direction excellent in the above, and the thermoelectric conversion characteristics can be improved.

【0011】また、この加工方法によれば、通電電流あ
るいは印加電圧の制御により加熱温度の制御が可能であ
り、さらに印加圧力の制御によって熱電半導体材料の圧
縮または押し出し加工ができるので、低,中,高温用の
各熱電半導体材料に適した条件での加工を行うことがで
きる。
Further, according to this processing method, the heating temperature can be controlled by controlling the applied current or the applied voltage, and the thermoelectric semiconductor material can be compressed or extruded by controlling the applied pressure. In addition, processing can be performed under conditions suitable for each thermoelectric semiconductor material for high temperatures.

【0012】また、上述の本発明による熱電変換素子の
製造方法によれば、熱電変換材料の加工と同時に電極の
一体がなされることから、信頼性が高く安定した特性の
熱電変換素子を得ることができる。
Further, according to the method of manufacturing a thermoelectric conversion element according to the present invention, since the electrodes are formed simultaneously with the processing of the thermoelectric conversion material, a highly reliable and stable thermoelectric conversion element can be obtained. Can be.

【0013】そして、上述した塑性加工の後に、さらに
熱処理を行うことにより、より熱電変換特性の向上およ
び安定化が図られた。
[0013] After the above-mentioned plastic working, a further heat treatment is carried out to further improve and stabilize the thermoelectric conversion characteristics.

【0014】[0014]

【発明の実施の形態】本発明による実施の形態を説明す
る。前述したように、熱電変換材料の加工方法において
は、熱電半導体材料の溶製体または焼結体を通電による
加熱の下で塑性加工して、熱電変換特性の向上をはかる
ものである。その塑性加工は、加圧変形加工または押し
出し加工による。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described. As described above, in the method for processing a thermoelectric conversion material, a molten or sintered body of a thermoelectric semiconductor material is subjected to plastic working under heating by energization to improve thermoelectric conversion characteristics. The plastic working is performed by pressure deformation or extrusion.

【0015】そして、上述した塑性加工の後に、さらに
熱処理を行うことができる。
After the above-mentioned plastic working, a heat treatment can be further performed.

【0016】熱電半導体材料は、低温域熱電半導体材料
のBiTe系またはBiSbTe系、あるいは中温域熱
電半導体材料のPbTe系、GeTe系、PbSnTe
系、FeSi系、ZnSb系、CoSb3 系およびAg
GeSbTe系、または高温域熱電半導体材料であるS
iGe系を用いることができる。
The thermoelectric semiconductor material may be a low-temperature thermoelectric semiconductor material such as BiTe or BiSbTe, or a medium-temperature thermoelectric semiconductor material such as PbTe, GeTe, or PbSnTe.
System, FeSi system, ZnSb system, CoSb 3 system and Ag
GeSbTe-based or high-temperature region thermoelectric semiconductor material S
An iGe system can be used.

【0017】また、本発明による熱電変換素子の製造方
法においては、熱電半導体材料の溶製体または焼結体
と、電極材とを圧接させた状態で、通電による加熱の下
で加圧変形加工を行って、上記熱電半導体材料による熱
電変換素子本体に電極が接合一体化された熱電変換素子
を得る。
Further, in the method for manufacturing a thermoelectric conversion element according to the present invention, the electrode body is pressed against an ingot or sintered body of thermoelectric semiconductor material, and the electrode material is pressed and deformed under heating by energization. To obtain a thermoelectric conversion element in which electrodes are joined and integrated with the thermoelectric conversion element body made of the thermoelectric semiconductor material.

【0018】この場合、熱電半導体材料が、低温域熱電
半導体材料のBiTe系またはBiSbTe系の場合、
電極材料は、Al,CuまたはNi系電極材料によるこ
とができる。また、熱電半導体材料が、中温域熱電半導
体材料のPbTe系、GeTe系、PbSnTe系、F
eSi系、ZnSb系、CoSb3 系およびAgGeS
bTe系の場合、電極材料は、Al、FeまたはNi系
電極材料によることができ、更に、熱電半導体材料が、
高温域熱電半導体材料であるSiGe系である場合、電
極材料は、Mo系,Ni系,Ti系,W系電極材料によ
ることができる。
In this case, when the thermoelectric semiconductor material is a low-temperature thermoelectric semiconductor material of BiTe or BiSbTe,
The electrode material can be an Al, Cu or Ni-based electrode material. The thermoelectric semiconductor material is a medium temperature range thermoelectric semiconductor material such as PbTe-based, GeTe-based, PbSnTe-based, or FbTe-based.
eSi, ZnSb, CoSb 3 and AgGeS
In the case of bTe-based, the electrode material can be Al, Fe or Ni-based electrode material.
In the case of a SiGe-based high-temperature thermoelectric semiconductor material, the electrode material may be a Mo-based, Ni-based, Ti-based, or W-based electrode material.

【0019】本発明による熱電半導体材料の溶製体また
は焼結体の圧縮加工もしくは押し出し加工は、例えば黒
鉛ダイスを用いて、これに上述の熱電半導体材料の溶製
体または焼結体を充填し、このダイスおよび熱電半導体
材料に大電流の通電による加熱を行ない、併せてダイス
のパンチとダイを介してこの熱電半導体材料を加圧して
圧縮変形あるいは押し出しによって、目的とする形状、
例えば柱状の熱電変換材料の加工体を得る。
In the compression or extrusion of the ingot or sintered body of the thermoelectric semiconductor material according to the present invention, for example, a graphite die is used to fill the ingot or sintered body of the thermoelectric semiconductor material described above. The die and the thermoelectric semiconductor material are heated by applying a large current thereto, and the thermoelectric semiconductor material is pressed and deformed or extruded through a punch and a die of the die to obtain a desired shape,
For example, a columnar thermoelectric conversion material processed body is obtained.

【0020】この加工方法によれば、通電電流あるいは
印加電圧の制御により加熱温度の制御が可能であり、さ
らにダイスへの印加圧力の制御によって熱電半導体材料
の圧縮または押し出し加工ができ、低,中,高温用熱電
変換材料に適した条件での加工を行うことができる。
According to this processing method, the heating temperature can be controlled by controlling the current or the applied voltage, and the thermoelectric semiconductor material can be compressed or extruded by controlling the pressure applied to the die. Processing can be performed under conditions suitable for high-temperature thermoelectric conversion materials.

【0021】次に、本発明方法の具体的方法を例示す
る。まず、本発明方法に適用する装置の一例を、図1を
参照して説明する。図1は、この通電加工装置の一例の
概略断面図を示す。この装置は、最終的に形成する熱電
変換素子本体の外周形状に対応する例えば円柱状の中空
1を有するダイス2と、この中空1の断面形状に対応す
る断面形状を有し中空1の例えば上下端からこの中空1
内に挿入押圧される上下各パンチ3および4とを有して
なる。上下パンチ3および4は、導電性を有する材料に
よって構成される。これらパンチ3および4、さらにダ
イス2は例えば黒鉛によって構成される。
Next, specific examples of the method of the present invention will be described. First, an example of an apparatus applied to the method of the present invention will be described with reference to FIG. FIG. 1 shows a schematic cross-sectional view of an example of the electric current processing apparatus. This device includes a die 2 having, for example, a cylindrical hollow 1 corresponding to the outer peripheral shape of a thermoelectric conversion element body to be finally formed, and a die 2 having a cross-sectional shape corresponding to the cross-sectional shape of the hollow 1. This hollow one from the end
And upper and lower punches 3 and 4 which are inserted and pressed into the inside. The upper and lower punches 3 and 4 are made of a conductive material. The punches 3 and 4 and the die 2 are made of, for example, graphite.

【0022】本発明方法によれば、図2にその断面図を
示すように、熱電半導体材料よりなる熱電変換素子本体
11の加圧方向の両端に電極12が形成された熱電変換
素子20を形成することができる。図2の構成による熱
電変換素子20においては、熱電変換素子本体11と電
極12との間に接合材14を介在させた場合を図示して
いるが、この接合材14は必ずしも介在させる必要はな
い。いま、図2において、この接合材14が介在されな
い熱電変換素子を製造する場合について説明する。この
場合、図1に示すように、例えば、ダイス2の中空1内
のパンチ4上に順次、熱電変換素子の一方の電極を構成
する金属粉体の電極材料6、熱電半導体材料体5すなわ
ち熱電変換素子本体を構成する熱電半導体材料の塊状の
焼結体または溶製体、他方の電極を構成する同様に例え
ば金属粉体による電極材料6を順次収容配置し、パンチ
3および4の双方を互いに、もしくはいずれか一方のパ
ンチを他方のパンチに向かって押圧して粉体状の電極材
料6および塊状熱電半導体材料体5を圧縮する。この状
態で、導電性を有するパンチ3とパンチ4との間に、大
電流を通電して、熱間加工を行う。
According to the method of the present invention, as shown in a sectional view of FIG. 2, a thermoelectric conversion element 20 having electrodes 12 formed at both ends in a pressing direction of a thermoelectric conversion element main body 11 made of a thermoelectric semiconductor material is formed. can do. In the thermoelectric conversion element 20 according to the configuration in FIG. 2, a case is illustrated in which the bonding material 14 is interposed between the thermoelectric conversion element main body 11 and the electrode 12, but the bonding material 14 does not necessarily need to be interposed. . Now, a case of manufacturing a thermoelectric conversion element in which the bonding material 14 is not interposed will be described with reference to FIG. In this case, as shown in FIG. 1, for example, an electrode material 6 of a metal powder and a thermoelectric semiconductor material body 5, that is, a thermoelectric material constituting one electrode of a thermoelectric conversion element are sequentially formed on a punch 4 in a hollow 1 of a die 2. A massive sintered body or ingot of the thermoelectric semiconductor material constituting the conversion element body and an electrode material 6 made of, for example, a metal powder constituting the other electrode are successively accommodated and arranged, and both the punches 3 and 4 are connected to each other. Alternatively, one of the punches is pressed toward the other punch to compress the powdered electrode material 6 and the bulk thermoelectric semiconductor material 5. In this state, a large current is applied between the conductive punch 3 and the punch 4 to perform hot working.

【0023】このようにすると、中空1の内形状に対応
する外形状を有する熱電半導体材料体5が圧縮加工成型
されて成る図2に示す例えば円柱状の熱電変換素子本体
11が成型され、これと一体にその両端に電極6が接合
された目的とする熱電変換素子20が形成される。この
ようにして形成された熱電変換素子20をダイス2から
取り出す。
In this manner, for example, a columnar thermoelectric conversion element main body 11 shown in FIG. 2 formed by compression-molding the thermoelectric semiconductor material 5 having an outer shape corresponding to the inner shape of the hollow 1 is formed. Thus, a target thermoelectric conversion element 20 having electrodes 6 joined to both ends thereof is formed. The thermoelectric conversion element 20 thus formed is taken out of the die 2.

【0024】そして、図2で示すように、熱電変換素子
本体11と電極12との間に接合材14を介在させて、
熱電変換素子本体11と電極12とのコンタクト抵抗の
低減化を図るようにすることができる。この場合におい
ては、図示しないが、図1において、熱電半導体材料体
5と電極材料6との間に、接合材料として例えばSnT
e粉末層を配置する。このようにして、前述したと同様
の通電加熱および加圧変形すなわち圧縮成形を行う。
Then, as shown in FIG. 2, a bonding material 14 is interposed between the thermoelectric conversion element main body 11 and the electrode 12,
The contact resistance between the thermoelectric conversion element body 11 and the electrode 12 can be reduced. In this case, although not shown, in FIG. 1, a bonding material such as SnT is provided between the thermoelectric semiconductor material 5 and the electrode material 6.
e Place powder layer. In this way, the same heating and pressurization deformation as described above, that is, compression molding is performed.

【0025】また、本発明においては、熱電半導体材料
の加工を押し出し加工によって行うことができる。この
場合、図3にその断面図を示す押し出し加工装置40に
よって作製することができる。すなわち、この場合は、
例えば、ダイス22の中空1内に順次、塊状の焼結体ま
たは溶製体の熱電半導体材料体5を収容配置し、パンチ
23をダイスの出口24に向って押圧して、熱電半導体
材料体5を軟化して押し出す。この場合、導電性を有す
るパンチ23とダイス22との間に、大電流を通電して
発熱させ、加工温度の制御を行うとともに、圧力を印加
して押し出しを行う。
In the present invention, the thermoelectric semiconductor material can be processed by extrusion. In this case, it can be manufactured by an extruder 40 whose sectional view is shown in FIG. That is, in this case,
For example, a block of sintered or ingot thermoelectric semiconductor material 5 is sequentially housed and arranged in the hollow 1 of the die 22, and the punch 23 is pressed toward the exit 24 of the die to form the thermoelectric semiconductor material 5. Soften and extrude. In this case, a large current is applied between the punch 23 and the die 22 having conductivity to generate heat, control the processing temperature, and extrude by applying pressure.

【0026】上述の各本発明方法によれば、n型および
p型の双方の熱電半導体材料の加工を行うことができ、
したがって、これらの熱電変換素子を得ることができ
る。例えば、図2に示す構造による中温域用において高
い熱電変換効率を示す熱電変換素子として知られている
PbTe系の熱電変換素子を作製する場合、n型のPb
Teによる熱電変換素子を得る場合においては、熱電半
導体材料体5として、n型ドーパントのI(ヨウ素)の
所定量をあらかじめ添加したPbTe溶製体または焼結
体を用い、p型の熱電変換素子を得る場合においては、
熱電半導体材料体5として、Sn(錫)をあらかじめ固
溶させたp型PbSnTeの溶製体または焼結体を用い
る。そして、この場合の電極材料6としては、共に、P
bTe系の半導体に対して低抵抗電極を構成する材料と
して知られているFeまたはとNi、好ましくは粉末電
極材料を用いることができる。さらに、p型の熱電変換
素子と電極材料6との接合に際しては、接合界面近傍で
の抵抗を低減するためSnTe粉末を接合材として介在
させることができる。
According to each of the above-described methods of the present invention, both n-type and p-type thermoelectric semiconductor materials can be processed,
Therefore, these thermoelectric conversion elements can be obtained. For example, when fabricating a PbTe-based thermoelectric conversion element known as a thermoelectric conversion element exhibiting high thermoelectric conversion efficiency in a medium temperature range with the structure shown in FIG. 2, n-type Pb
When a thermoelectric conversion element made of Te is obtained, a p-type thermoelectric conversion element is used as the thermoelectric semiconductor material 5 using a PbTe melt or sintered body to which a predetermined amount of an n-type dopant I (iodine) is added in advance. When obtaining
As the thermoelectric semiconductor material 5, a p-type PbSnTe ingot or sintered body in which Sn (tin) is dissolved in advance is used. The electrode material 6 in this case is P
Fe or Ni, which is known as a material constituting a low-resistance electrode for a bTe-based semiconductor, preferably a powdered electrode material can be used. Furthermore, when joining the p-type thermoelectric conversion element and the electrode material 6, SnTe powder can be interposed as a joining material in order to reduce resistance near the joining interface.

【0027】ここで、熱電変換素子本体11の長さ(厚
さ)は、素子動作条件に依存して設計され通常5〜10
mmとされる。これら各種熱電変換素子本体11に対す
る電極12の長さ(厚さ)は1〜2mmに選定し得る。
Here, the length (thickness) of the thermoelectric conversion element main body 11 is designed depending on the operating conditions of the element, and is usually 5 to 10
mm. The length (thickness) of the electrode 12 with respect to these various thermoelectric conversion element main bodies 11 can be selected to be 1 to 2 mm.

【0028】次に、本発明による加工方法による本発明
の熱電変換素子を作製する方法の実施例を説明するが、
この実施例に限定されるものではない。 〔実施例1〕この実施例においては、PbTeのn型お
よびp型の各熱電変換素子を製造する場合で、最終的に
形成する素子の電極寸法は、直径10mm、長さ2mm
とした。 電極材料:Ni粉末 熱電半導体材料:n型PbTe(PbI2 が4000m
olppm) 溶製体寸法:直径10mm、長さ4mm p型Pb1-X SnX Te(x=0.25) 溶製体寸法:直径10mm、長さ4mm 熱間加工条件 雰囲気 真空 圧力 40MPa 温度 500℃以上 時間 約10分 として、図1で説明した方法による通電加熱下の塑性変
形、この例では、加圧変形加工を行った。
Next, an embodiment of a method for producing a thermoelectric conversion element of the present invention by a processing method according to the present invention will be described.
It is not limited to this embodiment. Embodiment 1 In this embodiment, in the case where n-type and p-type thermoelectric conversion elements of PbTe are manufactured, the electrode dimensions of the finally formed elements are 10 mm in diameter and 2 mm in length.
And Electrode material: Ni powder Thermoelectric semiconductor material: n-type PbTe (PbI 2 is 4000 m
olppm) Melt size: 10 mm in diameter, 4 mm in length p-type Pb 1-X Sn X Te (x = 0.25) Melt size: 10 mm in diameter, 4 mm in length Hot working conditions Atmosphere Vacuum Pressure 40 MPa Temperature 500 The plastic deformation under electric heating by the method described with reference to FIG.

【0029】〔実施例2〕実施例と同様の方法によるも
のの、熱電半導体材料として上記溶製体に代えて焼結体
を用いた。
Example 2 A method similar to that of the example was used, except that a sintered body was used as the thermoelectric semiconductor material instead of the above-mentioned melt.

【0030】実施例1および2のいずれにおいても、加
工後はダイスに密着した緻密な構造となり、強度の向上
が認められ、さらに電極とが電気的、熱的および機械的
に強固に一体に結合されたn型およびp型の各熱電変換
素子本体が形成された熱電変換素子を得ることができ
た。
In each of Examples 1 and 2, after processing, a dense structure closely adhered to the die was obtained, and an improvement in strength was observed. Further, the electrode and the electrode were firmly and electrically, thermally and mechanically firmly integrated. The thermoelectric conversion element in which the n-type and p-type thermoelectric conversion element main bodies thus formed were obtained.

【0031】上述したように、本発明においては、熱電
半導体材料体5または11に圧力をかけた状態で、通電
加熱を行い加工を行うので、熱電変換材料ごとに塑性加
工の最適温度が異なる場合においても容易に加工を行う
ことができるため、広い温度範囲における熱電材料の加
工に適用でき、熱電特性の性能向上に資することができ
る。
As described above, according to the present invention, the thermoelectric semiconductor material body 5 or 11 is subjected to electric heating and processing while applying pressure to the thermoelectric semiconductor material body 5 or 11, so that the optimum temperature of the plastic processing differs for each thermoelectric conversion material. Can also be easily processed, so that it can be applied to processing of thermoelectric materials in a wide temperature range, and can contribute to improvement of the performance of thermoelectric characteristics.

【0032】また、上述した塑性加工の後に、さらに熱
処理を行うことにより、より熱電変換特性の向上および
安定化が図られた。
Further, by further performing a heat treatment after the above-mentioned plastic working, the thermoelectric conversion characteristics were further improved and stabilized.

【0033】また、本発明方法は、上述したPbTe系
熱電変換素子を作製する場合に限らず、他の各種中温用
半導体熱電変換素子、例えばGeTe系、PbSnTe
系、FeSi系、ZnSb系、CoSb3 系およびAg
GeSbTe(AgSbTe2 とGeTeの合金)系、
BiGeTe系(GeTeとBi2 Te3 の合金)系を
用いることができ、電極材料としては、Al系、Fe系
またはNi系電極材料を用いることができる。
The method of the present invention is not limited to the above-described PbTe-based thermoelectric conversion element, but may be any of various other medium-temperature semiconductor thermoelectric conversion elements, for example, GeTe-based, PbSnTe.
System, FeSi system, ZnSb system, CoSb 3 system and Ag
GeSbTe (an alloy of AgSbTe 2 and GeTe) based,
A BiGeTe-based (an alloy of GeTe and Bi 2 Te 3 ) -based material can be used, and an Al-based, Fe-based, or Ni-based electrode material can be used as an electrode material.

【0034】また、中温用半導体熱電変換素子に限られ
るものではなく、高温用熱電変換材料の加工、およびこ
れによる熱電変換素子の作製、例えばSiGe系熱電半
導体材料による場合に適用でき、この場合は電極材料
は、Mo系,Ni系,Ti系,W系電極材料を用いるこ
とができる。
The present invention is not limited to a medium-temperature semiconductor thermoelectric conversion element, but can be applied to processing of a high-temperature thermoelectric conversion material and production of a thermoelectric conversion element using the thermoelectric conversion element, for example, using a SiGe-based thermoelectric semiconductor material. As the electrode material, Mo-based, Ni-based, Ti-based, and W-based electrode materials can be used.

【0035】さらに、低温用熱電変換材料の加工、およ
びこれによる熱電変換素子の作製、BiTe系またはB
iSbTe系熱電半導体材料による場合に適用でき、こ
の場合の電極材料は、例えばAl系、Cu系、Ni系電
極材料を用いることができる。
Further, the thermoelectric conversion material for low temperature is processed and the thermoelectric conversion element is manufactured by using the thermoelectric conversion material.
The present invention can be applied to a case using an iSbTe-based thermoelectric semiconductor material. In this case, for example, an Al-based, Cu-based, or Ni-based electrode material can be used.

【0036】そして、これらいずれの場合も、加工した
熱電変換材料、したがって、これによって作製した熱電
変換素子は、その熱電変換特性の向上が図られた。これ
は、通電による加熱によってその変形抵抗を低下させて
塑性加工、すなわち加圧加工あるいは押し出し加工を行
うことにより、その加圧加工あるいは押し出し加工によ
って、熱電変換材料中の結晶粒の微細化効果によって熱
電変換特性が向上すると考えられる。また、その加圧変
形加工すなわち圧縮変形加工、あるいは押し出し加工に
よる塑性加工によって加工集合組織が生成されることに
よると考えられる。この加工集合組織とは、加工によっ
て特定方向に優先的に変形が起こる組織を指称するもの
であり、材料中の結晶粒が変形方向と相関をもっている
ことから、熱電変換材料においては、熱電変換特性に優
れた結晶方向に、結晶粒を揃えることができ、ことによ
る熱電変換特性が向上すると考えられる。
In each of these cases, the thermoelectric conversion material processed, and therefore, the thermoelectric conversion characteristics of the thermoelectric conversion element manufactured from the processed thermoelectric conversion material were improved. This is because plastic deformation, that is, pressing or extrusion, is performed by lowering the deformation resistance by heating by energization, and by the pressing or extrusion, the crystal grains in the thermoelectric conversion material are reduced in size. It is considered that the thermoelectric conversion characteristics are improved. Further, it is considered that a working texture is generated by plastic deformation by the press deformation, that is, the compression deformation, or the extrusion. The processed texture refers to a structure in which deformation is preferentially performed in a specific direction by processing, and since the crystal grains in the material have a correlation with the deformation direction, the thermoelectric conversion material has a thermoelectric conversion characteristic. It is considered that the crystal grains can be aligned in the crystal direction excellent in the above, and the thermoelectric conversion characteristics can be improved.

【0037】[0037]

【発明の効果】上述したように、本発明方法によれば、
圧縮変形および押し出しによる塑性加工によって、熱電
変換材料中の結晶粒の微細化による効果によって、熱電
変換の性能の向上が図られる。
As described above, according to the method of the present invention,
By the plastic working by compression deformation and extrusion, the performance of the thermoelectric conversion is improved by the effect of the refinement of the crystal grains in the thermoelectric conversion material.

【0038】また、本発明方法によれば、圧縮変形およ
び押し出しによる塑性加工によって、加工集合組織が生
成し、熱電変換特性の優れた組織が形成できる。
Further, according to the method of the present invention, a working texture is generated by plastic working by compression deformation and extrusion, and a structure having excellent thermoelectric conversion characteristics can be formed.

【0039】また、本発明方法において、熱電半導体材
料焼結体または溶製体と、電極材料とを圧縮させた状態
で、熱間加工を行うときは、熱電変換材料の加工による
性能向上と同時にこれと一体に電極の形成、すなわち熱
電変換素子本体と電極との接合がなされる。したがっ
て、この方法によれば、従来の方法におけるような電極
を接合するための蝋材等の使用を回避することができる
ことから、低温、中温ないし高温を取り扱う熱電変換素
子においても、確実、安定に電極の形成がなされ、した
がって長寿命、高い信頼性を有する熱電変換素子を得る
ことができる。
In the method of the present invention, when hot working is performed in a state in which the thermoelectric semiconductor material sintered body or ingot and the electrode material are compressed, simultaneously with the performance improvement by working the thermoelectric conversion material, Electrodes are formed integrally with this, that is, the thermoelectric conversion element body and the electrodes are joined. Therefore, according to this method, it is possible to avoid the use of a brazing material or the like for joining the electrodes as in the conventional method. Electrodes are formed, so that a thermoelectric conversion element having a long life and high reliability can be obtained.

【0040】また、熱電変換材料および電極の形状も、
多種に設定することができることから、使用態様、目的
に応じて種々の構造のものを容易に得ることができるな
ど、本発明は実用に供してその工業的利益が大である。
また、本発明加工方法によれば、通電電流あるいは印加
電圧の制御により加熱温度の制御が可能であり、さらに
印加圧力の制御によって熱電半導体材料の圧縮または押
し出し加工ができるので、低,中,高温用の各熱電半導
体材料に適した条件での加工を行うことができる。
The shapes of the thermoelectric conversion material and the electrodes are also
Since the present invention can be variously set, various structures can be easily obtained according to the use mode and purpose, and the present invention is practically used and has a great industrial advantage.
Further, according to the processing method of the present invention, the heating temperature can be controlled by controlling the supplied current or the applied voltage, and the thermoelectric semiconductor material can be compressed or extruded by controlling the applied pressure. Can be processed under conditions suitable for each thermoelectric semiconductor material used.

【0041】また、上述の本発明による熱電変換素子の
製造方法によれば、熱電変換材料の加工と同時に電極の
一体がなされることから、信頼性が高く安定した特性の
熱電変換素子を得ることができる。
According to the above-described method for manufacturing a thermoelectric conversion element according to the present invention, since the electrodes are integrated simultaneously with the processing of the thermoelectric conversion material, a highly reliable and stable thermoelectric conversion element can be obtained. Can be.

【0042】そして、上述した塑性加工の後に、さらに
熱処理を行うことにより、より熱電変換特性の向上およ
び安定化が図られた。
After the above-described plastic working, a further heat treatment was carried out to further improve and stabilize the thermoelectric conversion characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施する圧縮加工装置の一例の構
成図である。
FIG. 1 is a configuration diagram of an example of a compression processing apparatus that performs a method of the present invention.

【図2】本発明方法によって得る熱電変換素子の一例の
断面図である。
FIG. 2 is a sectional view of an example of a thermoelectric conversion element obtained by the method of the present invention.

【図3】本発明方法を実施する押し出し加工装置の一例
の構成図である。
FIG. 3 is a configuration diagram of an example of an extrusion processing apparatus that performs the method of the present invention.

【符号の説明】[Explanation of symbols]

1 中空 2 ダイス 3 上パンチ 4 下パンチ 5 熱電半導体材料体 6 電極材料 10 圧縮加工装置 11 熱電変換素子本体 12 電極 14 接合材 20 熱電変換素子 22 ダイス 23 パンチ 24 ダイス出口 40 押し出し加工装置 DESCRIPTION OF SYMBOLS 1 Hollow 2 Dice 3 Upper punch 4 Lower punch 5 Thermoelectric semiconductor material 6 Electrode material 10 Compression processing apparatus 11 Thermoelectric conversion element main body 12 Electrode 14 Bonding material 20 Thermoelectric conversion element 22 Dice 23 Punch 24 Dice exit 40 Extrusion processing apparatus

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森谷 信一 宮城県角田市君萱字小金沢1 科学技術庁 航空宇宙技術研究所 角田宇宙推進技術 研究センター内 (72)発明者 新野 正之 宮城県角田市君萱字小金沢1 科学技術庁 航空宇宙技術研究所 角田宇宙推進技術 研究センター内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinichi Moriya 1 Koganezawa, Kunaya-shi, Kakuta-shi, Miyagi Japan Science and Technology Agency Aerospace Research Institute Kakuda Space Propulsion Research Center (72) Inventor Masayuki Niino, Kakuda-shi, Miyagi Koganezawa 1 Kanagaya Character Science and Technology Agency Aerospace Research Institute Kakuda Space Propulsion Research Center

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 熱電半導体材料の溶製体または焼結体を
通電による加熱の下で塑性加工して、熱電変換特性の向
上をはかることを特徴とする熱電変換材料の加工方法。
1. A method for processing a thermoelectric conversion material, wherein a melted or sintered body of a thermoelectric semiconductor material is subjected to plastic working under heating by energization to improve thermoelectric conversion characteristics.
【請求項2】 上記塑性加工が、加圧変形加工であるこ
とを特徴とする請求項1に記載の熱電変換材料の加工方
法。
2. The method for processing a thermoelectric conversion material according to claim 1, wherein the plastic working is press deformation.
【請求項3】 上記塑性加工が、押し出し加工であるこ
とを特徴とする請求項1に記載の熱電変換材料の加工方
法。
3. The method for processing a thermoelectric conversion material according to claim 1, wherein the plastic working is extrusion.
【請求項4】 上記塑性加工の後に、さらに熱処理工程
を行うことを特徴とする請求項1、2、または3に記載
の熱電変換材料の加工方法。
4. The method for processing a thermoelectric conversion material according to claim 1, wherein a heat treatment step is further performed after the plastic working.
【請求項5】 上記熱電半導体材料が、低温域熱電半導
体材料のBiTe系またはBiSbTe系であることを
特徴とする請求項1、2、3、または4に記載の熱電変
換材料の加工方法。
5. The method for processing a thermoelectric conversion material according to claim 1, wherein the thermoelectric semiconductor material is a BiTe-based or BiSbTe-based low-temperature region thermoelectric semiconductor material.
【請求項6】 上記熱電半導体材料が、中温域熱電半導
体材料のPbTe系、GeTe系、PbSnTe系、F
eSi系、ZnSb系、CoSb3 系、BiGeTe系
およびAgGeSbTe系であることを特徴とする請求
項1、2、3、または4に記載の熱電変換材料の加工方
法。
6. The thermoelectric semiconductor material is a medium temperature range thermoelectric semiconductor material such as PbTe-based, GeTe-based, PbSnTe-based, or FbTe-based.
eSi system, ZnSb system, CoSb 3 system, the processing method of the thermoelectric conversion material according to claim 1, 2, 3 or 4, characterized in that it is a BiGeTe system and AgGeSbTe system.
【請求項7】 上記熱電半導体材料が、高温域熱電半導
体材料であるSiGe系であることを特徴とする請求項
1、2、3、または4に記載の熱電変換材料の加工方
法。
7. The method for processing a thermoelectric conversion material according to claim 1, wherein the thermoelectric semiconductor material is a SiGe-based high-temperature thermoelectric semiconductor material.
【請求項8】 熱電半導体材料の溶製体または焼結体
と、電極材とを圧接させた状態で、通電による加熱の下
で加圧変形加工を行って、上記熱電半導体材料による熱
電変換素子本体に電極が接合一体化された熱電変換素子
を得ることを特徴とする熱電変換素子の製造方法。
8. A thermoelectric conversion element made of said thermoelectric semiconductor material by subjecting said ingot or sintered body of thermoelectric semiconductor material to pressure contact with said electrode material while applying pressure deformation under heating by energization. A method for producing a thermoelectric conversion element, wherein a thermoelectric conversion element in which an electrode is joined and integrated with a main body is obtained.
【請求項9】 上記熱電半導体材料が、低温域熱電半導
体材料のBiTe系またはBiSbTe系であり、 上記電極材料が、Al,CuまたはNi系電極材料であ
ることを特徴とする請求項8に記載の熱電変換素子の製
造方法。
9. The thermoelectric semiconductor material according to claim 8, wherein the thermoelectric semiconductor material is a BiTe-based or BiSbTe-based thermoelectric semiconductor material at a low temperature, and the electrode material is an Al, Cu or Ni-based electrode material. A method for manufacturing a thermoelectric conversion element.
【請求項10】 上記熱電半導体材料が、中温域熱電半
導体材料のPbTe系、GeTe系、PbSnTe系、
FeSi系、ZnSb系、CoSb3 系、BiGeTe
系およびAgGeSbTe系であり、 上記電極材料が、Al、FeまたはNi系電極材料であ
ることを特徴とする請求項8に記載の熱電変換素子の製
造方法。
10. The thermoelectric semiconductor material is a medium-temperature thermoelectric semiconductor material such as PbTe-based, GeTe-based, PbSnTe-based,
FeSi system, ZnSb system, CoSb 3 system, BiGeTe
9. The method according to claim 8, wherein the electrode material is an Al, Fe or Ni electrode material.
【請求項11】 上記熱電半導体材料が、高温域熱電半
導体材料であるSiGe系であり、 上記電極材料が、Mo系,Ni系,Ti系,W系電極材
料であることを特徴とする請求項8に記載の熱電変換素
子の製造方法。
11. The thermoelectric semiconductor material is a SiGe-based high-temperature thermoelectric semiconductor material, and the electrode material is a Mo-based, Ni-based, Ti-based, or W-based electrode material. 9. The method for producing a thermoelectric conversion element according to item 8.
JP9363625A 1997-12-16 1997-12-16 Machining method for thermoelectric conversion material and production of thermoelectric conversion element Pending JPH11177156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9363625A JPH11177156A (en) 1997-12-16 1997-12-16 Machining method for thermoelectric conversion material and production of thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9363625A JPH11177156A (en) 1997-12-16 1997-12-16 Machining method for thermoelectric conversion material and production of thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JPH11177156A true JPH11177156A (en) 1999-07-02

Family

ID=18479778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9363625A Pending JPH11177156A (en) 1997-12-16 1997-12-16 Machining method for thermoelectric conversion material and production of thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH11177156A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046149A (en) * 2001-08-02 2003-02-14 Univ Shimane Manufacturing apparatus for thermoelectric conversion material
WO2011148686A1 (en) * 2010-05-28 2011-12-01 学校法人東京理科大学 Method for production of thermoelectric conversion module, and thermoelectric conversion module
KR101101704B1 (en) 2009-12-22 2012-01-05 한국세라믹기술원 Electrode for thermoelectric device and manufacturing method of the same
KR101101711B1 (en) 2009-12-22 2012-01-05 한국세라믹기술원 Thermoelectric device and manufacturing method of the same
KR20120057448A (en) * 2010-11-26 2012-06-05 현대자동차주식회사 Thermoelectric device and method for manufacturing the same
KR101323097B1 (en) * 2011-11-17 2013-10-30 한국세라믹기술원 Thermoelectric device with copper electrode and manufacturing method of the same
JP2017085050A (en) * 2015-10-30 2017-05-18 国立研究開発法人産業技術総合研究所 Thermoelectric conversion element, thermoelectric conversion module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138789A (en) * 1986-12-01 1988-06-10 Komatsu Ltd Manufacture of thermoelectric material
JPH0341780A (en) * 1989-07-10 1991-02-22 Agency Of Ind Science & Technol Manufacture of thermoelectric material
JPH0555640A (en) * 1991-01-11 1993-03-05 Saamobonitsuku:Kk Manufacture of thermoelectric converter and thermoelectric converter manufactured by the same
JPH077186A (en) * 1993-06-16 1995-01-10 Idemitsu Material Kk Production of thermoelectric conversion material
JPH08186299A (en) * 1994-12-28 1996-07-16 Aisin Seiki Co Ltd Method and apparatus for manufacture of thermoelectric conversion element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138789A (en) * 1986-12-01 1988-06-10 Komatsu Ltd Manufacture of thermoelectric material
JPH0341780A (en) * 1989-07-10 1991-02-22 Agency Of Ind Science & Technol Manufacture of thermoelectric material
JPH0555640A (en) * 1991-01-11 1993-03-05 Saamobonitsuku:Kk Manufacture of thermoelectric converter and thermoelectric converter manufactured by the same
JPH077186A (en) * 1993-06-16 1995-01-10 Idemitsu Material Kk Production of thermoelectric conversion material
JPH08186299A (en) * 1994-12-28 1996-07-16 Aisin Seiki Co Ltd Method and apparatus for manufacture of thermoelectric conversion element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046149A (en) * 2001-08-02 2003-02-14 Univ Shimane Manufacturing apparatus for thermoelectric conversion material
KR101101704B1 (en) 2009-12-22 2012-01-05 한국세라믹기술원 Electrode for thermoelectric device and manufacturing method of the same
KR101101711B1 (en) 2009-12-22 2012-01-05 한국세라믹기술원 Thermoelectric device and manufacturing method of the same
WO2011148686A1 (en) * 2010-05-28 2011-12-01 学校法人東京理科大学 Method for production of thermoelectric conversion module, and thermoelectric conversion module
KR20120057448A (en) * 2010-11-26 2012-06-05 현대자동차주식회사 Thermoelectric device and method for manufacturing the same
KR101323097B1 (en) * 2011-11-17 2013-10-30 한국세라믹기술원 Thermoelectric device with copper electrode and manufacturing method of the same
JP2017085050A (en) * 2015-10-30 2017-05-18 国立研究開発法人産業技術総合研究所 Thermoelectric conversion element, thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JPH1074986A (en) Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module
US20020189661A1 (en) Thermoelectric unicouple used for power generation
KR102094995B1 (en) Thermoelectric module, thermoelectric device comprising the same, and process for preparing the thermoelectric element
WO2010101049A1 (en) Thermoelectric conversion element and thermoelectric conversion module
US20020014261A1 (en) Thermoelectric unicouple used for power generation
TWI505522B (en) Method for manufacturing thermoelectric conversion module
JP6222666B2 (en) Mg-Si-based thermoelectric conversion material and manufacturing method thereof, sintered body for thermoelectric conversion, thermoelectric conversion element, and thermoelectric conversion module
JPH0697512A (en) Thermoelectric conversion element
JP2006319210A (en) Manufacturing method of thermoelectric conversion element
JP3245793B2 (en) Manufacturing method of thermoelectric conversion element
JP4584035B2 (en) Thermoelectric module
CN106159077B (en) Bismuth telluride-based thermoelectric power generation element and preparation method thereof
US20020062853A1 (en) Method of manufacturing a thermoelectric element and a thermoelectric module
KR101801367B1 (en) Method of manufacturing thermoelectric element
JP2008192694A (en) Thermoelectric conversion module, and power generator and cooler employing the same
JP5598138B2 (en) Method for manufacturing pipe-type thermoelectric power generation device, and method for manufacturing the laminate
JPH11177156A (en) Machining method for thermoelectric conversion material and production of thermoelectric conversion element
CN109065697B (en) Annular thermoelectric power generation device
JP4584034B2 (en) Thermoelectric module
JP2011198778A (en) Method for manufacturing thermoelectric device
JP2884068B2 (en) Manufacturing method of thermoelectric conversion element
JP3619872B2 (en) Thermoelectric conversion material manufacturing equipment
JP4810652B2 (en) Thermoelectric conversion module
US20120024333A1 (en) Thermoelectric material deformed by cryogenic impact and method of preparing the same
JP3510384B2 (en) Manufacturing method of thermoelectric conversion element