WO2011148686A1 - Method for production of thermoelectric conversion module, and thermoelectric conversion module - Google Patents

Method for production of thermoelectric conversion module, and thermoelectric conversion module Download PDF

Info

Publication number
WO2011148686A1
WO2011148686A1 PCT/JP2011/055075 JP2011055075W WO2011148686A1 WO 2011148686 A1 WO2011148686 A1 WO 2011148686A1 JP 2011055075 W JP2011055075 W JP 2011055075W WO 2011148686 A1 WO2011148686 A1 WO 2011148686A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor element
type semiconductor
thermoelectric conversion
metal oxide
conversion module
Prior art date
Application number
PCT/JP2011/055075
Other languages
French (fr)
Japanese (ja)
Inventor
圭史 西尾
努 飯田
Original Assignee
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東京理科大学 filed Critical 学校法人東京理科大学
Priority to JP2012517173A priority Critical patent/JP5686417B2/en
Publication of WO2011148686A1 publication Critical patent/WO2011148686A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Definitions

  • the present invention relates to a method for manufacturing a thermoelectric conversion module and a thermoelectric conversion module.
  • Thermoelectric conversion refers to the mutual conversion of thermal energy and electrical energy using the Seebeck effect or Peltier effect. If thermoelectric conversion is used, it is possible to extract electric power from the heat flow using the Seebeck effect.
  • thermoelectric conversion is direct conversion, it has characteristics such that excess waste products are not discharged during energy conversion, and effective use of exhaust heat is possible. For this reason, research on thermoelectric conversion modules has been actively conducted.
  • thermoelectric conversion modules have a so-called ⁇ -type structure.
  • the ⁇ -type structure includes an n-type semiconductor element, a p-type semiconductor element (hereinafter, the n-type semiconductor element and the p-type semiconductor element may be collectively referred to as “semiconductor element”), one end of the n-type semiconductor element, A common electrode to which one end of the p-type semiconductor element is joined, and an electrode to be joined independently to the other end of the n-type semiconductor element and the other end of the p-type semiconductor element (hereinafter, the common electrode and the electrode are combined) It may be referred to as “electrode etc.”).
  • thermoelectric conversion module having a ⁇ -type structure In the manufacture of a thermoelectric conversion module having a ⁇ -type structure, a method using a paste (see Patent Document 1) and a method using solder (see Patent Document 2) are employed as a bonding method between a semiconductor element and an electrode. Neither the method using paste nor the method using solder is satisfactory in terms of productivity because it is necessary to bond a semiconductor element and an electrode for each ⁇ -type thermoelectric conversion module. Therefore, in order to increase the productivity of the thermoelectric conversion module having a ⁇ -type structure, a method of manufacturing a plurality of thermoelectric conversion modules having a ⁇ -type structure at the same time is desired. However, there is currently no such method. is there.
  • thermoelectric conversion module in the power generation by the thermoelectric conversion module, it is desirable to use the waste heat from the incinerator or industrial furnace as it is.
  • the heat resistance of the thermoelectric conversion module becomes a problem, and when the waste heat reaches about 600 ° C., it is difficult to generate power.
  • thermoelectric conversion module that can be used in a high temperature environment of about 600 ° C. requires improvement of heat resistance of p-type semiconductor elements and n-type semiconductor elements. Although development of a thermoelectric conversion module with high heat resistance is underway (see Patent Document 3), no thermoelectric conversion module having sufficient heat resistance and high power generation performance has been developed.
  • the present invention has been made to solve the above-described problems, and has as its object to provide a method for manufacturing a thermoelectric conversion module with high productivity, and a thermoelectric conversion that can be used in a high temperature environment and has high power generation performance. To provide a module.
  • thermoelectric conversion module n-type conductive metal oxide powder or p-type conductive metal oxide powder
  • the productivity of the thermoelectric conversion module is increased by joining the electrodes and the like by a specific method, and further, the power generation performance of the thermoelectric conversion module is improved by using the metal powder and the conductive metal oxide powder in combination. I also found a dramatic improvement.
  • thermoelectric conversion module can be used in a high temperature environment. It has also been found that this is possible, and further, it has also been found that the power generation performance of the thermoelectric conversion module is drastically improved by selecting the material constituting the thermoelectric conversion module.
  • the present invention has been made on the basis of such findings, and is specifically as follows.
  • thermoelectric conversion module comprising: an electrode that is independently joined to the other end of the type semiconductor element; and a metal powder and / or between the n type semiconductor element and the common electrode and the electrode An n-type conductive metal oxide powder is disposed, a metal powder and / or a p-type conductive metal oxide powder is disposed between the p-type semiconductor element and the common electrode, and the n-type semiconductor element.
  • thermoelectric conversion module of joining between the common electrode and the electrode and the p-type semiconductor element.
  • thermoelectric conversion module (2)
  • the metal powder and / or the n-type conductive metal oxide powder and the metal powder and / or the p-type conductive metal oxide powder are green compacts of the thermoelectric conversion module according to (1). Production method.
  • thermoelectric conversion module as described in (1) or (2) which arrange
  • the p-type semiconductor element is a sintered body mainly composed of a metal oxide different from the p-type conductive metal oxide used for joining the common electrode and the electrode, and the n-type semiconductor
  • the element is any one of (1) to (3) which is a sintered body containing magnesium silicide as a main component or containing magnesium silicide as a main component and containing at least one element selected from Sb and Al as a dopant.
  • the p-type semiconductor element applies a DC pulse current parallel to the pressing direction while uniaxially pressing a mixture of the metal oxide powder and the metal oxide plate crystal.
  • thermoelectric conversion module comprising a bonded body, a sintered body of a mixture of a metal and an n-type conductive metal oxide, or a sintered body of an n-type conductive metal oxide.
  • thermoelectric conversion module according to (6), wherein a joint between the common electrode and the electrode is formed of a sintered body of a mixture of a metal and an n-type conductive metal oxide.
  • the p-type semiconductor element is a sintered body whose main component is a metal oxide different from the p-type conductive metal oxide constituting the junction, and the n-type semiconductor element is mainly made of magnesium silicide.
  • thermoelectric conversion module according to (8), wherein the sintered body containing magnesium silicide as a main component includes a dopant.
  • thermoelectric conversion module according to (9), wherein the dopant is at least one element selected from Sb and Al.
  • the metal oxide constituting the p-type semiconductor element is selected from Na x CoO 2 , CaCo 2 O 4 , CuYO 2 , SrRuO 3 , and Sr 2 RuO 4 (8) to (10)
  • the thermoelectric conversion module of any one is selected from Na x CoO 2 , CaCo 2 O 4 , CuYO 2 , SrRuO 3 , and Sr 2 RuO 4 (8) to (10)
  • the p-type conductive metal oxide constituting the sintered body of the joint is selected from SrRuO 3 , ReO 3 , Cu 2 O and CuO, according to any one of (6) to (11) Thermoelectric conversion module.
  • the n-type conductive metal oxide constituting the sintered body of the joint is In 2 O 3 , SnO 2 , In 2 O 3 —SnO 2 , or Nb or La-doped SrTiO 3 , ZnO (6
  • the thermoelectric conversion module according to any one of (12) to (12).
  • thermoelectric conversion module of the present invention According to the method for manufacturing a thermoelectric conversion module of the present invention, a plurality of ⁇ -type thermoelectric conversion modules can be manufactured at a time. For this reason, compared with the manufacturing method of the conventional thermoelectric conversion module of the above-mentioned pi type structure, the manufacturing method of the thermoelectric conversion module of the present invention has high productivity.
  • thermoelectric conversion module having high power generation performance is obtained.
  • a conductive metal oxide is used in combination, the performance is dramatically improved.
  • thermoelectric conversion module of the present invention preferably uses a p-type semiconductor element and an n-type semiconductor element that have high heat resistance, and thus the obtained thermoelectric conversion module can be used in a high temperature environment.
  • thermoelectric conversion module of the present invention when a specific metal oxide is used as the p-type semiconductor element of the thermoelectric conversion module of the present invention, the power generation performance of the thermoelectric return module is greatly enhanced.
  • thermoelectric conversion module of Example 1 It is a figure which shows typically the thermoelectric conversion module manufactured with the method of this invention. It is a figure which shows the evaluation result of the electric power generation performance of the thermoelectric conversion module of Example 1.
  • FIG. It is a figure which shows the evaluation result of the electric power generation performance of the thermoelectric conversion module of Example 2.
  • FIG. It is a figure which shows the evaluation result of the electric power generation performance of the thermoelectric conversion module of Example 3.
  • FIG. It is a figure which shows the evaluation result of the electric power generation performance of the thermoelectric conversion module of Example 4.
  • FIG. It is a figure which shows the evaluation result of the electric power generation performance of the thermoelectric conversion module of Example 5.
  • FIG. It is a figure which shows the evaluation result of the electric power generation performance of the thermoelectric conversion module of Example 6.
  • FIG. 1 is a schematic diagram of a thermoelectric conversion module according to the present invention, in which an n-type semiconductor element 10, a p-type semiconductor element 11, a common electrode at which one end of an n-type semiconductor element and one end of a p-type semiconductor element are joined. 12 and an electrode 13 that is independently joined to the other end of the n-type semiconductor element and the other end of the p-type semiconductor element.
  • an n-type semiconductor element 10 a p-type semiconductor element 11
  • a common electrode at which one end of an n-type semiconductor element and one end of a p-type semiconductor element are joined.
  • 12 and an electrode 13 that is independently joined to the other end of the n-type semiconductor element and the other end of the p-type semiconductor element.
  • thermoelectric conversion module ⁇ N-type semiconductor element> It does not specifically limit as an n-type semiconductor element which comprises the thermoelectric conversion module of this invention, The conventionally well-known n-type semiconductor element used for a thermoelectric conversion module can be used.
  • magnesium silicide Mg 2 Si
  • WO2011 / 013609A1 it is preferable to use those disclosed in WO2011 / 013609A1.
  • Magnesium silicide shown in the international number WO2011 / 002035A1 has a melting point of 1358K, a linear expansion coefficient of 15.5 ⁇ 10 ⁇ 6 / K (293 ° C.), is thermally stable, and has high thermoelectric conversion efficiency.
  • magnesium silicide has a Young's modulus of about 120 GPa and has excellent rigidity.
  • Magnesium silicide can contain a dopant selected as necessary. Although it does not specifically limit as a dopant contained in magnesium silicide, For example, when Sb, Al, etc. are used, it is effective in reducing an electrical resistivity or improving durability.
  • the content of the dopant is not particularly limited, but is preferably 0.1 to 1% by mass. It is particularly preferable to use magnesium silicide containing Sb as a dopant as the n-type semiconductor element.
  • the method for producing magnesium silicide is not particularly limited, but, for example, the method described in the above-mentioned international publication proposed by the present inventors is preferable, and can be performed by the following procedure. First, using magnesium (Mg) and silicon (Si) as raw materials, both are mixed, melted and reacted to synthesize magnesium silicide, pulverized into powder, and then this powder is sintered to form n-type A desired magnesium silicide useful as a thermoelectric conversion element can be obtained.
  • Mg magnesium
  • Si silicon
  • magnesium silicide powder when magnesium silicide is synthesized using magnesium and silicon as raw materials, the synthesis temperature is higher than the melting point of magnesium silicide (1358 K) (for example, 1370 to 1400 K). A method of synthesizing the whole as a melt is preferred. This is because uniform magnesium silicide can be obtained.
  • the obtained magnesium silicide is pulverized to form magnesium silicide powder.
  • the average particle diameter of the magnesium silicide powder is not particularly limited, but is preferably adjusted to, for example, 25 to 100 ⁇ m.
  • a conventionally known method such as a hot press sintering method, a hot isostatic pressing method, or a discharge plasma sintering method can be employed.
  • a discharge plasma sintering method it is most preferable to employ a discharge plasma sintering method. This is because a dense sintered body can be obtained in a short time.
  • Discharge plasma sintering is a method of obtaining a sintered body by applying a DC pulse current in a direction parallel to the pressing direction while uniaxially pressing magnesium silicide powder.
  • spark plasma sintering can be performed by the following method using a conventionally known apparatus. First, a mold filled with a sample is set on a sintering stage in a chamber, sandwiched between graphite electrodes, and pulsed while conducting pressure. Next, the temperature of the sample is rapidly raised from room temperature to 700 to 2500 ° C. within a few minutes. Finally, the sample is held for several minutes at the temperature after the temperature rise to obtain a sintered body.
  • the rate of temperature rise affects the quality of magnesium silicide. It is preferable to set 600 ° C. or less at a temperature increase rate of 80 to 120 ° C./min, 600 to 700 ° C. at a temperature increase rate of 40 to 60 ° C./min, and 700 ° C. or more at a temperature increase rate of 20 to 40 ° C./min.
  • the other conditions are preferably set such that the pressure is 20 to 70 MPa, the temperature after the temperature rise is 700 to 900 ° C., and the holding time is 30 seconds to 15 minutes.
  • thermoelectric conversion module The p-type semiconductor element which comprises the thermoelectric conversion module of this invention is not specifically limited, The conventionally well-known p-type semiconductor used for a thermoelectric conversion module can be used. In particular, it is preferable to use a sintered body containing a metal oxide as a main component as a p-type semiconductor element.
  • the “main component” means that other components may be contained in the p-type semiconductor element as long as the effects of the present invention are not impaired.
  • the metal oxide examples include Na x CoO 2 , CaCo 2 O 4 , CuYO 2 , SrRuO 3 , and Sr 2 RuO 4 .
  • CuYO 2 may be doped with a divalent alkaline earth metal such as Ca, Mg, Sr, etc., or oxygen may be excessive to form CuYO 2 + x .
  • SrRuO 3 and Sr 2 RuO 4 Nb may be doped.
  • a p-type semiconductor element mainly containing SrRuO 3 is preferable. This is because the junction between the electrode and the p-type semiconductor element tends to be in ohmic contact.
  • metal oxide is excellent in heat resistance, it is preferable as a p-type semiconductor element used in a thermoelectric conversion module used in a high temperature environment.
  • the metal oxide sintered body can be manufactured by the following procedure. First, metal oxide powder is prepared using a metal organic compound or an inorganic compound as a raw material. The powder is then sintered.
  • the metal oxide powder can be prepared by a conventionally known method starting from a solution containing a metal element, such as a sol-gel method, a thermal decomposition method of a metal-organic complex, or a coprecipitation method.
  • the sol-gel method is a solution in which a starting material such as a metal organic compound or inorganic compound is dissolved in a solvent to cause a chemical reaction such as hydrolysis or polycondensation in the solution. This is a method of forming a sol solution in which oxide fine particles are dissolved.
  • a gelled product in which the sol solution is aggregated is formed.
  • the gelled product is heat-treated to remove the solvent remaining inside, an aggregate of metal oxide fine particles is obtained.
  • the aggregate is pulverized to obtain a metal oxide powder.
  • the method for sintering the metal oxide powder is not particularly limited, and examples thereof include a hot press sintering method, a hot isostatic pressing method, and a discharge plasma sintering method.
  • a hot press sintering method a hot press sintering method
  • a hot isostatic pressing method a hot isostatic pressing method
  • a discharge plasma sintering method it is most preferable to employ a discharge plasma sintering method. This is because a dense sintered body can be obtained in a short time.
  • some metal oxide crystals are anisotropic in electrical resistivity.
  • a metal oxide sintered body is manufactured by the following method.
  • a metal oxide powder is prepared using a conventionally known method such as a sol-gel method or a coprecipitation method.
  • a plate-like crystal is produced from the metal oxide powder using, for example, a flux method.
  • the flux refers to a solvent, and is a generic name for substances used as a solvent when a solute does not dissolve in water.
  • the flux method is a method for precipitating a single crystal by, for example, dissolving constituent elements using sodium, sodium chloride, lithium chloride or the like as a flux (flux) and controlling the temperature and pressure.
  • a DC pulse current is applied in a direction parallel to the pressing direction while a mixture of the metal oxide powder and the plate crystal of the metal oxide is uniaxially pressed to obtain a sintered body.
  • structural anisotropy is imparted to the sintered body by the TGG method (Tampled Grain Growth method).
  • TGG method stampled Grain Growth method
  • plate-like crystals with high structural anisotropy are embedded in polycrystalline particles, aligned so that the plate-like crystals are aligned by uniaxial pressing, and heat treatment is performed, whereby the powder becomes plate-like crystals.
  • An oriented sintered body can be obtained by applying a DC pulse current in a direction parallel to the pressing direction.
  • Examples of the oriented sintered body include Na x CoO 2 used in Examples.
  • the p-type semiconductor element fabricated as described above exhibits the same electrical resistivity as that of a metal and the same level of thermoelectromotive force as that of a semiconductor.
  • this p-type semiconductor element exhibits a very high thermoelectromotive force among materials exhibiting a low electrical resistivity equivalent to that of metal, and thus is preferable as a p-type semiconductor element used for a thermoelectric conversion module.
  • the common electrode and the electrode are metal materials.
  • a metal material what is used as an electrode of a general thermoelectric conversion module can be used.
  • transition metal materials such as nickel (Ni), titanium (Ti), copper (Cu), aluminum (Al), and iron (Fe) are exemplified.
  • nickel (Ni) is preferable because it has a high melting point of 1728 K and is excellent in heat resistance.
  • the common electrode and the electrode may be the same type of metal or different types of metals.
  • thermoelectric conversion module In the method for producing a thermoelectric conversion module of the present invention, a metal powder and / or a conductive metal oxide powder (in this specification, a metal powder and / or a conductive metal oxide powder is used between a semiconductor element and an electrode, etc. Sintered by applying a DC pulse current in a direction parallel to the direction in which the pressure is applied, while applying pressure in the direction in which the semiconductor element is sandwiched between electrodes. The semiconductor element is bonded to the electrode or the like. The use of the powder in this manner and the sintering of the powder together can bring about an effect of forming a tightly bonded state with the electrode.
  • the “conductivity” of the conductive metal oxide powder means that the conductivity measured by a four-terminal method is 10 3 S / cm or more using the conductive metal oxide powder as a dense sintered body.
  • the metal constituting the metal powder disposed between the semiconductor element and the electrode has a low electric resistance and is the same metal as the metal constituting the common electrode and / or the electrode, or has an ohmic contact with the semiconductor element. It is necessary to form.
  • the resistance value of the metal powder is preferably 10 ⁇ 6 ⁇ cm or less.
  • the metal constituting the metal powder include transition metal materials such as nickel, titanium (Ti), copper (Cu), aluminum (Al), and iron (Fe).
  • the metal species of the metal powder and the metal species used for the electrode or the like may be the same or different, but are preferably the same.
  • the p-type conductive metal oxide constituting the p-type conductive metal oxide powder disposed between the p-type semiconductor element and the electrode or the like forms an ohmic contact with the common electrode and the electrode.
  • it means a substance whose temperature characteristic of electrical conduction shows metallic behavior.
  • the conductive metal oxide is p-type and exhibits high electrical conductivity, and must be different from the metal oxide constituting the semiconductor.
  • the reason is that since the p-type semiconductor element and the metal cannot form an ohmic contact, the semiconductor element and the electrode are joined via a sintered body made of a conductive metal oxide exhibiting a metallic electric conduction behavior. This is because the resistance at the bonding interface can be reduced. In addition, when the junction between the semiconductor element and the metal is in ohmic contact, the resistance at the junction interface is reduced even when only the metal powder is used.
  • the p-type conductive metal oxide that can be used is not particularly limited, and is appropriately changed according to the type of p-type semiconductor, the type of metal used as a common electrode or an electrode.
  • SrRuO 3 , ReO 3 , Cu 2 O, and CuO can be mentioned.
  • the n-type conductive metal oxide constituting the n-type conductive metal oxide powder disposed between the n-type semiconductor element and the electrode forms an ohmic contact with the common electrode and the electrode.
  • it means a substance whose temperature characteristic of electrical conduction shows metallic behavior.
  • the conductive metal oxide is n-type and exhibits high electrical conductivity, and it is necessary to use a material different from the material constituting the n-type semiconductor. The reason is the same as in the case of a p-type semiconductor.
  • the n-type conductive metal oxide that can be used is not particularly limited, and is appropriately changed depending on the type of the n-type semiconductor, the type of metal used as the common electrode or the electrode.
  • the n-type semiconductor In 2 O 3 , SnO 2 , In 2 O 3 —SnO 2 , or Nb or La-doped SrTiO 3 , ZnO can be used. This is because the junction between the electrode and the n-type semiconductor element tends to be in ohmic contact.
  • the particle size of the metal powder and conductive metal oxide powder affects the density of the sintered body.
  • the particle diameter is not particularly limited as long as a sintered body dense to a desired level can be obtained, but is preferably 20 ⁇ m or less, more preferably 3 ⁇ m or less, and nanoparticles can also be used. .
  • the metal powder is preferably used as a green compact.
  • the green compact refers to a metal powder or the like that is pressed and hardened.
  • the green compact can be produced, for example, by compacting. By sandwiching the green compact between the electrode or the like and the semiconductor element, and sintering and densifying using the discharge plasma method, it becomes easy to join the electrode or the like and the semiconductor element.
  • Adhesion between a sintered body of metal powder or green compact and an electrode or the like easily proceeds because both are metal materials.
  • the adhesion between the sintered body of metal powder or the like or the green compact and the semiconductor element is presumed to proceed by the interaction of the oxide film on the particle surface of the metal powder or the like with the surface of the semiconductor element.
  • the sintered body becomes a part of the electrode.
  • a nickel (Ni) plate is used as an electrode or the like and nickel powder is used as a metal powder
  • the bulk of nickel is formed by sintering, and the sintered body is integrated with the nickel plate.
  • the sintered body of the mixed powder becomes a composite electrode of metal and conductive metal oxide, and a module as an electrode between the electrode and the semiconductor element Part of
  • thermoelectric conversion module of this invention has high productivity.
  • the p-type semiconductor element and the n-type semiconductor element are thermally expanded by heating with the discharge plasma for the above-described bonding. If the thermal expansion coefficient of the p-type semiconductor element and the thermal expansion coefficient of the n-type semiconductor element are different, it is assumed that the semiconductor element that is likely to expand is damaged. However, in the manufacturing method of the present invention, metal powder or the like or the green compact plays a role as a buffer material, and thus is caused by the difference between the thermal expansion coefficient of the p-type semiconductor element and the thermal expansion coefficient of the n-type semiconductor element. Damage to the semiconductor element can be suppressed.
  • p-type conductive metal oxide powder When a sintered body containing a metal oxide as a main component is used as the p-type semiconductor element, the junction between the electrode and the p-type semiconductor element tends not to be in ohmic contact. Therefore, p-type conductive metal oxide powder, or a mixture of metal powder and p-type conductive metal oxide powder can be used so that the junction between the electrode and the p-type semiconductor element is in ohmic contact.
  • the same effect can be obtained by using a green compact formed by compacting a p-type conductive metal oxide powder or a mixture of a metal powder and a p-type conductive metal oxide powder. The same applies to the n-type semiconductor element and the n-type conductive metal oxide.
  • the volume ratio of the metal powder to the p-type conductive metal oxide powder is preferably 3/7 to 9/1. If the volume ratio is 3/7 or more, it is preferable because the degree of sintering of the mixture is increased and the thermoelectric element and the electrode can be joined. If it is 9/1 or less, ohmic contact can be easily obtained. This is preferable. A more preferable range of the volume ratio is 5/5 to 7/3. The same applies to the metal powder and the n-type conductive metal oxide.
  • thermoelectric conversion module of the present invention can be manufactured.
  • thermoelectric conversion module of the present invention is made of a material having excellent heat resistance for both the p-type semiconductor element and the n-type semiconductor element. Therefore, the thermoelectric conversion module of the present invention can be used even in a high temperature environment of about 600 ° C. Moreover, both the p-type semiconductor element and the n-type semiconductor element used in the thermoelectric conversion module of the present invention have high performance as a thermoelectric conversion material.
  • the metal oxide used for the production of the p-type semiconductor element is preferably one selected from Na x CoO 2 , CaCo 2 O 4 , CuYO 2 , SrRuO 3 , and Sr 2 RuO 4 .
  • CuYO 2 is preferably doped with a divalent alkaline earth metal such as Ca, Mg, Sr, etc., and is preferably made into CuYO 2 + x by excess oxygen.
  • SrRuO 3 and Sr 2 RuO 4 are preferably doped with Nb.
  • the dopant contained in magnesium silicide is preferably at least one element selected from Sb and Al.
  • thermoelectric conversion module of this invention may be manufactured by methods other than the manufacturing method of the above-mentioned this invention.
  • the production by the method of the present invention is preferable from the following points.
  • conventional methods using paste and solder often do not allow these materials to withstand use at high temperatures, but use metal powders or conductive metal oxide powders. Therefore, there is almost no problem of heat resistance such as paste and solder.
  • ⁇ Manufacture of n-type semiconductor elements Magnesium silicide containing 0.5% by mass of Sb as a dopant (Union Material Co., Ltd., using Example 5 of WO2011 / 002035) is pulverized in an alumina mortar and using a 75 ⁇ m sieve made by Tokyo Screen Co., Ltd. Classification was performed to obtain a raw material powder.
  • the raw material powder was sintered using a discharge plasma sintering apparatus (Dr. Sinter LabSPS-515, manufactured by Sumitomo Coal Mining Co., Ltd.). Sintering conditions are as follows.
  • Raw material powder is filled in a graphite mold, pre-pressurization shown in Table 1 is applied, electricity is applied while performing uniaxial pressure molding, and raw material powder is shown in Table 1 at a temperature increase rate shown in Table 1.
  • the sintered body was manufactured by heating to the holding temperature and heat treatment at the holding temperature shown in Table 1 for the holding time.
  • the appearance of the sintered body of Condition 1 to the sintered body of Condition 6 was visually observed. It was confirmed that the sintered body of condition 1 was cracked, and the sintered bodies of condition 2 to condition 3 were cracked on the surface. The density of the sintered bodies of Condition 4 to Condition 6 in which no cracks were confirmed on the surface was measured. The density of the sintered body under condition 4 was 94.5%, the density of the sintered body under condition 5 was 97.2%, and the density of the sintered body under condition 6 was 99.7%. It was confirmed that the sintered body of Condition 6 was the most dense.
  • the optimum sintering condition was determined, and an n-type semiconductor element used for manufacturing the thermoelectric conversion module was obtained under this condition.
  • the preliminary pressurizing force is 50 MPa
  • the holding temperature is 800 ° C.
  • the holding time is 1 minute
  • the temperature rising rate is 0 to 600 ° C. in the range of 100 ° C./min
  • the temperature in the range of 600 to 700 ° C. is 50 ° C. / Min
  • the range of 700-800 ° C. is 30 ° C./min.
  • a sample of 5.4 mm (length) ⁇ 10.5 mm (width) ⁇ 8.5 mm (height) was cut out from the sintered body and used.
  • a part of the precursor was taken out and mixed with NaCl and KCl at a weight ratio of 2: 1: 1 (precursor: NaCl: KCl).
  • This mixture was placed in a crucible as a sample, sealed with Aron ceramics and allowed to stand for a day, and then heat treated to cure the Aron ceramics.
  • Temperature conditions temperature rise to 100 ° C in 75 minutes, hold for 2 hours, heat up to 200 ° C in 50 minutes, hold for 2 hours, heat up to 300 ° C in 20 minutes, hold for 1 hour, cool to room temperature in 60 minutes It was.
  • heat treatment for producing plate crystals was performed. As heat treatment conditions, the temperature was raised to 1100 ° C. in 100 minutes, held for 12 minutes, slowly cooled to 700 ° C.
  • a graphite mold is filled with a precursor of Na x CoO 2 sample and a plate-like crystal, a pre-pressurizing pressure of 50 MPa is applied, energized while performing uniaxial pressing, and the temperature is raised to 700 ° C. in 7 minutes. The temperature was raised to ⁇ 850 ° C. in 3 minutes and heated at this temperature for 10 minutes to produce a sintered body.
  • This sintered body was used as a p-type semiconductor element for manufacturing the following thermoelectric conversion module. Specifically, a 4.5 mm (vertical) ⁇ 9.5 mm (horizontal) ⁇ 8.5 mm (height) sample was cut out from the sintered body and used.
  • Example 1 0.5 g of nickel metal powder (2 to 3 ⁇ m, purity 99.9%) is filled into a cylindrical mold having an inner diameter of 20 mm and a height of 40 mm, and a green compact is produced under a pressure of 30 MPa. Cut out to ⁇ 5 mm ⁇ 0.5 mm. Moreover, the nickel plate was used as a common electrode and an electrode. Using the green compact, nickel plate, n-type semiconductor element, and p-type semiconductor element, the thermoelectric conversion module of Example 1 was manufactured by the following method.
  • the green compacts were respectively arranged on the upper surfaces of the two nickel plates.
  • an n-type semiconductor element is arranged so that the surface of 5.4 mm (vertical) ⁇ 10.5 mm (horizontal) is in contact with one green compact, and 4.5 mm (vertical) ⁇ on the other green compact.
  • the p-type semiconductor element was arranged so that the surface of 9.5 mm (horizontal) was in contact.
  • the green compacts were respectively disposed on the back surfaces of the surfaces where the green compacts contact the n-type and p-type semiconductor elements.
  • One nickel plate serving as a common electrode was placed on these green compacts so that the bottom surface of the nickel plate was in contact with the green compact.
  • thermoelectric conversion module was manufactured by processing.
  • thermoelectric property evaluation apparatus manufactured by ULVAC-RIKO. Specifically, a thermocouple was installed on the nickel plate, and the surface temperature on the high temperature side and the surface temperature on the low temperature side were measured. Then, a constant current was applied between the nickel plates of the thermoelectric conversion module, and the voltage drop was measured. Finally, power was calculated from the voltage drop and constant current. The measurement conditions and results are shown in Table 2 and FIG. Note that the surface temperature on the low temperature side is all 100 ° C.
  • thermoelectric conversion module of the present invention can be used in an environment of about 200 to 600 ° C. Further, the thermoelectric conversion module of the present invention has a power generation performance of 6.645 mW under a temperature difference of 500 ° C. Therefore, it was confirmed that the power generation performance is equivalent to a general thermoelectric conversion module. .
  • the SrRuO 3 powder mixed with the nickel metal powder is a p-type conductive metal having a particle size of 10 ⁇ m or less by further heat-treating the SrRuO 3 precursor powder in an atmospheric furnace at 1000 ° C. for 5 hours. An oxide powder was obtained.
  • the thermoelectric conversion module of Example 3 was manufactured.
  • the thermoelectric conversion module of Example 3 was manufactured.
  • thermoelectric conversion module of Example 1 When the power generation performance of the thermoelectric conversion module of Example 1 is compared with the power generation performance of the thermoelectric conversion modules of Examples 2 to 4, metal powder and p-type are used as powders for joining the electrode and the p-type semiconductor element. It was confirmed that the power generation performance of the thermoelectric conversion module was improved by using the mixture with the conductive metal oxide powder.
  • the magnesium silicide used in the examples has a small resistance at the bonding interface even when bonded to the metal electrode, even if n-type conductive metal oxide powder is not used, the power generation performance is not greatly reduced. .
  • the resistance of the bonding interface increases in the bonding between the n-type semiconductor element and the metal electrode, the resistance of the bonding interface can be reduced by using the n-type conductive metal oxide powder. Conceivable.
  • thermoelectric conversion modules of Examples 2 to 4 From Table 1 and Tables 2 to 4, it was confirmed that there was almost no difference in voltage drop between the thermoelectric conversion modules of Examples 2 to 4 and the thermoelectric conversion module of Example 1. On the other hand, regarding the current value, it was confirmed that the current flowing through the thermoelectric conversion modules of Examples 2 to 4 was very high compared to the current flowing through the thermoelectric conversion module of Example 1. From these results, it can be confirmed that the thermoelectric conversion modules of Examples 2 to 4 have very low resistance at the interface between the electrode and the like and the semiconductor element as compared with the thermoelectric conversion module of Example 1.
  • thermoelectric conversion module of Example 5 was manufactured in the same manner as the thermoelectric conversion module of Example 1 except that a SrRuO 3 sintered body was used as the p-type semiconductor element. Specifically, a heat-treated sintered body of SrRuO 3 was manufactured by the following method, and 4.5 mm (length) ⁇ 9.5 mm (width) ⁇ 7.5 mm (height) from the sintered body. 1) was used as a p-type semiconductor element.
  • the graphite mold is filled with the above-mentioned precursor of SrRuO 3 sample, a pre-pressurizing force of 50 MPa is applied, energized while performing uniaxial pressing, and the temperature is raised to 1100 ° C. in 11 minutes, and this temperature is increased for 4 minutes.
  • a sintered body was produced by heating. This sintered body was heat-treated in the atmosphere under the conditions of a processing temperature of 1300 ° C. and a processing time of 12 hours to obtain a SrRuO 3 sintered body.
  • thermoelectric conversion module of Example 5 was evaluated in the same manner as the power generation performance of the thermoelectric conversion module of Example 1.
  • the measurement conditions and evaluation results of Example 5 are shown in Table 6 and FIG. Note that the surface temperature on the low temperature side is all 100 ° C.
  • the power generation of the thermoelectric conversion module can be achieved by changing the type of metal oxide constituting the p-type semiconductor element. It was confirmed that the performance was greatly improved.
  • thermoelectric conversion module of Example 6 was produced in the same manner as in Example 5 except that Nb was added when producing the starting solution so that Nb in the starting solution was 5 mol%.
  • thermoelectric conversion module of Example 6 was evaluated in the same manner as the power generation performance of the thermoelectric conversion module of Example 1.
  • the measurement conditions and evaluation results of Example 6 are shown in Table 7 and FIG. Note that the surface temperature on the low temperature side is all 100 ° C.
  • thermoelectric conversion module of Example 6 When comparing the power generation performance of the thermoelectric conversion module of Example 6 with the power generation performance of the thermoelectric conversion module of Example 5, the metal oxide constituting the p-type semiconductor element is changed to a metal oxide containing a dopant. It was confirmed that the power generation performance of the thermoelectric conversion module was improved.

Abstract

Disclosed are: a method for producing a thermoelectric conversion module with high productivity; and a thermoelectric conversion module which can be used under high temperature environments and has high power-generating performance. Disclosed is a method for producing a thermoelectric conversion module comprising an n-type semiconductor element, a p-type semiconductor element, a common electrode to which one end of the n-type semiconductor element and one end of the p-type semiconductor element are connected, and an electrode to which the other end of the n-type semiconductor element and the other end of the p-type semiconductor element are connected independently, wherein a metal powder and/or an electrically conductive metal oxide powder (an n-type electrically conductive metal oxide powder or a p-type electrically conductive metal oxide powder) is arranged between the semiconductor element and the electrodes and the like, and the semiconductor element and the electrodes and the like are connected to each other in a specific manner. A sintered material containing a metal oxide as the main component is used as the p-type semiconductor element, and a sintered material containing magnesium silicide as the main component is used as the n-type semiconductor element.

Description

熱電変換モジュールの製造方法及び熱電変換モジュールThermoelectric conversion module manufacturing method and thermoelectric conversion module
 本発明は、熱電変換モジュールの製造方法及び熱電変換モジュールに関する。 The present invention relates to a method for manufacturing a thermoelectric conversion module and a thermoelectric conversion module.
 熱電変換とは、ゼーベック効果やペルチェ効果を利用して、熱エネルギーと電気エネルギーとを相互に変換することをいう。熱電変換を利用すれば、ゼーベック効果を用いて熱流から電力を取り出すことが可能である。 Thermoelectric conversion refers to the mutual conversion of thermal energy and electrical energy using the Seebeck effect or Peltier effect. If thermoelectric conversion is used, it is possible to extract electric power from the heat flow using the Seebeck effect.
 また、上記の熱電変換は、直接変換であるがためにエネルギー変換の際に余分な老廃物を排出しないこと、排熱の有効利用が可能であること等の特徴を有している。このため、熱電変換モジュールの研究は盛んに行われている。 In addition, since the above-described thermoelectric conversion is direct conversion, it has characteristics such that excess waste products are not discharged during energy conversion, and effective use of exhaust heat is possible. For this reason, research on thermoelectric conversion modules has been actively conducted.
 一般的に熱電変換モジュールは、いわゆるπ型の構造を持つ。π型の構造は、n型半導体素子と、p型半導体素子と(以下、n型半導体素子とp型半導体素子とを併せて「半導体素子」という場合がある)、n型半導体素子の一端とp型半導体素子の一端とが接合される共通電極と、n型半導体素子の他端及びp型半導体素子の他端にそれぞれ独立して接合される電極(以下、共通電極と電極とを併せて「電極等」という場合がある。)とからなる。 Generally, thermoelectric conversion modules have a so-called π-type structure. The π-type structure includes an n-type semiconductor element, a p-type semiconductor element (hereinafter, the n-type semiconductor element and the p-type semiconductor element may be collectively referred to as “semiconductor element”), one end of the n-type semiconductor element, A common electrode to which one end of the p-type semiconductor element is joined, and an electrode to be joined independently to the other end of the n-type semiconductor element and the other end of the p-type semiconductor element (hereinafter, the common electrode and the electrode are combined) It may be referred to as “electrode etc.”).
 π型構造の熱電変換モジュールの製造において、半導体素子と電極間の接合方法としては、ペーストを用いる方法(特許文献1参照)、はんだを用いる方法(特許文献2参照)が採用される。ペーストを用いる方法、はんだを用いる方法のいずれも、π型構造の熱電変換モジュール毎に半導体素子と電極との接合を行う必要があるため、生産性の点で満足のいくものではなかった。そこで、π型構造の熱電変換モジュールの生産性を高めるために、複数のπ型構造の熱電変換モジュールを一度に製造する方法が望まれているが、そのような方法は存在しないのが現状である。 In the manufacture of a thermoelectric conversion module having a π-type structure, a method using a paste (see Patent Document 1) and a method using solder (see Patent Document 2) are employed as a bonding method between a semiconductor element and an electrode. Neither the method using paste nor the method using solder is satisfactory in terms of productivity because it is necessary to bond a semiconductor element and an electrode for each π-type thermoelectric conversion module. Therefore, in order to increase the productivity of the thermoelectric conversion module having a π-type structure, a method of manufacturing a plurality of thermoelectric conversion modules having a π-type structure at the same time is desired. However, there is currently no such method. is there.
 また、熱電変換モジュールによる発電においては、焼却炉や工業炉からの廃熱をそのまま利用することが望ましい。しかしながら、熱電変換モジュールの耐熱性が問題となり、廃熱が600℃程度になると、発電が困難になるのが現状である。 Also, in the power generation by the thermoelectric conversion module, it is desirable to use the waste heat from the incinerator or industrial furnace as it is. However, the heat resistance of the thermoelectric conversion module becomes a problem, and when the waste heat reaches about 600 ° C., it is difficult to generate power.
 600℃程度の高温環境下で使用可能な熱電変換モジュールの開発には、p型半導体素子及びn型半導体素子の耐熱性の改善が必要になる。耐熱性の高い熱電変換モジュールの開発は進められているものの(特許文献3参照)、充分な耐熱性と高い発電性能を兼ね備える熱電変換モジュールは開発されていない。 Development of a thermoelectric conversion module that can be used in a high temperature environment of about 600 ° C. requires improvement of heat resistance of p-type semiconductor elements and n-type semiconductor elements. Although development of a thermoelectric conversion module with high heat resistance is underway (see Patent Document 3), no thermoelectric conversion module having sufficient heat resistance and high power generation performance has been developed.
特開2009-117792号公報JP 2009-117772 A 特開2009-088068号公報JP 2009-080868 A 特開2007-150112号公報JP 2007-150112 A
 本発明は、以上の課題を解決するためになされたものであり、その目的は、熱電変換モジュールを高い生産性で製造する方法、及び高温環境下で使用可能で且つ高い発電性能を有する熱電変換モジュールを提供することにある。 The present invention has been made to solve the above-described problems, and has as its object to provide a method for manufacturing a thermoelectric conversion module with high productivity, and a thermoelectric conversion that can be used in a high temperature environment and has high power generation performance. To provide a module.
 本発明者らは、以上の課題を解決するために鋭意研究を重ねた。その結果、半導体素子と電極等との間に金属粉末及び/又は導電性金属酸化物粉末(n型導電性金属酸化物粉末又はp型導電性金属酸化物粉末)を配置して、半導体素子と電極等とを特定の方法で接合することで、熱電変換モジュールの生産性が高まることを見出し、さらに、金属粉末と導電性金属酸化物粉末とを併用することで、熱電変換モジュールの発電性能が飛躍的に向上することも見出した。また、p型半導体素子として金属酸化物を主成分とする焼結体を用い、n型半導体素子としてマグネシウムシリサイドを主成分とする焼結体を用いれば、熱電変換モジュールは、高温環境下で使用可能であることを見出し、さらに、熱電変換モジュールを構成する材料の選択により、熱電変換モジュールの発電性能が飛躍的に向上することも見出した。本発明はこのような知見に基づいてなされたものであり、具体的には以下の通りである。 The present inventors have intensively studied to solve the above problems. As a result, a metal powder and / or conductive metal oxide powder (n-type conductive metal oxide powder or p-type conductive metal oxide powder) is disposed between the semiconductor element and the electrode, etc. It is found that the productivity of the thermoelectric conversion module is increased by joining the electrodes and the like by a specific method, and further, the power generation performance of the thermoelectric conversion module is improved by using the metal powder and the conductive metal oxide powder in combination. I also found a dramatic improvement. In addition, if a sintered body mainly composed of metal oxide is used as a p-type semiconductor element and a sintered body mainly composed of magnesium silicide is used as an n-type semiconductor element, the thermoelectric conversion module can be used in a high temperature environment. It has also been found that this is possible, and further, it has also been found that the power generation performance of the thermoelectric conversion module is drastically improved by selecting the material constituting the thermoelectric conversion module. The present invention has been made on the basis of such findings, and is specifically as follows.
 (1) n型半導体素子と、p型半導体素子と、前記n型半導体素子の一端と前記p型半導体素子の一端とが接合される共通電極と、前記n型半導体素子の他端及び前記p型半導体素子の他端にそれぞれ独立して接合される電極と、を備える熱電変換モジュールの製造方法であって、前記n型半導体素子と、前記共通電極及び電極との間に金属粉末及び/又はn型導電性金属酸化物粉末を配置し、前記p型半導体素子と、前記共通電極及び電極との間に金属粉末及び/又はp型導電性金属酸化物粉末を配置し、前記n型半導体素子及びp型半導体素子を前記共通電極及び前記電極で挟む方向に圧力を印加しながら、前記圧力が印加される方向と平行な方向に直流パルス電流を印加して焼結し、前記n型半導体素子と前記共通電極及び電極との間及び前記p型半導体素子と前記共通電極及び電極との間を接合する熱電変換モジュールの製造方法。 (1) An n-type semiconductor element, a p-type semiconductor element, a common electrode where one end of the n-type semiconductor element and one end of the p-type semiconductor element are joined, the other end of the n-type semiconductor element, and the p A thermoelectric conversion module comprising: an electrode that is independently joined to the other end of the type semiconductor element; and a metal powder and / or between the n type semiconductor element and the common electrode and the electrode An n-type conductive metal oxide powder is disposed, a metal powder and / or a p-type conductive metal oxide powder is disposed between the p-type semiconductor element and the common electrode, and the n-type semiconductor element. And applying a DC pulse current in a direction parallel to the direction in which the pressure is applied while applying pressure in a direction in which the p-type semiconductor element is sandwiched between the common electrode and the electrode, and sintering the n-type semiconductor element And the common electrode and the electrode During and method of manufacturing the thermoelectric conversion module of joining between the common electrode and the electrode and the p-type semiconductor element.
 (2) 前記金属粉末及び/又はn型導電性金属酸化物粉末、並びに前記金属粉末及び/又はp型導電性金属酸化物粉末は、圧粉体である(1)に記載の熱電変換モジュールの製造方法。 (2) The metal powder and / or the n-type conductive metal oxide powder and the metal powder and / or the p-type conductive metal oxide powder are green compacts of the thermoelectric conversion module according to (1). Production method.
 (3) 前記n型半導体素子と前記共通電極及び電極との間に、金属粉末とn型導電性金属酸化物粉末との混合物を配置し、前記p型半導体素子と前記共通電極及び電極との間に、金属粉末とp型導電性金属酸化物粉末との混合物を配置する(1)又は(2)に記載の熱電変換モジュールの製造方法。 (3) A mixture of metal powder and n-type conductive metal oxide powder is disposed between the n-type semiconductor element and the common electrode and electrode, and the p-type semiconductor element and the common electrode and electrode are The manufacturing method of the thermoelectric conversion module as described in (1) or (2) which arrange | positions the mixture of metal powder and p-type electroconductive metal oxide powder in between.
 (4) 前記p型半導体素子は、前記共通電極及び前記電極との接合に用いられる前記p型導電性金属酸化物と異なる金属酸化物を主成分とする焼結体であり、前記n型半導体素子は、Sb、Alから選択される少なくとも一種の元素をドーパントとして含むマグネシウムシリサイドを主成分とする焼結体又はマグネシウムシリサイドを主成分とする焼結体である(1)乃至(3)のいずれか1に記載の熱電変換モジュールの製造方法。 (4) The p-type semiconductor element is a sintered body mainly composed of a metal oxide different from the p-type conductive metal oxide used for joining the common electrode and the electrode, and the n-type semiconductor The element is any one of (1) to (3) which is a sintered body containing magnesium silicide as a main component or containing magnesium silicide as a main component and containing at least one element selected from Sb and Al as a dopant. A method for producing the thermoelectric conversion module according to claim 1.
 (5) 前記p型半導体素子は、前記金属酸化物の粉体と前記金属酸化物の板状結晶との混合物を、一軸加圧成形しながら加圧方向と平行に直流パルス電流を印加して、焼結させた焼結体である(4)に記載の熱電変換モジュールの製造方法。 (5) The p-type semiconductor element applies a DC pulse current parallel to the pressing direction while uniaxially pressing a mixture of the metal oxide powder and the metal oxide plate crystal. The method for producing a thermoelectric conversion module according to (4), wherein the sintered body is sintered.
 (6) n型半導体素子と、p型半導体素子と、前記n型半導体素子の一端と前記p型半導体素子の一端とが接合される共通電極と、前記n型半導体素子の他端及び前記p型半導体素子の他端にそれぞれ独立して接合される電極と、を備え、前記p型半導体素子の端部と前記共通電極及び電極との接合部が、金属の焼結体、金属とp型導電性金属酸化物の混合物の焼結体又はp型導電性金属酸化物の焼結体から構成され、前記n型半導体素子の端部と前記共通電極及び電極との接合部が、金属の焼結体、金属とn型導電性金属酸化物の混合物の焼結体又はn型導電性金属酸化物の焼結体から構成される熱電変換モジュール。 (6) an n-type semiconductor element, a p-type semiconductor element, a common electrode at which one end of the n-type semiconductor element and one end of the p-type semiconductor element are joined, the other end of the n-type semiconductor element, and the p An electrode that is independently joined to the other end of the p-type semiconductor element, and the junction between the end of the p-type semiconductor element and the common electrode and the electrode is a sintered metal, a metal and p-type It is composed of a sintered body of a mixture of conductive metal oxides or a sintered body of p-type conductive metal oxides, and the joint between the end of the n-type semiconductor element and the common electrode and the electrode is made of a sintered metal. A thermoelectric conversion module comprising a bonded body, a sintered body of a mixture of a metal and an n-type conductive metal oxide, or a sintered body of an n-type conductive metal oxide.
 (7) 前記p型半導体素子の端部と前記共通電極及び電極との接合部が、金属とp型導電性金属酸化物の混合物の焼結体から構成され、前記n型半導体素子の端部と前記共通電極及び電極との接合部が、金属とn型導電性金属酸化物の混合物の焼結体から構成される(6)に記載の熱電変換モジュール。 (7) The junction between the end of the p-type semiconductor element and the common electrode and the electrode is composed of a sintered body of a mixture of a metal and a p-type conductive metal oxide, and the end of the n-type semiconductor element The thermoelectric conversion module according to (6), wherein a joint between the common electrode and the electrode is formed of a sintered body of a mixture of a metal and an n-type conductive metal oxide.
 (8) 前記p型半導体素子は、前記接合部を構成するp型導電性金属酸化物と異なる金属酸化物を主成分とする焼結体であり、前記n型半導体素子は、マグネシウムシリサイドを主成分とする焼結体である(6)又は(7)に記載の熱電変換モジュール。 (8) The p-type semiconductor element is a sintered body whose main component is a metal oxide different from the p-type conductive metal oxide constituting the junction, and the n-type semiconductor element is mainly made of magnesium silicide. The thermoelectric conversion module according to (6) or (7), which is a sintered body as a component.
 (9) 前記マグネシウムシリサイドを主成分とする焼結体が、ドーパントを含むものである(8)に記載の熱電変換モジュール。 (9) The thermoelectric conversion module according to (8), wherein the sintered body containing magnesium silicide as a main component includes a dopant.
 (10) 前記ドーパントは、Sb、Alから選択される少なくとも一種の元素である(9)に記載の熱電変換モジュール。 (10) The thermoelectric conversion module according to (9), wherein the dopant is at least one element selected from Sb and Al.
 (11) 前記p型半導体素子を構成する前記金属酸化物が、NaCoO、CaCo、CuYO、SrRuO、及びSrRuOから選択される(8)乃至(10)のいずれか1に記載の熱電変換モジュール。 (11) The metal oxide constituting the p-type semiconductor element is selected from Na x CoO 2 , CaCo 2 O 4 , CuYO 2 , SrRuO 3 , and Sr 2 RuO 4 (8) to (10) The thermoelectric conversion module of any one.
 (12) 前記接合部の焼結体を構成するp型導電性金属酸化物がSrRuO、ReO、CuO及びCuOから選択される(6)乃至(11)のいずれか1に記載の熱電変換モジュール。 (12) The p-type conductive metal oxide constituting the sintered body of the joint is selected from SrRuO 3 , ReO 3 , Cu 2 O and CuO, according to any one of (6) to (11) Thermoelectric conversion module.
 (13) 前記接合部の焼結体を構成するn型導電性金属酸化物がIn、SnO、In-SnO、もしくはNb又はLaドープSrTiO、ZnOである(6)乃至(12)のいずれか1に記載の熱電変換モジュール。 (13) The n-type conductive metal oxide constituting the sintered body of the joint is In 2 O 3 , SnO 2 , In 2 O 3 —SnO 2 , or Nb or La-doped SrTiO 3 , ZnO (6 The thermoelectric conversion module according to any one of (12) to (12).
 本発明の熱電変換モジュールの製造方法によれば、一度に複数のπ型構造の熱電変換モジュールを製造することができる。このため、先述の従来のπ型構造の熱電変換モジュールの製造方法と比較して、本発明の熱電変換モジュールの製造方法は、高い生産性を有する。 According to the method for manufacturing a thermoelectric conversion module of the present invention, a plurality of π-type thermoelectric conversion modules can be manufactured at a time. For this reason, compared with the manufacturing method of the conventional thermoelectric conversion module of the above-mentioned pi type structure, the manufacturing method of the thermoelectric conversion module of the present invention has high productivity.
 特に、本発明の製造方法において、電極及び共通電極と半導体素子との接合に金属粉末及び/又は導電性金属酸化物を用いると、高い発電性能を有する熱電変換モジュールが得られ、特に金属粉末と導電性金属酸化物を併用すると、その性能は飛躍的に向上する。 In particular, in the manufacturing method of the present invention, when metal powder and / or conductive metal oxide is used for joining the electrode and common electrode to the semiconductor element, a thermoelectric conversion module having high power generation performance is obtained. When a conductive metal oxide is used in combination, the performance is dramatically improved.
 本発明の熱電変換モジュールは、使用されるp型半導体素子及びn型半導体素子として耐熱性が高いものを用いることが好ましく、したがって、得られる熱電変換モジュールは、高温環境下で使用可能である。 The thermoelectric conversion module of the present invention preferably uses a p-type semiconductor element and an n-type semiconductor element that have high heat resistance, and thus the obtained thermoelectric conversion module can be used in a high temperature environment.
 特に、本発明の熱電変換モジュールのp型半導体素子として、特定の金属酸化物を使用すると、熱電返還モジュールの発電性能が非常に高まる。 In particular, when a specific metal oxide is used as the p-type semiconductor element of the thermoelectric conversion module of the present invention, the power generation performance of the thermoelectric return module is greatly enhanced.
本発明の方法で製造される熱電変換モジュールを模式的に示す図である。It is a figure which shows typically the thermoelectric conversion module manufactured with the method of this invention. 実施例1の熱電変換モジュールの発電性能の評価結果を示す図である。It is a figure which shows the evaluation result of the electric power generation performance of the thermoelectric conversion module of Example 1. FIG. 実施例2の熱電変換モジュールの発電性能の評価結果を示す図である。It is a figure which shows the evaluation result of the electric power generation performance of the thermoelectric conversion module of Example 2. FIG. 実施例3の熱電変換モジュールの発電性能の評価結果を示す図である。It is a figure which shows the evaluation result of the electric power generation performance of the thermoelectric conversion module of Example 3. FIG. 実施例4の熱電変換モジュールの発電性能の評価結果を示す図である。It is a figure which shows the evaluation result of the electric power generation performance of the thermoelectric conversion module of Example 4. 実施例5の熱電変換モジュールの発電性能の評価結果を示す図である。It is a figure which shows the evaluation result of the electric power generation performance of the thermoelectric conversion module of Example 5. FIG. 実施例6の熱電変換モジュールの発電性能の評価結果を示す図である。It is a figure which shows the evaluation result of the electric power generation performance of the thermoelectric conversion module of Example 6.
 以下、本発明の実施形態について説明するが、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments.
 図1は、本発明の熱電変換モジュールの概略図であり、n型半導体素子10と、p型半導体素子11と、n型半導体素子の一端とp型半導体素子の一端とが接合される共通電極12と、n型半導体素子の他端及びp型半導体素子の他端にそれぞれ独立して接合される電極13と、を備える。以下、熱電変換モジュールの各部品について、n型半導体素子、p型半導体素子、共通電極及び電極の順で説明した後、本発明の製造方法について説明する。 FIG. 1 is a schematic diagram of a thermoelectric conversion module according to the present invention, in which an n-type semiconductor element 10, a p-type semiconductor element 11, a common electrode at which one end of an n-type semiconductor element and one end of a p-type semiconductor element are joined. 12 and an electrode 13 that is independently joined to the other end of the n-type semiconductor element and the other end of the p-type semiconductor element. Hereinafter, after describing each part of the thermoelectric conversion module in the order of the n-type semiconductor element, the p-type semiconductor element, the common electrode, and the electrode, the manufacturing method of the present invention will be described.
<n型半導体素子>
 本発明の熱電変換モジュールを構成するn型半導体素子としては特に限定されず、熱電変換モジュールに用いられる従来公知のn型半導体素子を使用することができる。
<N-type semiconductor element>
It does not specifically limit as an n-type semiconductor element which comprises the thermoelectric conversion module of this invention, The conventionally well-known n-type semiconductor element used for a thermoelectric conversion module can be used.
 従来公知のn型半導体素子の中でも、対環境性、経済性等の面で、マグネシウムシリサイド(MgSi)を用いるのが好ましく、さらに本発明者等が提案し、WO2008/075789A1、WO2011/002035A1及びWO2011/013609A1の国際公開公報に示されるものを用いることが特に好ましい。 Among the conventionally known n-type semiconductor elements, it is preferable to use magnesium silicide (Mg 2 Si) in terms of environmental friendliness, economy, and the like. It is particularly preferable to use those disclosed in WO2011 / 013609A1.
 上記国際番号WO2011/002035A1に示されるマグネシウムシリサイドは、融点が1358K、線膨張係数が15.5×10-6/K(293℃)であり、熱的に安定で熱電変換効率も高い。加えて、マグネシウムシリサイドはヤング率が約120GPaであり、優れた剛性も有する。 Magnesium silicide shown in the international number WO2011 / 002035A1 has a melting point of 1358K, a linear expansion coefficient of 15.5 × 10 −6 / K (293 ° C.), is thermally stable, and has high thermoelectric conversion efficiency. In addition, magnesium silicide has a Young's modulus of about 120 GPa and has excellent rigidity.
 マグネシウムシリサイドには、必要に応じて選択されるドーパントを含めることができる。マグネシウムシリサイドに含まれるドーパントとしては、特に限定されないが、例えば、Sb、Al等が用いると、電気抵抗率を低下させ、あるいは耐久性を高めるのに有効である。また、該ドーパントの含有量は特に限定されないが、0.1~1質量%であることが好ましい。なお、ドーパントとしてSbを含むマグネシウムシリサイドをn型半導体素子として使用することが特に好ましい。 Magnesium silicide can contain a dopant selected as necessary. Although it does not specifically limit as a dopant contained in magnesium silicide, For example, when Sb, Al, etc. are used, it is effective in reducing an electrical resistivity or improving durability. The content of the dopant is not particularly limited, but is preferably 0.1 to 1% by mass. It is particularly preferable to use magnesium silicide containing Sb as a dopant as the n-type semiconductor element.
 マグネシウムシリサイドの製造法は、特に限定されないが、例えば、本発明者等が提案した先述の国際公開公報に記載される方法が好ましく、次のような手順で行うことができる。先ず、マグネシウム(Mg)とシリコン(Si)を原料として、両者を混合後、溶融し反応させてマグネシウムシリサイドを合成し、それを粉砕して粉末にし、次いでこの粉末を焼結させて、n型熱電変換素子として有用な所期のマグネシウムシリサイドを得ることができる。 The method for producing magnesium silicide is not particularly limited, but, for example, the method described in the above-mentioned international publication proposed by the present inventors is preferable, and can be performed by the following procedure. First, using magnesium (Mg) and silicon (Si) as raw materials, both are mixed, melted and reacted to synthesize magnesium silicide, pulverized into powder, and then this powder is sintered to form n-type A desired magnesium silicide useful as a thermoelectric conversion element can be obtained.
 マグネシウムシリサイドの粉末の製造において、マグネシウムとシリコンを原料として、マグネシウムシリサイドの合成を実施する際には、合成温度をマグネシウムシリサイドの融点(1358K)より高い温度(例えば1370~1400K)で実施し、系全体を融液とした状態で合成する方法が好ましい。均一なマグネシウムシリサイドを得ることができるからである。得られたマグネシウムシリサイドを粉砕し、マグネシウムシリサイドの粉末にする。なお、マグネシウムシリサイドの粉末の平均粒子径は、特に制限はないが、例えば25~100μmに調整することが好ましい。 In the production of magnesium silicide powder, when magnesium silicide is synthesized using magnesium and silicon as raw materials, the synthesis temperature is higher than the melting point of magnesium silicide (1358 K) (for example, 1370 to 1400 K). A method of synthesizing the whole as a melt is preferred. This is because uniform magnesium silicide can be obtained. The obtained magnesium silicide is pulverized to form magnesium silicide powder. The average particle diameter of the magnesium silicide powder is not particularly limited, but is preferably adjusted to, for example, 25 to 100 μm.
 マグネシウムシリサイドの粉末を焼結する方法としては、ホットプレス焼結法、熱間等方圧加圧焼結法、放電プラズマ焼結法等の従来公知の方法を採用することができる。従来公知の焼結方法の中でも、放電プラズマ焼結法の採用が最も好ましい。短時間で緻密な焼結体を得ることができるからである。 As a method for sintering the magnesium silicide powder, a conventionally known method such as a hot press sintering method, a hot isostatic pressing method, or a discharge plasma sintering method can be employed. Among the conventionally known sintering methods, it is most preferable to employ a discharge plasma sintering method. This is because a dense sintered body can be obtained in a short time.
 放電プラズマ焼結は、マグネシウムシリサイドの粉末を一軸加圧成形しながら、加圧方向と平行な方向に直流パルス電流を印加して、焼結体を得る方法である。放電プラズマ焼結は、具体的には従来公知の装置を用いて、以下の方法で行うことができる。先ず、試料を充填した型をチャンバー内の焼結ステージ上にセットしてグラファイト電極で挟み、加圧しながらパルス通電を行う。次いで、試料の温度を数分以内に室温より一気に700~2500℃へ急速昇温する。最後に、昇温後の温度で数分間試料を保持して焼結体を得る。 Discharge plasma sintering is a method of obtaining a sintered body by applying a DC pulse current in a direction parallel to the pressing direction while uniaxially pressing magnesium silicide powder. Specifically, spark plasma sintering can be performed by the following method using a conventionally known apparatus. First, a mold filled with a sample is set on a sintering stage in a chamber, sandwiched between graphite electrodes, and pulsed while conducting pressure. Next, the temperature of the sample is rapidly raised from room temperature to 700 to 2500 ° C. within a few minutes. Finally, the sample is held for several minutes at the temperature after the temperature rise to obtain a sintered body.
 焼結条件の中でも、昇温速度がマグネシウムシリサイドの品質に特に影響を与える。600℃以下を昇温速度80~120℃/分、600~700℃までを昇温速度40~60℃/分、700℃以上を昇温速度20~40℃/分に設定することが好ましい。なお、他の条件は、圧力を20~70MPa、昇温後の温度を700~900℃、保持時間を30秒~15分に設定することが好ましい。 Among the sintering conditions, the rate of temperature rise affects the quality of magnesium silicide. It is preferable to set 600 ° C. or less at a temperature increase rate of 80 to 120 ° C./min, 600 to 700 ° C. at a temperature increase rate of 40 to 60 ° C./min, and 700 ° C. or more at a temperature increase rate of 20 to 40 ° C./min. The other conditions are preferably set such that the pressure is 20 to 70 MPa, the temperature after the temperature rise is 700 to 900 ° C., and the holding time is 30 seconds to 15 minutes.
<p型半導体素子>
 本発明の熱電変換モジュールを構成するp型半導体素子は特に限定されず、熱電変換モジュールに用いられる従来公知のp型半導体を使用することができる。特に、p型半導体素子として金属酸化物を主成分とする焼結体の使用が好ましい。ここで、「主成分」とは、本発明の効果を害さない範囲で他の成分がp型半導体素子に含まれていてもよいことを指す。
<P-type semiconductor element>
The p-type semiconductor element which comprises the thermoelectric conversion module of this invention is not specifically limited, The conventionally well-known p-type semiconductor used for a thermoelectric conversion module can be used. In particular, it is preferable to use a sintered body containing a metal oxide as a main component as a p-type semiconductor element. Here, the “main component” means that other components may be contained in the p-type semiconductor element as long as the effects of the present invention are not impaired.
 金属酸化物としては、NaCoO、CaCo、CuYO、SrRuO、及びSrRuO等を例示することができる。また、例えば、CuYOではCa、Mg、Sr等の2価のアルカリ土類金属をドープしてもよく、酸素を過剰にしてCuYO2+xにしてもよい。また、SrRuO及びSrRuOでは、Nbをドープしてもよい。これらの中でも、特に、SrRuOを主成分とするp型半導体素子が好ましい。電極等とp型半導体素子との接合がオーミック接触になりやすい傾向にあるからである。 Examples of the metal oxide include Na x CoO 2 , CaCo 2 O 4 , CuYO 2 , SrRuO 3 , and Sr 2 RuO 4 . In addition, for example, CuYO 2 may be doped with a divalent alkaline earth metal such as Ca, Mg, Sr, etc., or oxygen may be excessive to form CuYO 2 + x . In SrRuO 3 and Sr 2 RuO 4 , Nb may be doped. Among these, a p-type semiconductor element mainly containing SrRuO 3 is preferable. This is because the junction between the electrode and the p-type semiconductor element tends to be in ohmic contact.
 また、金属酸化物は、耐熱性に優れるため、高温環境下で使用される熱電変換モジュールに用いるp型半導体素子として好ましい。 Moreover, since metal oxide is excellent in heat resistance, it is preferable as a p-type semiconductor element used in a thermoelectric conversion module used in a high temperature environment.
 金属酸化物の焼結体の製造は、次の手順で行うことができる。先ず、金属の有機化合物や無機化合物を原料として、金属酸化物の粉末を作製する。次いで、この粉末を焼結させる。 The metal oxide sintered body can be manufactured by the following procedure. First, metal oxide powder is prepared using a metal organic compound or an inorganic compound as a raw material. The powder is then sintered.
 金属酸化物の粉末の作製は、ゾル・ゲル法、金属-有機錯体の熱分解法や共沈法等の金属元素を含む溶液を出発とする従来公知の方法を用いて行うことができる。ゾル・ゲル法とは、一般に、金属の有機化合物や無機化合物等の出発原料を溶媒に溶かして溶液として、溶液中で加水分解や縮重合等の化学反応を起こし、溶液を金属酸化物又は水酸化物の微粒子が溶解したゾル溶液にする方法である。かかるゾル溶液の反応をさらに進行させると、ゾル溶液が凝集したゲル化物が形成される。かかるゲル化物を熱処理して内部に残された溶媒を取り除くと、金属酸化物の微粒子の凝集物が得られる。この凝集物を粉砕して金属酸化物の粉体を得る。 The metal oxide powder can be prepared by a conventionally known method starting from a solution containing a metal element, such as a sol-gel method, a thermal decomposition method of a metal-organic complex, or a coprecipitation method. In general, the sol-gel method is a solution in which a starting material such as a metal organic compound or inorganic compound is dissolved in a solvent to cause a chemical reaction such as hydrolysis or polycondensation in the solution. This is a method of forming a sol solution in which oxide fine particles are dissolved. When the reaction of the sol solution is further advanced, a gelled product in which the sol solution is aggregated is formed. When the gelled product is heat-treated to remove the solvent remaining inside, an aggregate of metal oxide fine particles is obtained. The aggregate is pulverized to obtain a metal oxide powder.
 金属酸化物の粉末を焼結させる方法は特に限定されないが、例えば、ホットプレス焼結法、熱間等方圧加圧焼結法、放電プラズマ焼結法等を例示することができる。これらの焼結方法の中でも、放電プラズマ焼結法の採用が最も好ましい。短時間で緻密な焼結体を得ることができるからである。 The method for sintering the metal oxide powder is not particularly limited, and examples thereof include a hot press sintering method, a hot isostatic pressing method, and a discharge plasma sintering method. Among these sintering methods, it is most preferable to employ a discharge plasma sintering method. This is because a dense sintered body can be obtained in a short time.
 ところで、金属酸化物の結晶の中には、電気抵抗率に異方性のあるものが存在する。金属酸化物の結晶において、電気抵抗率の異方性が存在する場合、熱電変換モジュール中で電気が流れる方向と電気抵抗率が低くなる方向とを揃えることが好ましい。電気が流れる方向と電気抵抗率が低くなる方向とを揃えるためには、例えば、以下の方法で金属酸化物の焼結体を製造する。 Incidentally, some metal oxide crystals are anisotropic in electrical resistivity. When there is anisotropy in electrical resistivity in the metal oxide crystal, it is preferable to align the direction in which electricity flows in the thermoelectric conversion module with the direction in which the electrical resistivity decreases. In order to align the direction in which electricity flows and the direction in which the electrical resistivity decreases, for example, a metal oxide sintered body is manufactured by the following method.
 先ず、ゾル・ゲル法や共沈法等の従来公知の方法を用いて、金属酸化物の粉体を作製する。
 次いで、例えばフラックス法を用いて金属酸化物の粉体から板状結晶を作製する。ここで、フラックスとは、溶媒のことであり、溶質が水に溶けない場合等に溶媒とする物質の総称をいう。フラックス法とは、例えばナトリウム、塩化ナトリウム、塩化リチウム等を融剤(フラックス)として用いて構成元素を溶解させ、温度圧力を制御することによって、単結晶を析出させる方法である。
 最後に、金属酸化物の粉体と上記金属酸化物の板状結晶との混合物を一軸加圧成形しながら、加圧方向と平行な方向に直流パルス電流を印加して焼結体を得る。ここでは、真空プラズマ焼結中に、TGG法(Tamplated Grain Growth法)によって、焼結体に構造異方性が付与される。TGG法とは、多結晶粒子に構造異方性の高い板状結晶を埋入し、一軸加圧により板状結晶が並ぶように向きを揃え、熱処理を加えることにより、粉体が板状結晶よりa-c面方向に影響を受けて成長し、構造異方性を金属酸化物に持たせる方法をいう。なお、この方法は、真空プラズマ焼結法と同時に行うことが可能である。
First, a metal oxide powder is prepared using a conventionally known method such as a sol-gel method or a coprecipitation method.
Next, a plate-like crystal is produced from the metal oxide powder using, for example, a flux method. Here, the flux refers to a solvent, and is a generic name for substances used as a solvent when a solute does not dissolve in water. The flux method is a method for precipitating a single crystal by, for example, dissolving constituent elements using sodium, sodium chloride, lithium chloride or the like as a flux (flux) and controlling the temperature and pressure.
Finally, a DC pulse current is applied in a direction parallel to the pressing direction while a mixture of the metal oxide powder and the plate crystal of the metal oxide is uniaxially pressed to obtain a sintered body. Here, during vacuum plasma sintering, structural anisotropy is imparted to the sintered body by the TGG method (Tampled Grain Growth method). In the TGG method, plate-like crystals with high structural anisotropy are embedded in polycrystalline particles, aligned so that the plate-like crystals are aligned by uniaxial pressing, and heat treatment is performed, whereby the powder becomes plate-like crystals. It refers to a method in which a metal oxide has structural anisotropy by growing under the influence of the ac plane direction. This method can be performed simultaneously with the vacuum plasma sintering method.
 また、ゾル・ゲル法や共沈法等の金属元素を含む溶液を出発とする従来公知の方法で板状結晶が得られる場合には、得られた板状結晶のみを一軸加圧成形しながら、加圧方向と平行な方向に直流パルス電流を印加することで配向性焼結体を得ることができる。配向性焼結体としては、実施例で使用されるNaCoO等を例示することができる。 When plate crystals are obtained by a conventionally known method starting with a solution containing a metal element such as a sol-gel method or a coprecipitation method, only the obtained plate crystals are uniaxially pressed. An oriented sintered body can be obtained by applying a DC pulse current in a direction parallel to the pressing direction. Examples of the oriented sintered body include Na x CoO 2 used in Examples.
 上記のようにして作製したp型半導体素子は、金属と同程度の電気抵抗率を示し、半導体と同程度の熱起電力を示す。つまり、このp型半導体素子は、金属と同程度の低い電気抵抗率を示す材料の中で、非常に高い熱起電力を示すため、熱電変換モジュールに使用するp型半導体素子として好ましい。 The p-type semiconductor element fabricated as described above exhibits the same electrical resistivity as that of a metal and the same level of thermoelectromotive force as that of a semiconductor. In other words, this p-type semiconductor element exhibits a very high thermoelectromotive force among materials exhibiting a low electrical resistivity equivalent to that of metal, and thus is preferable as a p-type semiconductor element used for a thermoelectric conversion module.
<共通電極及び電極>
 共通電極及び電極は、金属材料である。金属材料としては、一般的な熱電変換モジュールの電極として使用されるものを使用できる。具体的には、ニッケル(Ni)、チタン(Ti)、銅(Cu)、アルミニウム(Al)、鉄(Fe)等の遷移金属系材料が例示される。これらの中でも、ニッケル(Ni)は、融点が1728Kと高いため、耐熱性にも優れるので好ましい。共通電極と電極とは同じ種類の金属であっても、異なる種類の金属であってもよい。
<Common electrode and electrode>
The common electrode and the electrode are metal materials. As a metal material, what is used as an electrode of a general thermoelectric conversion module can be used. Specifically, transition metal materials such as nickel (Ni), titanium (Ti), copper (Cu), aluminum (Al), and iron (Fe) are exemplified. Among these, nickel (Ni) is preferable because it has a high melting point of 1728 K and is excellent in heat resistance. The common electrode and the electrode may be the same type of metal or different types of metals.
<熱電変換モジュールの製造方法>
 本発明の熱電変換モジュールの製造方法では、半導体素子と電極等との間に金属粉末及び/又は導電性金属酸化物粉末(本明細書において、金属粉末及び/又は導電性金属酸化物粉末を「金属粉末等」という場合がある。)を配置し、半導体素子を電極等で挟む方向に圧力を印加しながら、圧力が印加される方向と平行な方向に直流パルス電流を印加して焼結し、半導体素子と電極等との間を接合する。こうして粉末を用いることと、さらにそれを焼結することを合わせて、電極と密な接合状態を形成する効果をもたらすことができる。
<Method for manufacturing thermoelectric conversion module>
In the method for producing a thermoelectric conversion module of the present invention, a metal powder and / or a conductive metal oxide powder (in this specification, a metal powder and / or a conductive metal oxide powder is used between a semiconductor element and an electrode, etc. Sintered by applying a DC pulse current in a direction parallel to the direction in which the pressure is applied, while applying pressure in the direction in which the semiconductor element is sandwiched between electrodes. The semiconductor element is bonded to the electrode or the like. The use of the powder in this manner and the sintering of the powder together can bring about an effect of forming a tightly bonded state with the electrode.
 また、半導体素子と電極等との接合に金属及び/又は導電性金属酸化物を用いるのは、n型並びにp型半導体素子は多くの金属と直接オーミック接触を得ることができないためである。ここで導電性金属酸化物粉末の「導電性」とは、導電性金属酸化物粉末を緻密な焼結体とし、4端子法で測定した電導度が10S/cm以上のことを指す。 The reason why metals and / or conductive metal oxides are used for the junction between the semiconductor element and the electrode is that n-type and p-type semiconductor elements cannot obtain direct ohmic contact with many metals. Here, the “conductivity” of the conductive metal oxide powder means that the conductivity measured by a four-terminal method is 10 3 S / cm or more using the conductive metal oxide powder as a dense sintered body.
 さらに、粉末を用いることに加えて焼結するのは、電極と密な接触状態を形成するためである。 Furthermore, the reason why sintering is performed in addition to the use of powder is to form a close contact state with the electrode.
 半導体素子と電極等との間に配置される金属粉末を構成する金属は、電気抵抗が低く、上記共通電極及び/又は電極を構成する金属と同一の金属か、又は上記半導体素子とオーミック接触を形成するものであることが必要である。ここで、金属粉末の抵抗値は、10-6Ωcm以下であることが好ましい。上記金属粉末を構成する金属としては、例えば、ニッケル、チタン(Ti)、銅(Cu)、アルミニウム(Al)、鉄(Fe)等の遷移金属系材料が例示される。金属粉末の金属種と電極等に用いられる金属種とは、同じであっても、異なっていてもよいが、同じであることが好ましい。 The metal constituting the metal powder disposed between the semiconductor element and the electrode has a low electric resistance and is the same metal as the metal constituting the common electrode and / or the electrode, or has an ohmic contact with the semiconductor element. It is necessary to form. Here, the resistance value of the metal powder is preferably 10 −6 Ωcm or less. Examples of the metal constituting the metal powder include transition metal materials such as nickel, titanium (Ti), copper (Cu), aluminum (Al), and iron (Fe). The metal species of the metal powder and the metal species used for the electrode or the like may be the same or different, but are preferably the same.
 また、p型半導体素子と電極等との間に配置されるp型導電性金属酸化物粉末を構成するp型導電性金属酸化物とは、共通電極及び電極とオーミック接触を形成するものであり、電気伝導の温度特性が金属的挙動を示す物質を意味する。該導電性金属酸化物としては、p型で高い電気伝導を示すものであることを特徴とし、上記半導体を構成する金属酸化物とは異なるものを用いる必要がある。 The p-type conductive metal oxide constituting the p-type conductive metal oxide powder disposed between the p-type semiconductor element and the electrode or the like forms an ohmic contact with the common electrode and the electrode. In other words, it means a substance whose temperature characteristic of electrical conduction shows metallic behavior. The conductive metal oxide is p-type and exhibits high electrical conductivity, and must be different from the metal oxide constituting the semiconductor.
 その理由は、p型半導体素子と金属とがオーミック接触を形成できないため、金属的な電気伝導挙動を示す導電性金属酸化物から構成される焼結体を介して半導体素子と電極等とを接合することによって、接合界面の抵抗を小さくすることができるからである。なお、半導体素子と金属との接合がオーミック接触になる場合には、金属粉末のみの使用であっても、接合界面の抵抗は小さくなる。 The reason is that since the p-type semiconductor element and the metal cannot form an ohmic contact, the semiconductor element and the electrode are joined via a sintered body made of a conductive metal oxide exhibiting a metallic electric conduction behavior. This is because the resistance at the bonding interface can be reduced. In addition, when the junction between the semiconductor element and the metal is in ohmic contact, the resistance at the junction interface is reduced even when only the metal powder is used.
 使用可能なp型導電性金属酸化物としては、特に限定されず、p型半導体の種類、共通電極又は電極として使用する金属の種類に応じて適宜変更する。例えば、SrRuO、ReO、CuO、CuOが挙げられる。本発明においては、これらのp型導電性金属酸化物の中でも、SrRuOを使用することが好ましい。電極等とp型半導体素子との接合がオーミック接触になりやすい傾向にあるからである。 The p-type conductive metal oxide that can be used is not particularly limited, and is appropriately changed according to the type of p-type semiconductor, the type of metal used as a common electrode or an electrode. For example, SrRuO 3 , ReO 3 , Cu 2 O, and CuO can be mentioned. In the present invention, among these p-type conductive metal oxides, it is preferable to use SrRuO 3 . This is because the junction between the electrode and the p-type semiconductor element tends to be in ohmic contact.
 また、n型半導体素子と電極等との間に配置されるn型導電性金属酸化物粉末を構成するn型導電性金属酸化物とは、共通電極及び電極とオーミック接触を形成するものであり、電気伝導の温度特性が金属的挙動を示す物質を意味する。該導電性金属酸化物としては、n型で高い電気伝導を示すものであることを特徴とし、上記n型半導体を構成する材料とは異なるものを用いる必要がある。その理由はp型半導体の場合と同様である。 The n-type conductive metal oxide constituting the n-type conductive metal oxide powder disposed between the n-type semiconductor element and the electrode forms an ohmic contact with the common electrode and the electrode. In other words, it means a substance whose temperature characteristic of electrical conduction shows metallic behavior. The conductive metal oxide is n-type and exhibits high electrical conductivity, and it is necessary to use a material different from the material constituting the n-type semiconductor. The reason is the same as in the case of a p-type semiconductor.
 使用可能なn型導電性金属酸化物としては、特に限定されず、n型半導体の種類、共通電極又は電極として使用する金属の種類に応じて適宜変更する。例えば、In、SnO、In-SnO、もしくはNb又はLaドープSrTiO、ZnOが挙げられる。電極等とn型半導体の半導体素子との接合がオーミック接触になりやすい傾向にあるからである。 The n-type conductive metal oxide that can be used is not particularly limited, and is appropriately changed depending on the type of the n-type semiconductor, the type of metal used as the common electrode or the electrode. For example, In 2 O 3 , SnO 2 , In 2 O 3 —SnO 2 , or Nb or La-doped SrTiO 3 , ZnO can be used. This is because the junction between the electrode and the n-type semiconductor element tends to be in ohmic contact.
 金属粉末、導電性金属酸化物粉末(以後、金属粉末等と総称することもある)の粒径は、焼結体の緻密さに影響を与える。上記粒径が大きいほど緻密な焼結体になりにくくなる傾向がある。所望の程度に緻密な焼結体を得ることができれば、上記粒径は特に限定されないが、20μm以下であることが好ましく、さらに3μm以下であることがより好ましく、ナノ粒子を使用することもできる。 The particle size of the metal powder and conductive metal oxide powder (hereinafter sometimes collectively referred to as metal powder etc.) affects the density of the sintered body. The larger the particle size, the more difficult it becomes to be a dense sintered body. The particle diameter is not particularly limited as long as a sintered body dense to a desired level can be obtained, but is preferably 20 μm or less, more preferably 3 μm or less, and nanoparticles can also be used. .
 金属粉末等は、圧粉体にして用いることが好ましい。圧粉体とは金属粉末等に圧力を加えて押し固めたものを指す。圧粉体は、例えば、圧粉成形により作製することができる。圧粉体を電極等と半導体素子との間に挟み込み、放電プラズマ法を用いて焼結し緻密化することで、電極等と半導体素子とを接合させることが容易になる。 The metal powder is preferably used as a green compact. The green compact refers to a metal powder or the like that is pressed and hardened. The green compact can be produced, for example, by compacting. By sandwiching the green compact between the electrode or the like and the semiconductor element, and sintering and densifying using the discharge plasma method, it becomes easy to join the electrode or the like and the semiconductor element.
 半導体素子を電極等で挟む方向に圧力を印加しながら、圧力が印加される方向と平行な方向に直流パルス電流を印加すると、上記のような金属粉末等や圧粉体内で、粒子間に放電プラズマが発生する。この放電プラズマによる加熱で金属粉末等や圧粉体は焼結体になる(放電プラズマ焼結法による焼結体の製造)。金属粉末等や圧粉体は、焼結体になることで、電極等や、半導体素子と接着する。その結果、半導体素子と電極等との間が接合される。 When applying a DC pulse current in a direction parallel to the direction in which the pressure is applied while applying pressure in the direction in which the semiconductor element is sandwiched between electrodes, discharge occurs between the particles in the above metal powder or green compact. Plasma is generated. The metal powder or the green compact becomes a sintered body by the heating by the discharge plasma (manufacture of the sintered body by the discharge plasma sintering method). A metal powder or the like or a green compact is bonded to an electrode or the like or a semiconductor element by forming a sintered body. As a result, the semiconductor element and the electrode are joined.
 金属粉末等や圧粉体の焼結体と、電極等との接着は、両者ともに金属材料であるため容易に進む。また、金属粉末等や圧粉体の焼結体と、半導体素子との接着は、金属粉末等の粒子表面の酸化被膜が、半導体素子の表面と相互作用することにより進むと推測される。 Adhesion between a sintered body of metal powder or green compact and an electrode or the like easily proceeds because both are metal materials. In addition, the adhesion between the sintered body of metal powder or the like or the green compact and the semiconductor element is presumed to proceed by the interaction of the oxide film on the particle surface of the metal powder or the like with the surface of the semiconductor element.
 金属粉体を単独で用いた場合には、焼結体は電極の一部となる。例えば、電極等としてニッケル(Ni)プレートを用い、金属粉末としてニッケル粉末を用いた場合には、焼結によりニッケルのバルク体となり、焼結体はニッケルプレートと一体化する。
 金属粉末と導電性金属酸化物粉末の混合粉末を用いる場合には、混合粉末の焼結体は、金属と導電性金属酸化物のコンポジット電極になり、電極等と半導体素子の間の電極としてモジュールの一部となる。
When the metal powder is used alone, the sintered body becomes a part of the electrode. For example, when a nickel (Ni) plate is used as an electrode or the like and nickel powder is used as a metal powder, the bulk of nickel is formed by sintering, and the sintered body is integrated with the nickel plate.
When a mixed powder of metal powder and conductive metal oxide powder is used, the sintered body of the mixed powder becomes a composite electrode of metal and conductive metal oxide, and a module as an electrode between the electrode and the semiconductor element Part of
 この方法によれば、π型構造の熱電変換モジュールを、一度の製造工程で複数個製造することができる。したがって、従来の熱電変換モジュールの製造方法と比較して、本発明の熱電変換モジュールの製造方法は、生産性が高い。 According to this method, a plurality of π-type thermoelectric conversion modules can be manufactured in a single manufacturing process. Therefore, compared with the manufacturing method of the conventional thermoelectric conversion module, the manufacturing method of the thermoelectric conversion module of this invention has high productivity.
 また、p型半導体素子及びn型半導体素子は、上記接合のための放電プラズマによる加熱によって熱膨張する。p型半導体素子の熱膨張係数とn型半導体素子の熱膨張係数とが異なると、膨張しやすい方の半導体素子が損傷することが想定される。しかしながら、本発明の製造方法においては、金属粉末等又は圧粉体が緩衝材としての役割を果たすため、p型半導体素子の熱膨張係数とn型半導体素子の熱膨張係数との差に起因する半導体素子の損傷が抑えられる。 Further, the p-type semiconductor element and the n-type semiconductor element are thermally expanded by heating with the discharge plasma for the above-described bonding. If the thermal expansion coefficient of the p-type semiconductor element and the thermal expansion coefficient of the n-type semiconductor element are different, it is assumed that the semiconductor element that is likely to expand is damaged. However, in the manufacturing method of the present invention, metal powder or the like or the green compact plays a role as a buffer material, and thus is caused by the difference between the thermal expansion coefficient of the p-type semiconductor element and the thermal expansion coefficient of the n-type semiconductor element. Damage to the semiconductor element can be suppressed.
 また、p型導電性金属酸化物粉末の使用により以下の効果も奏される。p型半導体素子として、金属酸化物を主成分とする焼結体を用いた場合、電極等とp型半導体素子との接合がオーミック接触になりにくい傾向にある。そこで、電極等とp型半導体素子との接合がオーミック接触になるように、p型導電性金属酸化物粉末、金属粉末とp型導電性金属酸化物粉末の混合物を用いることができる。ここで、p型導電性金属酸化物粉末、又は金属粉末とp型導電性金属酸化物粉末の混合物を圧粉成形してなる圧粉体を用いても同様の効果が得られる。なお、n型半導体素子とn型導電性金属酸化物についても同様のことが言える。 Moreover, the following effects are also exhibited by using p-type conductive metal oxide powder. When a sintered body containing a metal oxide as a main component is used as the p-type semiconductor element, the junction between the electrode and the p-type semiconductor element tends not to be in ohmic contact. Therefore, p-type conductive metal oxide powder, or a mixture of metal powder and p-type conductive metal oxide powder can be used so that the junction between the electrode and the p-type semiconductor element is in ohmic contact. Here, the same effect can be obtained by using a green compact formed by compacting a p-type conductive metal oxide powder or a mixture of a metal powder and a p-type conductive metal oxide powder. The same applies to the n-type semiconductor element and the n-type conductive metal oxide.
 p型半導体素子と電極等との接合においては、金属粉末とp型導電性金属酸化物粉末の混合物を用いることが好ましい。特に、金属粉末とp型導電性金属酸化物粉末との体積比(金属粉末/p型導電性金属酸化物粉末)は3/7~9/1であることが好ましい。上記体積比が3/7以上であれば混合物の焼結度を高め、熱電素子と電極の接合が可能となるという理由で好ましく、9/1以下であればオーミック接触を得る事が容易となるという理由で好ましい。より好ましい上記体積比の範囲は5/5~7/3である。なお、金属粉末とn型導電性金属酸化物についても同様のことが言える。 In the joining of the p-type semiconductor element and the electrode or the like, it is preferable to use a mixture of metal powder and p-type conductive metal oxide powder. In particular, the volume ratio of the metal powder to the p-type conductive metal oxide powder (metal powder / p-type conductive metal oxide powder) is preferably 3/7 to 9/1. If the volume ratio is 3/7 or more, it is preferable because the degree of sintering of the mixture is increased and the thermoelectric element and the electrode can be joined. If it is 9/1 or less, ohmic contact can be easily obtained. This is preferable. A more preferable range of the volume ratio is 5/5 to 7/3. The same applies to the metal powder and the n-type conductive metal oxide.
 また、これらのp型導電性金属酸化物粉末を用いることで、電極等と、p型半導体素子との接合が強固になるため好ましい。 It is also preferable to use these p-type conductive metal oxide powders because the bonding between the electrode and the p-type semiconductor element becomes strong.
 なお、放電プラズマ焼結を行う際の他の焼結条件は、使用する材料、材料の形状等に応じて適宜変更する。 It should be noted that other sintering conditions when performing discharge plasma sintering are appropriately changed according to the material used, the shape of the material, and the like.
 本発明の製造方法において、p型半導体素子として金属酸化物を主成分とする焼結体を用い、n型半導体素子としてドーパントを含むマグネシウムシリサイドを主成分とする焼結体又はマグネシウムシリサイドを主成分とする焼結体を用いれば、本発明の熱電変換モジュールを製造することができる。 In the manufacturing method of the present invention, a sintered body mainly composed of a metal oxide is used as a p-type semiconductor element, and a sintered body mainly composed of magnesium silicide containing a dopant is used as an n-type semiconductor element. When the sintered body is used, the thermoelectric conversion module of the present invention can be manufactured.
 本発明の熱電変換モジュールは、p型半導体素子、n型半導体素子ともに耐熱性に優れる材料からなる。したがって、本発明の熱電変換モジュールは、600℃程度の高温環境下でも使用できる。また、本発明の熱電変換モジュールに使用されるp型半導体素子、n型半導体素子はともに熱電変換材料としての性能が高い。
 特に、p型半導体素子の製造に用いる金属酸化物としては、NaCoO、CaCo、CuYO、SrRuO、及びSrRuOから選択されるものの使用が好ましい。また、例えば、CuYOではCa、Mg、Sr等の2価のアルカリ土類金属をドープしても好ましく、酸素を過剰にしてCuYO2+xにしても好ましい。また、SrRuO及びSrRuOでは、Nbをドープしても好ましい。また、マグネシウムシリサイドに含まれるドーパントとしては、Sb、Alから選択される少なくとも一種の元素が好ましい。
The thermoelectric conversion module of the present invention is made of a material having excellent heat resistance for both the p-type semiconductor element and the n-type semiconductor element. Therefore, the thermoelectric conversion module of the present invention can be used even in a high temperature environment of about 600 ° C. Moreover, both the p-type semiconductor element and the n-type semiconductor element used in the thermoelectric conversion module of the present invention have high performance as a thermoelectric conversion material.
In particular, the metal oxide used for the production of the p-type semiconductor element is preferably one selected from Na x CoO 2 , CaCo 2 O 4 , CuYO 2 , SrRuO 3 , and Sr 2 RuO 4 . Further, for example, CuYO 2 is preferably doped with a divalent alkaline earth metal such as Ca, Mg, Sr, etc., and is preferably made into CuYO 2 + x by excess oxygen. SrRuO 3 and Sr 2 RuO 4 are preferably doped with Nb. The dopant contained in magnesium silicide is preferably at least one element selected from Sb and Al.
 なお、本発明の熱電変換モジュールは、上述の本発明の製造方法以外の方法で製造してもよい。しかし、本発明の方法で製造することが以下の点から好ましい。
 第一に、上述の通り、本発明の製造方法により、本発明の熱電変換モジュールを製造することで、高い発電性能を備えるとともに高温環境下で使用可能な熱電変換モジュールを、高い生産性で製造することができる。
 第二に、従来から行われているペーストを用いる方法、はんだを用いる方法では、これらの材料が高温での使用に耐えることができない場合も多いが、金属粉末や導電性金属酸化物粉末の使用により、ペーストやはんだのような耐熱性の問題が生じることはほとんどない。
In addition, you may manufacture the thermoelectric conversion module of this invention by methods other than the manufacturing method of the above-mentioned this invention. However, the production by the method of the present invention is preferable from the following points.
First, as described above, by manufacturing the thermoelectric conversion module of the present invention by the manufacturing method of the present invention, a thermoelectric conversion module that has high power generation performance and can be used in a high temperature environment is manufactured with high productivity. can do.
Secondly, conventional methods using paste and solder often do not allow these materials to withstand use at high temperatures, but use metal powders or conductive metal oxide powders. Therefore, there is almost no problem of heat resistance such as paste and solder.
 以下、実施例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples.
<n型半導体素子の製造>
 ドーパントとしてSbを0.5質量%含むマグネシウムシリサイド(ユニオンマテリアル株式会社製、WO2011/002035の実施例5のものを使用)をアルミナ乳鉢で粉砕し、東京スクリーン株式会社製の75μmのふるいを用いて分級して、原料粉末とした。この原料粉末を、放電プラズマ焼結装置(住友石炭鉱業株式会社製、Dr.Sinter LabSPS-515)を使用して焼結した。焼結条件は、グラファイト型に原料粉末を充填し、表1に示す予備加圧力を印加し、一軸加圧成形を行いながら通電し、表1に示す昇温速度で原料粉末を表1に示す保持温度まで加熱し、この保持温度で表1に示す保持時間加熱処理して焼結体を製造した。
<Manufacture of n-type semiconductor elements>
Magnesium silicide containing 0.5% by mass of Sb as a dopant (Union Material Co., Ltd., using Example 5 of WO2011 / 002035) is pulverized in an alumina mortar and using a 75 μm sieve made by Tokyo Screen Co., Ltd. Classification was performed to obtain a raw material powder. The raw material powder was sintered using a discharge plasma sintering apparatus (Dr. Sinter LabSPS-515, manufactured by Sumitomo Coal Mining Co., Ltd.). Sintering conditions are as follows. Raw material powder is filled in a graphite mold, pre-pressurization shown in Table 1 is applied, electricity is applied while performing uniaxial pressure molding, and raw material powder is shown in Table 1 at a temperature increase rate shown in Table 1. The sintered body was manufactured by heating to the holding temperature and heat treatment at the holding temperature shown in Table 1 for the holding time.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 条件1の焼結体~条件6の焼結体の外観を目視により観察した。条件1の焼結体は割れ、条件2の焼結体~条件3の焼結体は表面に亀裂が生じることが確認された。表面に亀裂の確認されなかった条件4の焼結体~条件6の焼結体の密度を測定した。条件4の焼結体の密度は94.5%、条件5の焼結体の密度は97.2%、条件6の焼結体の密度は99.7%であった。条件6の焼結体が最も緻密であることが確認された。 The appearance of the sintered body of Condition 1 to the sintered body of Condition 6 was visually observed. It was confirmed that the sintered body of condition 1 was cracked, and the sintered bodies of condition 2 to condition 3 were cracked on the surface. The density of the sintered bodies of Condition 4 to Condition 6 in which no cracks were confirmed on the surface was measured. The density of the sintered body under condition 4 was 94.5%, the density of the sintered body under condition 5 was 97.2%, and the density of the sintered body under condition 6 was 99.7%. It was confirmed that the sintered body of Condition 6 was the most dense.
 条件1~条件6の結果に基づいて、最適な焼結条件を決定し、この条件で熱電変換モジュールの製造に使用するn型半導体素子を得た。具体的な条件は、予備加圧力が50MPa、保持温度が800℃、保持時間が1分、昇温速度が0~600℃の範囲は100℃/分、600~700℃の範囲は50℃/分、700~800℃の範囲は30℃/分である。なお、後述する熱電変換モジュールの製造においては、焼結体から5.4mm(縦)×10.5mm(横)×8.5mm(高さ)の試料を切り出して用いた。 Based on the results of Condition 1 to Condition 6, the optimum sintering condition was determined, and an n-type semiconductor element used for manufacturing the thermoelectric conversion module was obtained under this condition. Specifically, the preliminary pressurizing force is 50 MPa, the holding temperature is 800 ° C., the holding time is 1 minute, the temperature rising rate is 0 to 600 ° C. in the range of 100 ° C./min, and the temperature in the range of 600 to 700 ° C. is 50 ° C. / Min, the range of 700-800 ° C. is 30 ° C./min. In the manufacture of the thermoelectric conversion module described later, a sample of 5.4 mm (length) × 10.5 mm (width) × 8.5 mm (height) was cut out from the sintered body and used.
<p型半導体素子の製造>
 エチレングリコールモノメチルエーテル(和光純薬株式会社製)に、クエン酸1水和物(和光純薬株式会社製)を加え攪拌した後、無水酢酸ナトリウム(和光純薬株式会社製)、硝酸コバルト(和光純薬株式会社製)を大気下常温で加え攪拌することで出発溶液を得た。出発溶液は、オイルバスで60℃、1時間還流をした後、大気中の炉内で105℃、8時間の条件で乾燥させ、続いて450℃、2時間の条件で熱処理を加えることでNaCoO試料の前駆体を作成した。なお、熱処理は全てアルミナ坩堝で行った。
<Manufacture of p-type semiconductor elements>
After adding citric acid monohydrate (Wako Pure Chemical Industries, Ltd.) and stirring to ethylene glycol monomethyl ether (Wako Pure Chemical Industries, Ltd.), anhydrous sodium acetate (Wako Pure Chemical Industries, Ltd.), cobalt nitrate (Japanese A starting solution was obtained by adding and stirring at room temperature in the atmosphere. The starting solution was refluxed in an oil bath at 60 ° C. for 1 hour, dried in an oven in the atmosphere at 105 ° C. for 8 hours, and then heat treated at 450 ° C. for 2 hours to add Na. x CoO 2 sample precursors were prepared. All heat treatments were performed in an alumina crucible.
 上記前駆体の一部を取り出し、NaCl及びKClと重量比が2:1:1(前駆体:NaCl:KCl)になる割合で混合した。この混合物を試料として坩堝に入れ、アロンセラミックスで密封して一日放置した後、アロンセラミックスを硬化させるために熱処理を行った。温度条件は100℃まで75分で昇温、2時間保持、200℃まで50分で昇温、2時間保持、300℃まで20分で昇温、1時間保持、60分で室温まで冷却を行った。次に板状結晶作製のための熱処理を行った。熱処理条件は、1100℃まで100分で昇温、12分保持、5時間かけて700℃までゆっくり冷却させ、室温まで70分かけて冷却を行った。試料を取りだし、蒸留水でNaClとKClを溶かしアスペクト比が50の板状結晶を得た。電子顕微鏡写真により、板状結晶は、構造異方性が高く、平均径が5~10μmで均質な厚さで生成していることが確認された。 A part of the precursor was taken out and mixed with NaCl and KCl at a weight ratio of 2: 1: 1 (precursor: NaCl: KCl). This mixture was placed in a crucible as a sample, sealed with Aron ceramics and allowed to stand for a day, and then heat treated to cure the Aron ceramics. Temperature conditions: temperature rise to 100 ° C in 75 minutes, hold for 2 hours, heat up to 200 ° C in 50 minutes, hold for 2 hours, heat up to 300 ° C in 20 minutes, hold for 1 hour, cool to room temperature in 60 minutes It was. Next, heat treatment for producing plate crystals was performed. As heat treatment conditions, the temperature was raised to 1100 ° C. in 100 minutes, held for 12 minutes, slowly cooled to 700 ° C. over 5 hours, and cooled to room temperature over 70 minutes. A sample was taken out and NaCl and KCl were dissolved in distilled water to obtain a plate-like crystal having an aspect ratio of 50. Electron micrographs confirmed that the plate-like crystals had a high structural anisotropy, an average diameter of 5 to 10 μm and a uniform thickness.
 グラファイト型に、NaCoO試料の前駆体及び板状結晶を充填し、50MPaの予備加圧力を印加し、一軸加圧成形を行いながら通電し、700℃まで7分で昇温し、700~850℃まで3分で昇温し、この温度で10分間加熱して焼結体を製造した。この焼結体をp型半導体素子として、以下の熱電変換モジュールの製造に用いた。具体的には焼結体から4.5mm(縦)×9.5mm(横)×8.5mm(高さ)の試料を切り出して用いた。 A graphite mold is filled with a precursor of Na x CoO 2 sample and a plate-like crystal, a pre-pressurizing pressure of 50 MPa is applied, energized while performing uniaxial pressing, and the temperature is raised to 700 ° C. in 7 minutes. The temperature was raised to ˜850 ° C. in 3 minutes and heated at this temperature for 10 minutes to produce a sintered body. This sintered body was used as a p-type semiconductor element for manufacturing the following thermoelectric conversion module. Specifically, a 4.5 mm (vertical) × 9.5 mm (horizontal) × 8.5 mm (height) sample was cut out from the sintered body and used.
<実施例1>
 0.5gのニッケル金属の粉末(2~3μm、純度99.9%)を、内径20mm×高さ40mmの円筒形金型に充填し、加圧力30MPaの条件で圧粉体を製造し、13mm×5mm×0.5mmに切り出した。また、共通電極及び電極としてはニッケルプレートを用いた。圧粉体、ニッケルプレート、n型半導体素子、p型半導体素子を用いて、以下の方法で実施例1の熱電変換モジュールを製造した。
<Example 1>
0.5 g of nickel metal powder (2 to 3 μm, purity 99.9%) is filled into a cylindrical mold having an inner diameter of 20 mm and a height of 40 mm, and a green compact is produced under a pressure of 30 MPa. Cut out to × 5 mm × 0.5 mm. Moreover, the nickel plate was used as a common electrode and an electrode. Using the green compact, nickel plate, n-type semiconductor element, and p-type semiconductor element, the thermoelectric conversion module of Example 1 was manufactured by the following method.
 先ず、2枚のニッケルプレートの上面に、それぞれ圧粉体を配置した。次いで、一方の圧粉体上に5.4mm(縦)×10.5mm(横)の面が接するようにn型半導体素子を配置し、他方の圧粉体上に4.5mm(縦)×9.5mm(横)の面が接するようにp型半導体素子を配置した。次いで、圧粉体とn型、p型半導体素子とが接する面の裏面に圧粉体をそれぞれ配置した。これらの圧粉体上に共通電極となる1枚のニッケルプレートを、ニッケルプレートの底面が圧粉体と接するように配置した。
 次いで、電極として用いる2枚のニッケルプレートの底面、共通電極として用いる1枚のニッケルプレートの上面に、それぞれグラファイト電極を配置した。
 最後に、グラファイト電極間に予備加圧力15MPaを印加し、一軸加圧成形を行いながら通電し、100℃/分の昇温速度で600℃まで圧粉体を加熱し、この温度で2分間加熱処理して熱電変換モジュールを製造した。
First, the green compacts were respectively arranged on the upper surfaces of the two nickel plates. Next, an n-type semiconductor element is arranged so that the surface of 5.4 mm (vertical) × 10.5 mm (horizontal) is in contact with one green compact, and 4.5 mm (vertical) × on the other green compact. The p-type semiconductor element was arranged so that the surface of 9.5 mm (horizontal) was in contact. Next, the green compacts were respectively disposed on the back surfaces of the surfaces where the green compacts contact the n-type and p-type semiconductor elements. One nickel plate serving as a common electrode was placed on these green compacts so that the bottom surface of the nickel plate was in contact with the green compact.
Next, graphite electrodes were respectively disposed on the bottom surfaces of two nickel plates used as electrodes and on the top surface of one nickel plate used as a common electrode.
Finally, pre-pressurization pressure of 15 MPa is applied between the graphite electrodes, electricity is applied while performing uniaxial pressing, and the green compact is heated to 600 ° C. at a rate of 100 ° C./min, and heated at this temperature for 2 minutes. The thermoelectric conversion module was manufactured by processing.
<発電性能の評価>
 発電性能の評価は、市販の熱電特性評価装置(アルバック理工社製、「ZEN-2」)を用いて行った。具体的には、ニッケルプレートの上に熱電対を設置して、高温側の表面温度と低温側の表面温度とを測定した。そして、熱電変換モジュールのニッケルプレート間に一定電流を印加して、降下電圧を測定した。最後に降下電圧と一定電流の値から電力を算出した。測定条件と結果とを表2、図2に示した。なお、低温側の表面温度は全て100℃である。
<Evaluation of power generation performance>
The power generation performance was evaluated using a commercially available thermoelectric property evaluation apparatus (“ZEN-2” manufactured by ULVAC-RIKO). Specifically, a thermocouple was installed on the nickel plate, and the surface temperature on the high temperature side and the surface temperature on the low temperature side were measured. Then, a constant current was applied between the nickel plates of the thermoelectric conversion module, and the voltage drop was measured. Finally, power was calculated from the voltage drop and constant current. The measurement conditions and results are shown in Table 2 and FIG. Note that the surface temperature on the low temperature side is all 100 ° C.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記の表2に示す評価結果から、本発明の熱電変換モジュールは、200~600℃程度の環境下で使用できることが確認された。また、本発明の熱電変換モジュールは、温度差が500℃の条件における、電力の最大値が6.645mWであることから、発電性能が一般的な熱電変換モジュールと同等であることが確認された。 From the evaluation results shown in Table 2 above, it was confirmed that the thermoelectric conversion module of the present invention can be used in an environment of about 200 to 600 ° C. Further, the thermoelectric conversion module of the present invention has a power generation performance of 6.645 mW under a temperature difference of 500 ° C. Therefore, it was confirmed that the power generation performance is equivalent to a general thermoelectric conversion module. .
<実施例2>
 p型半導体素子と電極等との接合において、圧粉体を製造するためのニッケル金属の粉末を、ニッケル金属の粉末と下記の方法で製造されたSrRuOの粉末との混合物(ニッケル金属の粉末の質量/SrRuOの粉末の質量=7/3)に変更した以外は実施例1と同様の方法で実施例2の熱電変換モジュールを製造した。
<Example 2>
In joining a p-type semiconductor element and an electrode or the like, a nickel metal powder for producing a green compact is mixed with a mixture of nickel metal powder and SrRuO 3 powder produced by the following method (nickel metal powder). Mass / SrRuO 3 powder mass = 7/3). A thermoelectric conversion module of Example 2 was produced in the same manner as in Example 1.
<SrRuOの粉末の製造方法>
 蒸留水に、クエン酸1水和物(和光純薬株式会社製)を加え攪拌した後、酢酸ストロンチウム(関東化学株式会社製)を大気下常温で加え攪拌し、この溶液に塩化ルテニウム(II)(フルヤ金属株式会社製)を乾燥窒素下常温で加え攪拌することで出発溶液を得た。出発溶液は、大気中の炉内で80℃、8時間の条件で乾燥させ、続いて550℃、5時間の条件で熱処理を加えることでSrRuO試料の前駆体を作成した。なお、熱処理は全てアルミナ坩堝で行った。
<Method for Producing SrRuO 3 Powder>
After adding citric acid monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) to distilled water and stirring, strontium acetate (manufactured by Kanto Chemical Co., Ltd.) was added and stirred at room temperature in the atmosphere, and ruthenium (II) chloride was added to this solution. (Fluya Metal Co., Ltd.) was added at room temperature under dry nitrogen and stirred to obtain a starting solution. The starting solution was dried in an atmospheric furnace at 80 ° C. for 8 hours, followed by heat treatment at 550 ° C. for 5 hours to prepare a precursor of a SrRuO 3 sample. All heat treatments were performed in an alumina crucible.
 ニッケル金属の粉末と混合するSrRuOの粉末は、上記SrRuO前駆体粉末をさらに大気炉内で1000℃、5時間の条件で熱処理を加えることで、粒径が10μm以下のp型導電性金属酸化物粉末とした。 The SrRuO 3 powder mixed with the nickel metal powder is a p-type conductive metal having a particle size of 10 μm or less by further heat-treating the SrRuO 3 precursor powder in an atmospheric furnace at 1000 ° C. for 5 hours. An oxide powder was obtained.
<実施例3>
 ニッケル金属の粉末の質量/SrRuOの粉末の質量=7/3を、ニッケル金属の粉末の質量/SrRuOの粉末の質量=6/4に変更した以外は、実施例2と同様の方法で実施例3の熱電変換モジュールを製造した。
<Example 3>
The mass of the nickel metal powder / the mass of the SrRuO 3 powder = 7/3 was changed to the mass of the nickel metal powder / the mass of the SrRuO 3 powder = 6/4 in the same manner as in Example 2. The thermoelectric conversion module of Example 3 was manufactured.
<実施例4>
 ニッケル金属の粉末の質量/SrRuOの粉末の質量=7/3を、ニッケル金属の粉末の質量/SrRuOの粉末の質量=5/5に変更した以外は、実施例2と同様の方法で実施例3の熱電変換モジュールを製造した。
<Example 4>
The mass of the nickel metal powder / the mass of the SrRuO 3 powder = 7/3 was changed to the mass of the nickel metal powder / the mass of the SrRuO 3 powder = 5/5 in the same manner as in Example 2. The thermoelectric conversion module of Example 3 was manufactured.
<発電性能の評価>
 実施例2~4の熱電変換モジュールの発電性能の評価を、実施例1の熱電変換モジュールの発電性能の評価と同様の方法で行った。実施例2の測定条件及び評価結果を表3及び図3に、実施例3の測定条件及び評価結果を表4及び図4に、実施例4の測定条件及び評価結果を表5及び図5に示した。なお、低温側の表面温度は全て100℃である。
<Evaluation of power generation performance>
Evaluation of the power generation performance of the thermoelectric conversion modules of Examples 2 to 4 was performed in the same manner as the evaluation of the power generation performance of the thermoelectric conversion module of Example 1. The measurement conditions and evaluation results of Example 2 are shown in Table 3 and FIG. 3, the measurement conditions and evaluation results of Example 3 are shown in Tables 4 and 4, and the measurement conditions and evaluation results of Example 4 are shown in Tables 5 and 5. Indicated. Note that the surface temperature on the low temperature side is all 100 ° C.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1の熱電変換モジュールの発電性能と、実施例2~4の熱電変換モジュールの発電性能とを比較すると、電極等とp型半導体素子とを接合するための粉末として、金属粉末とp型導電性金属酸化物粉末との混合物を用いることで、熱電変換モジュールの発電性能が向上することが確認された。なお、実施例で使用しているマグネシウムシリサイドは、金属電極と接合しても接合界面の抵抗が小さいため、n型導電性金属酸化物粉末を用いなくても、発電性能の大きな低下にはつながらない。ただし、n型半導体素子と金属電極との接合において、接合界面の抵抗が大きくなる場合には、n型導電性金属酸化物粉末を使用することで、接合界面の抵抗を小さくすることができると考えられる。 When the power generation performance of the thermoelectric conversion module of Example 1 is compared with the power generation performance of the thermoelectric conversion modules of Examples 2 to 4, metal powder and p-type are used as powders for joining the electrode and the p-type semiconductor element. It was confirmed that the power generation performance of the thermoelectric conversion module was improved by using the mixture with the conductive metal oxide powder. In addition, since the magnesium silicide used in the examples has a small resistance at the bonding interface even when bonded to the metal electrode, even if n-type conductive metal oxide powder is not used, the power generation performance is not greatly reduced. . However, when the resistance of the bonding interface increases in the bonding between the n-type semiconductor element and the metal electrode, the resistance of the bonding interface can be reduced by using the n-type conductive metal oxide powder. Conceivable.
 表1と表2~4とから、降下電圧に関しては、実施例2~4の熱電変換モジュールと実施例1の熱電変換モジュールとでほとんど差がないことが確認された。一方、電流値に関しては、実施例2~4の熱電変換モジュールを流れる電流は、実施例1の熱電変換モジュールを流れる電流と比較して非常に高いことが確認された。これらの結果から、実施例2~4の熱電変換モジュールは、実施例1の熱電変換モジュールと比較して、電極等と半導体素子との界面の抵抗が非常に小さいことが確認できる。 From Table 1 and Tables 2 to 4, it was confirmed that there was almost no difference in voltage drop between the thermoelectric conversion modules of Examples 2 to 4 and the thermoelectric conversion module of Example 1. On the other hand, regarding the current value, it was confirmed that the current flowing through the thermoelectric conversion modules of Examples 2 to 4 was very high compared to the current flowing through the thermoelectric conversion module of Example 1. From these results, it can be confirmed that the thermoelectric conversion modules of Examples 2 to 4 have very low resistance at the interface between the electrode and the like and the semiconductor element as compared with the thermoelectric conversion module of Example 1.
<実施例5>
 p型半導体素子として、SrRuO焼結体を用いた以外は、実施例1の熱電変換モジュールと同様の方法で、実施例5の熱電変換モジュールを製造した。なお、具体的には、以下の方法で、熱処理されたSrRuOの焼結体を製造し、この焼結体から4.5mm(縦)×9.5mm(横)×7.5mm(高さ)の試料を切り出したものをp型半導体素子として使用した。
<Example 5>
A thermoelectric conversion module of Example 5 was manufactured in the same manner as the thermoelectric conversion module of Example 1 except that a SrRuO 3 sintered body was used as the p-type semiconductor element. Specifically, a heat-treated sintered body of SrRuO 3 was manufactured by the following method, and 4.5 mm (length) × 9.5 mm (width) × 7.5 mm (height) from the sintered body. 1) was used as a p-type semiconductor element.
 グラファイト型に、上述のSrRuO試料の前駆体を充填し、50MPaの予備加圧力を印加し、一軸加圧成形を行いながら通電し、1100℃まで11分で昇温し、この温度で4分間加熱して焼結体を製造した。この焼結体に対して、大気下、処理温度1300℃、処理時間12時間の条件で熱処理を施しSrRuO焼結体を得た。 The graphite mold is filled with the above-mentioned precursor of SrRuO 3 sample, a pre-pressurizing force of 50 MPa is applied, energized while performing uniaxial pressing, and the temperature is raised to 1100 ° C. in 11 minutes, and this temperature is increased for 4 minutes. A sintered body was produced by heating. This sintered body was heat-treated in the atmosphere under the conditions of a processing temperature of 1300 ° C. and a processing time of 12 hours to obtain a SrRuO 3 sintered body.
<発電性能の評価>
 実施例5の熱電変換モジュールの発電性能の評価を、実施例1の熱電変換モジュールの発電性能の評価と同様の方法で行った。実施例5の測定条件及び評価結果を表6、図6に示した。なお、低温側の表面温度は全て100℃である。
<Evaluation of power generation performance>
The power generation performance of the thermoelectric conversion module of Example 5 was evaluated in the same manner as the power generation performance of the thermoelectric conversion module of Example 1. The measurement conditions and evaluation results of Example 5 are shown in Table 6 and FIG. Note that the surface temperature on the low temperature side is all 100 ° C.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例5の熱電変換モジュールの発電性能と、実施例1の熱電変換モジュールの発電性能とを比較すると、p型半導体素子を構成する金属酸化物の種類を変更することで、熱電変換モジュールの発電性能が大きく向上することが確認された。 Comparing the power generation performance of the thermoelectric conversion module of Example 5 and the power generation performance of the thermoelectric conversion module of Example 1, the power generation of the thermoelectric conversion module can be achieved by changing the type of metal oxide constituting the p-type semiconductor element. It was confirmed that the performance was greatly improved.
<実施例6>
 出発溶液中のNbが5mol%になるように、出発溶液を製造する際にNbを加えた以外は実施例5と同様の方法で、実施例6の熱電変換モジュールを製造した。
<Example 6>
A thermoelectric conversion module of Example 6 was produced in the same manner as in Example 5 except that Nb was added when producing the starting solution so that Nb in the starting solution was 5 mol%.
<発電性能の評価>
 実施例6の熱電変換モジュールの発電性能の評価を、実施例1の熱電変換モジュールの発電性能の評価と同様の方法で行った。実施例6の測定条件及び評価結果を表7、図7に示した。なお、低温側の表面温度は全て100℃である。
<Evaluation of power generation performance>
The power generation performance of the thermoelectric conversion module of Example 6 was evaluated in the same manner as the power generation performance of the thermoelectric conversion module of Example 1. The measurement conditions and evaluation results of Example 6 are shown in Table 7 and FIG. Note that the surface temperature on the low temperature side is all 100 ° C.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例6の熱電変換モジュールの発電性能と、実施例5の熱電変換モジュールの発電性能とを比較すると、p型半導体素子を構成する金属酸化物を、ドーパントを含む金属酸化物に変更することで、熱電変換モジュールの発電性能が向上することが確認された。 When comparing the power generation performance of the thermoelectric conversion module of Example 6 with the power generation performance of the thermoelectric conversion module of Example 5, the metal oxide constituting the p-type semiconductor element is changed to a metal oxide containing a dopant. It was confirmed that the power generation performance of the thermoelectric conversion module was improved.
 1  熱電変換モジュール
 10 n型半導体素子
 11 p型半導体素子
 12 共通電極
 13 電極
1 thermoelectric conversion module 10 n-type semiconductor element 11 p-type semiconductor element 12 common electrode 13 electrode

Claims (13)

  1.  n型半導体素子と、p型半導体素子と、前記n型半導体素子の一端と前記p型半導体素子の一端とが接合される共通電極と、前記n型半導体素子の他端及び前記p型半導体素子の他端にそれぞれ独立して接合される電極と、を備える熱電変換モジュールの製造方法であって、
     前記n型半導体素子と、前記共通電極及び電極との間に金属粉末及び/又はn型導電性金属酸化物粉末を配置し、
     前記p型半導体素子と、前記共通電極及び電極との間に金属粉末及び/又はp型導電性金属酸化物粉末を配置し、
     前記n型半導体素子及びp型半導体素子を前記共通電極及び前記電極で挟む方向に圧力を印加しながら、前記圧力が印加される方向と平行な方向に直流パルス電流を印加して焼結し、前記n型半導体素子と前記共通電極及び電極との間及び前記p型半導体素子と前記共通電極及び電極との間を接合する熱電変換モジュールの製造方法。
    an n-type semiconductor element; a p-type semiconductor element; a common electrode where one end of the n-type semiconductor element and one end of the p-type semiconductor element are joined; the other end of the n-type semiconductor element; and the p-type semiconductor element An electrode that is independently joined to the other end of the thermoelectric conversion module,
    A metal powder and / or an n-type conductive metal oxide powder is disposed between the n-type semiconductor element and the common electrode and the electrode,
    A metal powder and / or a p-type conductive metal oxide powder is disposed between the p-type semiconductor element and the common electrode and the electrode,
    While applying a pressure in a direction sandwiching the n-type semiconductor element and the p-type semiconductor element between the common electrode and the electrode, a DC pulse current is applied in a direction parallel to the direction in which the pressure is applied, and sintering is performed. The manufacturing method of the thermoelectric conversion module which joins between the said n-type semiconductor element, the said common electrode, and an electrode, and between the said p-type semiconductor element, and the said common electrode and an electrode.
  2.  前記金属粉末及び/又はn型導電性金属酸化物粉末、並びに前記金属粉末及び/又はp型導電性金属酸化物粉末は、圧粉体である請求項1に記載の熱電変換モジュールの製造方法。 The method for producing a thermoelectric conversion module according to claim 1, wherein the metal powder and / or the n-type conductive metal oxide powder, and the metal powder and / or the p-type conductive metal oxide powder are green compacts.
  3.  前記n型半導体素子と前記共通電極及び電極との間に、金属粉末とn型導電性金属酸化物粉末との混合物を配置し、
     前記p型半導体素子と前記共通電極及び電極との間に、金属粉末とp型導電性金属酸化物粉末との混合物を配置する請求項1又は2に記載の熱電変換モジュールの製造方法。
    A mixture of metal powder and n-type conductive metal oxide powder is disposed between the n-type semiconductor element and the common electrode and the electrode,
    The manufacturing method of the thermoelectric conversion module of Claim 1 or 2 which arrange | positions the mixture of metal powder and p-type electroconductive metal oxide powder between the said p-type semiconductor element, the said common electrode, and electrode.
  4.  前記p型半導体素子は、前記共通電極及び前記電極との接合に用いられる前記p型導電性金属酸化物と異なる金属酸化物を主成分とする焼結体であり、
     前記n型半導体素子は、Sb、Alから選択される少なくとも一種の元素をドーパントとして含むマグネシウムシリサイドを主成分とする焼結体又はマグネシウムシリサイドを主成分とする焼結体である請求項1乃至3のいずれか1に記載の熱電変換モジュールの製造方法。
    The p-type semiconductor element is a sintered body mainly composed of a metal oxide different from the p-type conductive metal oxide used for joining the common electrode and the electrode,
    4. The n-type semiconductor element is a sintered body mainly composed of magnesium silicide containing at least one element selected from Sb and Al as a dopant, or a sintered body mainly composed of magnesium silicide. The manufacturing method of the thermoelectric conversion module of any one of.
  5.  前記p型半導体素子は、前記金属酸化物の粉体と前記金属酸化物の板状結晶との混合物を、一軸加圧成形しながら加圧方向と平行に直流パルス電流を印加して、焼結させた焼結体である請求項4に記載の熱電変換モジュールの製造方法。 The p-type semiconductor element is sintered by applying a DC pulse current parallel to the pressing direction while uniaxially pressing a mixture of the metal oxide powder and the metal oxide plate crystal. The method for producing a thermoelectric conversion module according to claim 4, wherein the sintered body is a sintered body.
  6.  n型半導体素子と、p型半導体素子と、前記n型半導体素子の一端と前記p型半導体素子の一端とが接合される共通電極と、前記n型半導体素子の他端及び前記p型半導体素子の他端にそれぞれ独立して接合される電極と、を備え、
     前記p型半導体素子の端部と前記共通電極及び電極との接合部が、金属の焼結体、金属とp型導電性金属酸化物の混合物の焼結体又はp型導電性金属酸化物の焼結体から構成され、
     前記n型半導体素子の端部と前記共通電極及び電極との接合部が、金属の焼結体、金属とn型導電性金属酸化物の混合物の焼結体又はn型導電性金属酸化物の焼結体から構成される熱電変換モジュール。
    an n-type semiconductor element; a p-type semiconductor element; a common electrode where one end of the n-type semiconductor element and one end of the p-type semiconductor element are joined; the other end of the n-type semiconductor element; and the p-type semiconductor element An electrode that is independently joined to the other end of
    The junction between the end of the p-type semiconductor element and the common electrode and the electrode is a sintered body of metal, a sintered body of a mixture of metal and p-type conductive metal oxide, or p-type conductive metal oxide. Composed of a sintered body,
    The junction between the end of the n-type semiconductor element and the common electrode and the electrode is made of a metal sintered body, a sintered body of a mixture of a metal and an n-type conductive metal oxide, or an n-type conductive metal oxide. Thermoelectric conversion module composed of a sintered body.
  7.  前記p型半導体素子の端部と前記共通電極及び電極との接合部が、金属とp型導電性金属酸化物の混合物の焼結体から構成され、
     前記n型半導体素子の端部と前記共通電極及び電極との接合部が、金属とn型導電性金属酸化物の混合物の焼結体から構成される請求項6に記載の熱電変換モジュール。
    The junction between the end of the p-type semiconductor element and the common electrode and the electrode is composed of a sintered body of a mixture of metal and p-type conductive metal oxide,
    The thermoelectric conversion module according to claim 6, wherein a joint portion between the end portion of the n-type semiconductor element and the common electrode and the electrode is formed of a sintered body of a mixture of a metal and an n-type conductive metal oxide.
  8.  前記p型半導体素子は、前記接合部を構成するp型導電性金属酸化物と異なる金属酸化物を主成分とする焼結体であり、前記n型半導体素子は、マグネシウムシリサイドを主成分とする焼結体である請求項6又は7に記載の熱電変換モジュール。 The p-type semiconductor element is a sintered body whose main component is a metal oxide different from the p-type conductive metal oxide constituting the junction, and the n-type semiconductor element is mainly composed of magnesium silicide. The thermoelectric conversion module according to claim 6, which is a sintered body.
  9.  前記マグネシウムシリサイドを主成分とする焼結体が、ドーパントを含むものである請求項8に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 8, wherein the sintered body containing magnesium silicide as a main component includes a dopant.
  10.  前記ドーパントは、Sb、Alから選択される少なくとも一種の元素である請求項9に記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 9, wherein the dopant is at least one element selected from Sb and Al.
  11.  前記p型半導体素子を構成する前記金属酸化物が、NaCoO、CaCo、CuYO、SrRuO、及びSrRuOから選択される請求項8乃至10のいずれか1に記載の熱電変換モジュール。 The metal oxide constituting the p-type semiconductor elements, Na x CoO 2, CaCo 2 O 4, CuYO 2, SrRuO 3, and according to any one of claims 8 to 10 selected from Sr 2 RuO 4 Thermoelectric conversion module.
  12.  前記接合部の焼結体を構成するp型導電性金属酸化物がSrRuO、ReO、CuO及びCuOから選択される請求項6乃至11のいずれか1に記載の熱電変換モジュール。 The thermoelectric conversion module according to any one of claims 6 to 11, wherein the p-type conductive metal oxide constituting the sintered body of the joint is selected from SrRuO 3 , ReO 3 , Cu 2 O and CuO.
  13.  前記接合部の焼結体を構成するn型導電性金属酸化物がIn、SnO、In-SnO、もしくはNb又はLaドープSrTiO、ZnOである請求項6乃至12のいずれか1に記載の熱電変換モジュール。 The n-type conductive metal oxide constituting the sintered body of the joint is In 2 O 3 , SnO 2 , In 2 O 3 —SnO 2 , or Nb or La-doped SrTiO 3 , ZnO. The thermoelectric conversion module according to any one of the above.
PCT/JP2011/055075 2010-05-28 2011-03-04 Method for production of thermoelectric conversion module, and thermoelectric conversion module WO2011148686A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012517173A JP5686417B2 (en) 2010-05-28 2011-03-04 Thermoelectric conversion module manufacturing method and thermoelectric conversion module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010122670 2010-05-28
JP2010-122670 2010-05-28

Publications (1)

Publication Number Publication Date
WO2011148686A1 true WO2011148686A1 (en) 2011-12-01

Family

ID=45003679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055075 WO2011148686A1 (en) 2010-05-28 2011-03-04 Method for production of thermoelectric conversion module, and thermoelectric conversion module

Country Status (2)

Country Link
JP (1) JP5686417B2 (en)
WO (1) WO2011148686A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465980A (en) * 2014-11-17 2015-03-25 陕西师范大学 Thermoelectric material based on aluminum/nanocrystalline silicon/copper film and manufacturing method thereof
CN104505457A (en) * 2014-12-08 2015-04-08 陕西师范大学 Al/CuO film based pyroelectric material and preparation method thereof
JP2017528905A (en) * 2014-07-17 2017-09-28 エプコス アクチエンゲゼルシャフトEpcos Ag Material for thermoelectric element and method for producing material for thermoelectric element
US11165007B2 (en) 2019-01-25 2021-11-02 King Abdulaziz University Thermoelectric module composed of SnO and SnO2 nanostructures
US20220077372A1 (en) * 2012-02-07 2022-03-10 Ethan James Ciccotelli Method and device for the generation of electricity directly from heat
US11637230B2 (en) 2018-06-28 2023-04-25 Nihon Parkerizing Co., Ltd. Thermoelectric conversion element and thermoelectric conversion module having same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268264A (en) * 1993-03-10 1994-09-22 Idemitsu Petrochem Co Ltd Manufacture of peltier element
JPH1074986A (en) * 1996-06-27 1998-03-17 Natl Aerospace Lab Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module
JPH11177156A (en) * 1997-12-16 1999-07-02 Natl Aerospace Lab Machining method for thermoelectric conversion material and production of thermoelectric conversion element
JP2005276952A (en) * 2004-03-23 2005-10-06 Japan Science & Technology Agency Thermoelectric material using two-dimensional oxide natural superlattice, and method for adjusting its thermoelectric characteristic
JP2006351754A (en) * 2005-06-15 2006-12-28 Ricoh Co Ltd Thermoelectric conversion material and thermoelectric converter using the same
WO2008075789A1 (en) * 2006-12-20 2008-06-26 Showa Kde Co., Ltd. Thermo-electric converting materials, process for producing the same, and thermo-electric converting element
JP2008306127A (en) * 2007-06-11 2008-12-18 National Institute For Materials Science Thermoelectric conversion material
JP2009117792A (en) * 2007-10-19 2009-05-28 Ube Ind Ltd Thermoelectric conversion module and process for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3462462B2 (en) * 2000-10-11 2003-11-05 独立行政法人産業技術総合研究所 Oxide thermoelectric element manufactured by spark plasma sintering
JP2003332644A (en) * 2002-05-16 2003-11-21 Komatsu Ltd Method and jig for manufacturing thermoelectric module
JP4446064B2 (en) * 2004-07-07 2010-04-07 独立行政法人産業技術総合研究所 Thermoelectric conversion element and thermoelectric conversion module
JP2009071252A (en) * 2007-09-18 2009-04-02 Fuji Electric Device Technology Co Ltd Semiconductor device and its manufacturing method
JP2009302332A (en) * 2008-06-13 2009-12-24 Aruze Corp Thermoelectric conversion element and conductive member for thermoelectric conversion element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268264A (en) * 1993-03-10 1994-09-22 Idemitsu Petrochem Co Ltd Manufacture of peltier element
JPH1074986A (en) * 1996-06-27 1998-03-17 Natl Aerospace Lab Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module
JPH11177156A (en) * 1997-12-16 1999-07-02 Natl Aerospace Lab Machining method for thermoelectric conversion material and production of thermoelectric conversion element
JP2005276952A (en) * 2004-03-23 2005-10-06 Japan Science & Technology Agency Thermoelectric material using two-dimensional oxide natural superlattice, and method for adjusting its thermoelectric characteristic
JP2006351754A (en) * 2005-06-15 2006-12-28 Ricoh Co Ltd Thermoelectric conversion material and thermoelectric converter using the same
WO2008075789A1 (en) * 2006-12-20 2008-06-26 Showa Kde Co., Ltd. Thermo-electric converting materials, process for producing the same, and thermo-electric converting element
JP2008306127A (en) * 2007-06-11 2008-12-18 National Institute For Materials Science Thermoelectric conversion material
JP2009117792A (en) * 2007-10-19 2009-05-28 Ube Ind Ltd Thermoelectric conversion module and process for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220077372A1 (en) * 2012-02-07 2022-03-10 Ethan James Ciccotelli Method and device for the generation of electricity directly from heat
JP2017528905A (en) * 2014-07-17 2017-09-28 エプコス アクチエンゲゼルシャフトEpcos Ag Material for thermoelectric element and method for producing material for thermoelectric element
CN104465980A (en) * 2014-11-17 2015-03-25 陕西师范大学 Thermoelectric material based on aluminum/nanocrystalline silicon/copper film and manufacturing method thereof
CN104505457A (en) * 2014-12-08 2015-04-08 陕西师范大学 Al/CuO film based pyroelectric material and preparation method thereof
CN104505457B (en) * 2014-12-08 2017-07-11 陕西师范大学 Thermoelectric material based on Al/CuO films and preparation method thereof
US11637230B2 (en) 2018-06-28 2023-04-25 Nihon Parkerizing Co., Ltd. Thermoelectric conversion element and thermoelectric conversion module having same
US11165007B2 (en) 2019-01-25 2021-11-02 King Abdulaziz University Thermoelectric module composed of SnO and SnO2 nanostructures
US11309475B2 (en) 2019-01-25 2022-04-19 King Abdulaziz University Tin oxide-based thermoelectric device

Also Published As

Publication number Publication date
JP5686417B2 (en) 2015-03-18
JPWO2011148686A1 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
JP5480258B2 (en) Thermoelectric materials and chalcogenide compounds
JP5206768B2 (en) Nanocomposite thermoelectric conversion material, method for producing the same, and thermoelectric conversion element
KR20110052225A (en) Nanocomposite thermoelectric material, and thermoelectric device and thermoelectric module comprising same
EP1672709B1 (en) Conductive paste for connecting thermoelectric conversion material
US20170125658A1 (en) Thermoelectric Conversion Element and Thermoelectric Conversion Module
US9627600B2 (en) Mg—Si system thermoelectric conversion material, method for producing same, sintered body for thermoelectric conversion, thermoelectric conversion element, and thermoelectric conversion module
WO2009150908A1 (en) Thermoelectric converter element and conductive member for thermoelectric converter element
JP5686417B2 (en) Thermoelectric conversion module manufacturing method and thermoelectric conversion module
WO2021153550A1 (en) Thermoelectric conversion module
KR20060125789A (en) A method of preparation for the high performance thermoelectric material indium-cobalt-antimony
JP4808099B2 (en) Method for producing thermoelectric material comprising calcium-cobalt layered oxide single crystal
JP4858976B2 (en) Composite thermoelectric conversion material
CN104321889B (en) Thermo-electric converting material and use its thermo-electric conversion module and its manufacture method
KR20140065721A (en) Thermoelectric material, thermoelectric device and apparatus comprising same, and preparation method thereof
JPWO2004105144A1 (en) Thermoelectric conversion material and production method thereof
Choi et al. Thermoelectric properties of higher manganese silicide consolidated by flash spark plasma sintering technique
JP4592209B2 (en) Method for producing crystal-oriented bulk ZnO-based sintered material and thermoelectric conversion device produced thereby
JP2013161948A (en) Thermoelectric conversion element, and method for manufacturing thermoelectric conversion element
EP2894681A1 (en) METAL MATERIAL HAVING n-TYPE THERMOELECTRIC CONVERSION PERFORMANCE
JP3896479B2 (en) Method for producing composite oxide sintered body
JP6632218B2 (en) Clathrate compound, thermoelectric conversion material and method for producing the same
JP4467584B2 (en) Thermoelectric material manufacturing method
JP6809852B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP3929880B2 (en) Thermoelectric material
JP2018078219A (en) P-type thermoelectric semiconductor, manufacturing method therefor, and thermoelectric generation element using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012517173

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11786386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1301004569

Country of ref document: TH