JPH11124743A - Carbon fiber and carbon fiber-reinforced composite material - Google Patents

Carbon fiber and carbon fiber-reinforced composite material

Info

Publication number
JPH11124743A
JPH11124743A JP28722897A JP28722897A JPH11124743A JP H11124743 A JPH11124743 A JP H11124743A JP 28722897 A JP28722897 A JP 28722897A JP 28722897 A JP28722897 A JP 28722897A JP H11124743 A JPH11124743 A JP H11124743A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber
cross
composite material
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28722897A
Other languages
Japanese (ja)
Inventor
Katsumi Yamazaki
勝巳 山▲ざき▼
Yoji Matsuhisa
要治 松久
Takuji Sato
卓治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP28722897A priority Critical patent/JPH11124743A/en
Publication of JPH11124743A publication Critical patent/JPH11124743A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain carbon fiber that has high mechanical properties, even when it has a high fiber thickness, and can increase flexural strength of the composite material by attaining a specific tensile modulus. SOLUTION: This filament satisfies the formula: YM>480-46.2r, when the cross section of the filament is assumed to be a perfect circle, and diameter of the filament cross section and the tensile modulus are represented by r (in μm) and YM (in GPa), or satisfies the formula: TS>9.18-1.02r, when the tensile strength is represented by TS (in GPa) and satisfies the formula: BS>=2270-1.87YM, when the tensile modulus and the flexural strength at 0 deg. of uni-direction carbon fiber-reinforced composite material are represented by YM (in GPa) and BS (in MPa). In a preferred embodiment, this carbon fiber has the flexual strength at 0 deg. in the uni-direction carbon fiber composite material correspondng to >=75% of the 0 deg. tensile strength, and the radius of the cross section of the filament is 4-10 μm and the cross section has a tri- to penta-lobal form and contains boron in an amount of 50-5,000 ppm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、繊維強化複合材料
成型用の炭素繊維、およびその繊維を用いた複合材料に
関する。さらに詳しくは、圧縮系の機械特性に優れた、
構造材料として好適な複合材料を与える炭素繊維、およ
びその炭素繊維を用いた複合材料に関する。
The present invention relates to a carbon fiber for molding a fiber-reinforced composite material, and a composite material using the fiber. More specifically, excellent mechanical properties of the compression system,
The present invention relates to a carbon fiber providing a composite material suitable as a structural material, and a composite material using the carbon fiber.

【0002】[0002]

【従来の技術】炭素繊維は他の繊維に比べて優れた比強
度および比弾性率を有するため、その優れた機械的特性
を利用して樹脂との複合材料用の補強繊維として工業的
に広く利用されている。近年、炭素繊維複合材料の優位
性はますます高まり、特にスポーツ、航空宇宙用途にお
いてはこの炭素繊維複合材料に対する高性能化要求が強
い。複合材料としての特性は炭素繊維そのものの特性に
起因するところが大きく、この要求はとりもなおさず炭
素繊維自身への高性能化要求である。この炭素繊維に対
する高性能化の要求に対して、これまで引張強度や引張
弾性率といった引張特性に関して長足の進歩がなされ
た。しかし、それに対して圧縮特性値の向上は追随して
おらず、複合材料の特性、特に最も実用的な特性である
曲げ強度は圧縮側の強度が律速となり満足のいく向上が
見られていない。
2. Description of the Related Art Since carbon fibers have excellent specific strength and specific elastic modulus as compared with other fibers, they are industrially widely used as reinforcing fibers for composite materials with resins by utilizing their excellent mechanical properties. It's being used. In recent years, the superiority of the carbon fiber composite material has been further increased, and particularly in sports and aerospace applications, there is a strong demand for high performance of the carbon fiber composite material. The properties of the composite material largely depend on the properties of the carbon fiber itself, and this demand is, of course, a demand for higher performance of the carbon fiber itself. In response to the demand for higher performance of the carbon fiber, a great deal of progress has been made so far in tensile properties such as tensile strength and tensile modulus. However, the improvement of the compression property value has not followed, and the properties of the composite material, particularly the bending strength, which is the most practical property, are limited by the strength on the compression side, and no satisfactory improvement has been seen.

【0003】従来、この複合材料の曲げ強度を向上させ
る対策として、炭素繊維の表面特性を電解表面処理によ
って改善する方法、適用するマトリックス樹脂の特性を
改善する方法、複合材科を構成する炭素繊維の配列を工
夫する方法など、数多くの提案がなされてきたが.必ず
しも満足のいく結果が得られていないのが実情である。
Conventionally, as a measure for improving the flexural strength of this composite material, a method of improving the surface characteristics of carbon fibers by electrolytic surface treatment, a method of improving the characteristics of a matrix resin to be applied, and a carbon fiber constituting a composite material family Many proposals have been made, such as a method of devising the array of. The fact is that satisfactory results have not always been obtained.

【0004】このような従来の技術的背景のもとに、炭
素繊維と樹脂との複合材の曲げ強度を向上する対策につ
いて種々検討がおこなわれた結果、特開平3−9791
8号公報、特開平3−185121公報、あるいは特開
平4−202815号公報に示されるように、炭素繊維
自体の内部構造の改良に加えて、繊維横断面を非円形し
断面二次モーメントを上げることが有効であることが提
案されている。
Under the above-mentioned conventional technical background, various studies have been made on measures for improving the bending strength of the composite material of carbon fiber and resin, and as a result, Japanese Patent Application Laid-Open No. 3-9791 has been disclosed.
No. 8, JP-A-3-185121 or JP-A-4-202815, in addition to improving the internal structure of the carbon fiber itself, increase the second moment of area by making the fiber cross section non-circular. It has been suggested that this be effective.

【0005】しかしながら、上記非円形断面糸だけでは
曲げ強度の向上が不十分であり、かつ製糸性、特に延伸
性が低下するために製糸生産能力が低下し、コストが上
昇するという問題があった。これらの問題を解決するた
めには、単糸繊度を太繊度化しさらに断面二次モーメン
トを上げ、同時に製糸生産能力を上げることが曲げ強度
およびコスト低減に重要であるが、従来の技術では太繊
度化すると炭素繊維の強度、弾性率が急激に低下してし
まい、機械的特性の低い炭素繊維しか得ることができな
かった。
However, there has been a problem that the use of only the non-circular cross-section yarn does not sufficiently improve the bending strength, and also lowers the yarn-making properties, especially the drawability, thereby lowering the yarn-production capacity and increasing the cost. . In order to solve these problems, it is important to increase the single-filament fineness and increase the secondary moment of area, and at the same time, to increase the yarn production capacity, in order to reduce bending strength and cost. When the carbon fiber is formed, the strength and the elastic modulus of the carbon fiber rapidly decrease, and only the carbon fiber having low mechanical properties can be obtained.

【0006】すなわち、単糸繊度を大きくすると耐炎化
処理時に繊維内部への酸素拡散が不足して不十分な耐炎
化構造となって、炭化工程で毛羽が多発したり、極端な
場合は工程を通過しなくなるし、焼成できたとしても強
度および弾性率の低下が著しい。円形断面繊維に比べて
非円形断面繊維は繊維中心までの距離が短くなるために
比較的単糸繊度を大きくしても焼成が可能で高物性が得
られ易いが、単糸繊度が大きくなるにつれて焼成時の毛
羽の発生や強度、弾性率の低下は避けられないという問
題があった。
[0006] That is, if the fineness of the single yarn is increased, the diffusion of oxygen into the fiber during the flameproofing treatment becomes insufficient, resulting in an insufficient flameproof structure. It does not pass through, and even if it can be fired, the strength and elastic modulus are significantly reduced. The non-circular cross-section fiber has a shorter distance to the fiber center than the circular cross-section fiber, so even if the single-fiber fineness is relatively large, baking is possible and high physical properties are easily obtained, but as the single-fiber fineness increases, There has been a problem that generation of fluff during firing and a decrease in strength and elastic modulus are inevitable.

【0007】本発明者らは、特殊な断面形状を有する非
円形異形断面前駆体繊維の繊維表層部の耐炎化を遅延さ
せることによって、さらに太繊度化したときの焼成時の
トラブルや強度、弾性率の低下を抑制でき、得られた太
径の炭素繊維が高い圧縮強度を有することを見出し、本
発明に到達した。
The present inventors delay the flame resistance of the fiber surface layer of the non-circular shaped cross-section precursor fiber having a special cross-sectional shape, thereby making it possible to prevent trouble, strength, and elasticity during firing when the fineness is further increased. The present inventors have found that the large-diameter carbon fiber obtained has a high compressive strength, and the present invention has been achieved.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題は、上記
従来技術では達成し得なかった太繊度でも機械的特性が
高く、それによって複合材料曲げ強度の高い炭素繊維、
およびその炭素繊維を用いた複合材料を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a carbon fiber having high mechanical properties even at a large fineness, which cannot be attained by the above-mentioned prior art, and thereby a high bending strength of a composite material.
And a composite material using the carbon fiber.

【0009】[0009]

【課題を解決するための手段】上記した課題を解決する
ために、本発明の炭素繊維は次のいずれかの構成を有す
る。すなわち、繊維断面形状を真円と仮定した単繊維断
面半径r(μm)と引張弾性率YM(GPa)が下記式
1を満足することを特徴とする炭素繊維、 YM>480−46.2r −−−−−− 式1 また、繊維断面形状を真円と仮定した単繊維断面半径r
(μm)と引張強度TS(GPa)が下記式2を満足す
ることを特徴とする炭素繊維である。
In order to solve the above-mentioned problems, the carbon fiber of the present invention has one of the following constitutions. That is, a carbon fiber characterized in that a single fiber cross-sectional radius r (μm) and a tensile modulus of elasticity YM (GPa) satisfying the following formula 1 assuming that the fiber cross-sectional shape is a perfect circle: YM> 480-46.2r − −−−− Formula 1 Also, a single fiber cross-section radius r assuming that the fiber cross-section is a perfect circle
(Μm) and a tensile strength TS (GPa) satisfying the following expression (2).

【0010】 TS>9.18−1.02r −−−−−− 式2 また上記した課題を解決するために、本発明の複合材料
は次の構成を有する。すなわち、上記炭素繊維からなる
炭素繊維強化複合材料である。
TS> 9.18-1.02r Formula 2 In order to solve the above problem, the composite material of the present invention has the following configuration. That is, it is a carbon fiber reinforced composite material composed of the above carbon fibers.

【0011】[0011]

【発明の実施の形態】以下、本発明の炭素繊維および炭
素繊維強化複合材料について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a carbon fiber and a carbon fiber reinforced composite material of the present invention will be described in detail.

【0012】本発明の炭素繊維は、繊維断面形状を真円
と仮定した単繊維断面半径r(μm)と炭素繊維の引張
弾性率YM(GPa)が下記式1を満足することを特徴
とする炭素繊維である。
The carbon fiber of the present invention is characterized in that a single fiber cross-section radius r (μm) and a tensile modulus YM (GPa) of the carbon fiber satisfy the following formula 1 assuming that the fiber cross-section is a perfect circle. Carbon fiber.

【0013】 YM>480−46.2r −−−−−− 式1 一般的に、前駆体繊維の繊度を大きくして炭素繊維の単
繊維断面径を大きくしていくと弾性率が大幅に低下し
て、複合材料の設計において軽量化が困難となる。本発
明の炭素繊維は単繊維の太さと弾性率の関係において、
これまでになく弾性率が高い炭素繊維であり、それによ
って十分な複合材料の特性が発揮できるものである。
YM> 480-46.2r Formula 1 Generally, when the fineness of the precursor fiber is increased and the cross-sectional diameter of the single fiber of the carbon fiber is increased, the elastic modulus is significantly reduced. As a result, it is difficult to reduce the weight in designing the composite material. Carbon fiber of the present invention, in the relationship between the thickness and elastic modulus of the single fiber,
It is a carbon fiber having a higher elastic modulus than ever before, and thereby can exhibit sufficient properties of a composite material.

【0014】また、本発明の炭素繊維は繊維断面形状を
真円と仮定した単繊維断面半径r(μm)と炭素繊維の
引張強度TS(GPa)が下記式2を満足することを特
徴とする炭素繊維である。
Further, the carbon fiber of the present invention is characterized in that a single fiber cross-sectional radius r (μm) assuming that the fiber cross-sectional shape is a perfect circle and a tensile strength TS (GPa) of the carbon fiber satisfy the following equation (2). Carbon fiber.

【0015】 TS>9.18−1.02r −−−−−− 式2 引張強度においても、前駆体繊維の繊度を大きくして炭
素繊維の単繊維断面径を大きくしていくと大幅に強度が
低下し、高次加工性の低下と共に複合材料としての強度
特性を発揮できない。本発明の炭素繊維は単繊維の太さ
と強度の関係において、これまでになく強度が高い炭素
繊維であり、製編織やプリプレグ化などの高次加工性に
優れ、かつ複合材料としての高い強度特性を有する炭素
繊維である。
TS> 9.18-1.02r Formula 2 In terms of tensile strength, when the fineness of the precursor fiber is increased and the cross-sectional diameter of the single fiber of the carbon fiber is increased, the strength is significantly increased. And the high-order workability decreases, and the strength characteristics as a composite material cannot be exhibited. The carbon fiber of the present invention is a carbon fiber having higher strength than ever in relation to the thickness and strength of a single fiber, and has excellent high-order workability such as knitting and weaving or prepreg, and high strength characteristics as a composite material. Is a carbon fiber having

【0016】本発明の炭素繊維はこのように太繊度でも
機械的特性が高いことにより、機械的特性および断面二
次モーメントのいずれもが高い炭素繊維であるので、一
方向炭素繊維複合材料の0°曲げ強度が0°引張強度の
85%以上と曲げ強度の高い炭素繊維が可能となる。す
なわち、従来の炭素繊維では一方向炭素繊維複合材料の
0°曲げ強度は0°引張強度の30〜80%程度であ
り、85%以上と高い炭素繊維はなかった。上限につい
ては100%以下である。
Since the carbon fiber of the present invention has high mechanical properties even at a large fineness, it has high mechanical properties and a high moment of inertia. The carbon fiber having a flexural strength of 85% or more of the 0 ° tensile strength and a high flexural strength can be obtained. That is, in the conventional carbon fiber, the 0 ° bending strength of the unidirectional carbon fiber composite material was about 30 to 80% of the 0 ° tensile strength, and there was no carbon fiber as high as 85% or more. The upper limit is 100% or less.

【0017】一方向炭素繊維複合材料の0°曲げ強度の
絶対値としては2GPa以上の高い強度が可能になる。
従来の炭素繊維は高々1.8GPa前後までであり、2
GPa以上の高い炭素繊維はなかった。上限については
6GPa程度まで向上する可能性がある。
[0017] The absolute value of the 0 ° bending strength of the unidirectional carbon fiber composite material can be as high as 2 GPa or more.
Conventional carbon fibers have a capacity of up to about 1.8 GPa.
There were no carbon fibers higher than GPa. The upper limit may be improved to about 6 GPa.

【0018】本発明の炭素繊維は太繊度でも引張弾性率
の低下が小さく、かつ太繊度のために曲げ強度が高いた
め、炭素繊維の引張弾性率YM(MPa)と一方向炭素
繊維複合材料の0゜曲げ強度BS(GPa)が下記式3
を満足することが可能となる。
The carbon fiber of the present invention has a small decrease in tensile modulus even with a large fineness, and has a high bending strength due to the fineness. Therefore, the tensile modulus YM (MPa) of the carbon fiber and the unidirectional carbon fiber composite material 0 ° bending strength BS (GPa) is given by the following equation (3).
Can be satisfied.

【0019】 BS≧2270−1.87YM −−−−−− 式3 一方向炭素繊維の0゜曲げ強度は炭素繊維の引張強度、
圧縮強度、および炭素繊維と樹脂との接着力の総合特性
を現す最も実用的で重要な複合材料特性である。しかし
ながら、曲げ強度は引張強度に対して圧縮強度が大幅に
低いため、圧縮強度律速となっているのが現状であり、
グラファイト構造が発達した高引張弾性率炭素繊維ほど
曲げ強度が低下する。本発明の炭素繊維は引張弾性率に
対して従来になく高い曲げ強度特性を有する炭素繊維で
ある。
BS ≧ 2270-1.87YM Formula 3 The 0 ° bending strength of the unidirectional carbon fiber is the tensile strength of the carbon fiber,
It is the most practical and important composite material property that expresses the overall properties of compressive strength and adhesive strength between carbon fiber and resin. However, since the bending strength is significantly lower than the compressive strength compared to the tensile strength, it is the current state that the compressive strength is limited,
The bending strength decreases as the carbon fiber has a high tensile modulus with a developed graphite structure. The carbon fiber of the present invention is a carbon fiber having a flexural strength characteristic higher than ever before with respect to the tensile modulus.

【0020】本発明の炭素繊維の繊維断面形状を真円と
仮定した単繊維断面半径rとしては4〜10μmである
ことが好ましい。すなわち、rを4μm以上と大きくす
ることによって単繊維の屈曲が少なくアライメントが向
上するため、複合材としたときの圧縮特性がさらに向上
する。rが10μmを超える炭素繊維では前駆体繊維の
繊度が大きいので耐炎化時に繊維内層部への酸素透過が
困難となり、耐炎化に長時間を要し、コストアップが大
きくなると共に、炭化時に毛羽が発生し易く工業的生産
が難しくなる。
The single fiber section radius r assuming that the fiber section shape of the carbon fiber of the present invention is a perfect circle is preferably 4 to 10 μm. That is, by increasing r to 4 μm or more, the bending of the single fiber is reduced and the alignment is improved, so that the compression characteristics when a composite material is formed is further improved. When the carbon fiber exceeds 10 μm, the fineness of the precursor fiber is large, so that it is difficult to transmit oxygen to the inner layer of the fiber at the time of flame resistance, it takes a long time for the flame resistance, the cost is increased, and the fluff is generated at the time of carbonization. It is easy to occur and industrial production becomes difficult.

【0021】ここで本発明に言う単繊維半径rとは、フ
ィラメント数がたとえば100〜1000000本の炭
素繊維束1mの質量を測定し、アルキメデス法によって
繊維比重を測定して炭素繊維束の断面積を計算後にフィ
ラメント数で除し単繊維の断面積を算出する。その単繊
維の断面を真円と仮定して半径rを算出したものであ
る。
Here, the radius r of the single fiber referred to in the present invention means the cross-sectional area of the carbon fiber bundle by measuring the mass of 1 m of the carbon fiber bundle having 100 to 1,000,000 filaments and measuring the specific gravity of the fiber by Archimedes' method. Is calculated and divided by the number of filaments to calculate the cross-sectional area of the single fiber. The radius r is calculated assuming that the cross section of the single fiber is a perfect circle.

【0022】本発明の炭素繊維の繊維断面形状は、一定
の対称性を持った非円形であることが好ましい。すなわ
ち、繊維横断面形状がその図心を通る対称面を少なくと
も一つ有すると共に、θ=360°/n(nは1から1
0までの整数)で規定される回転対称角度θを有する非
円形状であることが好ましい。
The fiber cross section of the carbon fiber of the present invention is preferably non-circular with a certain symmetry. That is, the fiber cross-sectional shape has at least one symmetry plane passing through its centroid, and θ = 360 ° / n (n is 1 to 1).
It is preferably a non-circular shape having a rotationally symmetric angle θ defined by an integer up to 0).

【0023】炭素繊維がこのような非円形断面であるこ
とによって、円形断面の炭素繊維に比べて断面二次モー
メントが大きいため、複合材の曲げ剛性も向上させるこ
とができる。しかも、この非円形断面形状が対称性であ
ることにより、複合材の縦方向(繊維長手方向)の歪み
に対する断面方向の応力分布を均一にすることができ
る。さらに、非円形断面であることによって、繊維表面
から単糸中心までの距離が小さくなるため、耐炎化での
内外構造差が生成しにくいため太繊度化しやすい上に、
複合材に使用されたときマトリックス樹脂との接触面積
が増大して接着力を増大させ、かつ円形断面に比べてマ
トリックス樹脂に対する均一な分散性を高めるため、複
合材の基本特性を大幅に向上させることができる。
Since the carbon fiber has such a non-circular cross section, the second moment of area is larger than that of the carbon fiber having a circular cross section, so that the bending rigidity of the composite material can be improved. Moreover, since the non-circular cross-sectional shape is symmetric, the stress distribution in the cross-sectional direction with respect to the strain in the longitudinal direction (the longitudinal direction of the fiber) of the composite material can be made uniform. Furthermore, because of the non-circular cross-section, the distance from the fiber surface to the center of the single yarn is reduced, and it is difficult to generate a difference in inner and outer structures due to flame resistance.
When used in a composite material, the contact area with the matrix resin is increased to increase the adhesive strength, and to improve the uniform dispersibility in the matrix resin as compared with the circular cross section, thereby greatly improving the basic properties of the composite material. be able to.

【0024】本発明において、繊維横断面が回転対称で
あるとは、図心のまわりに角度θ回転させたとき同じ図
形が繰り返されることをいい、その時の回転角度を回転
対称角という。また、対称面とは、繊維横断面で鏡映操
作をするとき、図形が左右で自己同一になるようなとき
の境界面をいうが、図形や回転角度の若干のずれは許容
されるものである。
In the present invention, the fact that the fiber cross section is rotationally symmetric means that the same figure is repeated when the fiber is rotated by an angle θ around the centroid, and the rotation angle at that time is called a rotational symmetry angle. In addition, the symmetry plane refers to the boundary surface when the figure becomes self-identical on the left and right when performing the mirroring operation on the fiber cross section, but slight deviation of the figure and the rotation angle is allowed. is there.

【0025】正多角形や正多葉形の繊維横断面では、い
ずれも回転対称角θを定義するnはその対称面の数と同
じになる。本発明において、回転対称角θを定義するn
の上限は10としているが、上限を5とすればより好ま
しい。nが10を超えるときには、繊維横断面は円形に
近くなり、本発明による非円形断面の効果は低減するか
らである。
In a regular polygonal or regular multi-lobal fiber cross section, n defining the rotational symmetry angle θ is the same as the number of symmetry planes. In the present invention, n defining the rotational symmetry angle θ
Is set to 10, but it is more preferable to set the upper limit to 5. When n exceeds 10, the fiber cross section becomes close to circular, and the effect of the non-circular cross section according to the present invention is reduced.

【0026】また、炭素繊維の非円形断面は、上述した
対称性に加えて、繊維横断面の中心に向かって凹の部分
を有する非円形であって、その変形度も一定の範囲にあ
ることが好ましい。例えば、細長い扁平断面のように円
形から極端に離れた形状になれば、複合材にしたときの
炭素繊維の均一な分散性を阻害し、複合材の基本特性を
低減することになる。
The non-circular cross section of the carbon fiber, in addition to the above-mentioned symmetry, is a non-circular shape having a concave portion toward the center of the fiber cross section, and the degree of deformation is within a certain range. Is preferred. For example, if the shape becomes extremely distant from a circle, such as an elongated flat cross section, the uniform dispersibility of carbon fibers in the composite material is impaired, and the basic characteristics of the composite material are reduced.

【0027】また、本発明の炭素繊維の横断面形状とし
ては、単繊維の横断面形状が3〜5葉の多葉形であり、
それぞれの葉がその付け根から先端に向かって一旦膨ら
みを有し、実質的に複数個の円が接合した形からなり、
かつ、該横断面における外接円半径R1と内接円半径R
2との比(R1/R2)で定義される変形度Dが1.5
〜3であることが好ましい。
Further, the cross-sectional shape of the carbon fiber of the present invention is a single-fiber multi-leaf cross-sectional shape having 3 to 5 leaves.
Each leaf has a bulge once from its root toward the tip, and is substantially formed of a plurality of joined circles,
And a circumscribed circle radius R1 and an inscribed circle radius R in the cross section.
The degree of deformation D defined by the ratio (R1 / R2) to 2 is 1.5
-3 is preferred.

【0028】このように、炭素繊維の横断面が多葉形か
らなり、各葉が付け根から先端に向かって一端膨らみを
有する構造となっていると、通常の異形断面糸に比べて
断面二次モーメントが大きい上に、単繊維の表面から中
心までの距離が短いため、中心までの酸素透過が容易で
あり、より均一な焼成が可能となって、炭素繊維の強
度、弾性率が向上することによって曲げ変形に対しての
抵抗力が増加して、圧縮強度および曲げ強度が向上する
ものと考えられる。さらに、このような形状では大きな
単繊維繊度の炭素繊維が得やすく、断面二次モーメント
の一層の向上とともに、繊維のアライメントも向上する
ためこれらの特性がさらに向上する。なお異形度Dが
1.5未満ではそれぞれの葉がその付け根から先端にむ
かって一旦膨らみを有する形状を形成することが困難で
あり、またDが3を超える形状では焼成工程中に葉が破
損して毛羽立ちが多くなる。
As described above, when the cross section of the carbon fiber has a multi-lobed shape, and each leaf has a structure in which one end swells from the base to the tip, the secondary cross section is smaller than that of a normal modified cross-section yarn. Since the moment is large and the distance from the surface of the single fiber to the center is short, oxygen transmission to the center is easy, enabling more uniform firing and improving the strength and elastic modulus of the carbon fiber. It is considered that this increases the resistance to bending deformation and improves the compressive strength and bending strength. Further, in such a shape, carbon fibers having a large single-fiber fineness can be easily obtained, and further the second moment of area is improved, and the alignment of the fibers is also improved, so that these characteristics are further improved. When the degree of irregularity D is less than 1.5, it is difficult for each leaf to form a shape having a swelling from the base to the tip, and when the shape exceeds D, the leaf is damaged during the firing step. The fluff will increase.

【0029】また、このような断面形状では表面積が大
きく、また葉と葉の間が一種の錨のように働くいわゆる
アンカー効果を発揮するので、曲げ強度が上がるばかり
でなく、マトリックス樹脂との接着力および衝撃後圧縮
強度が向上するものと考えられる。
In addition, since such a cross-sectional shape has a large surface area and exhibits a so-called anchor effect that acts as a kind of anchor between leaves, not only the bending strength is increased but also the adhesion to the matrix resin is increased. It is believed that the force and the compressive strength after impact are improved.

【0030】本発明の炭素繊維はホウ素を50〜500
0ppmを含有することが好ましく、より好ましくは1
00〜1000ppm含有するものであるが、ホウ素を
含有する前駆体繊維を焼成することによって得ることが
できる。前駆体繊維中のホウ素は前駆体繊維の耐炎化反
応を遅延させる効果を有し、より高温で耐炎化可能とな
り、繊維内層部への酸素拡散を促進して単繊維の断面半
径方向の耐炎化構造をより均一化することができる。従
って、前駆体繊維の繊度を従来になく大きくしても焼成
が可能となり、引張強度・弾性率が優れた炭素繊維が得
られる。炭素繊維のホウ素含有量が50ppm未満とな
る前駆体繊維のホウ素含有量では耐炎化反応の遅延効果
が不足して均一耐炎化効果が不十分である。また、炭素
繊維のホウ素含有量が5000ppmを超える前駆体繊
維のホウ素含有量では耐炎化反応が遅くなりすぎて工業
的生産性が悪くなる。したがって炭素繊維のホウ素含有
量はより好ましくは100〜1000ppmである。
The carbon fiber of the present invention contains 50 to 500 boron.
0 ppm, more preferably 1 ppm.
Although it contains 0.0000 to 1000 ppm, it can be obtained by firing a precursor fiber containing boron. Boron in the precursor fiber has the effect of delaying the flame-resistance reaction of the precursor fiber, and can be made flame-resistant at higher temperatures, and promotes the diffusion of oxygen to the fiber inner layer, thereby making the single fiber flame-resistant in the cross-sectional radial direction. The structure can be made more uniform. Therefore, firing is possible even if the fineness of the precursor fiber is larger than before, and a carbon fiber having excellent tensile strength and elastic modulus can be obtained. If the boron content of the precursor fiber is such that the carbon content of the carbon fiber is less than 50 ppm, the effect of delaying the flame-proofing reaction is insufficient, and the uniform flame-proofing effect is insufficient. On the other hand, when the boron content of the precursor fiber exceeds 5,000 ppm, the flame resistance reaction becomes too slow, and the industrial productivity deteriorates. Therefore, the boron content of the carbon fiber is more preferably 100 to 1000 ppm.

【0031】また、ホウ素の単糸内分布については繊維
の表層部に多く存在することが好ましく、下記式4に定
義する繊維の表層部と内層部のホウ素濃度比Cが5〜1
000となる分布が好ましい。
It is preferable that the distribution of boron in a single yarn is large in the surface layer portion of the fiber, and the boron concentration ratio C between the surface layer portion and the inner layer portion of the fiber defined by the following formula (4) is 5-1.
000 is preferred.

【0032】 C=C0 /Ci −−−−−− 式4 ただし、C0 :SIMSで測定した繊維表面から25n
m深さのホウ素原子カウント数 Ci :SIMSで測定した繊維表面から600nm深さ
のホウ素原子カウント数 本発明の炭素繊維は、アクリル系、ピッチ系、レーヨン
系などいずれでも可能であるが、圧縮強度の高いアクリ
ル系が好ましい。以下、上記本発明炭素繊維の製法例を
アクリル系の場合について説明する。
C = C 0 / Ci Formula 4 where C 0: 25 n from the fiber surface measured by SIMS
Boron atom count number at m depth Ci: Boron atom count number at 600 nm depth from fiber surface measured by SIMS The carbon fiber of the present invention can be any of acrylic type, pitch type, rayon type, etc., but has a compressive strength. Acrylic is preferred. Hereinafter, an example of the method for producing the carbon fiber of the present invention will be described for the case of acrylic.

【0033】アクリル系炭素繊維の前駆体繊維を構成す
るポリアクリロニトリルとしては、アクリロニトリル8
5%以上、アクリロニトリルと共重合可能な重合性不飽
和単量体を15%以下含む重合体であることが好まし
い。重合性不飽和単量体としては、アクリル酸、メタク
リル酸、イタコン酸およびそれらのアルカリ金属塩、ア
ンモニウム塩およびアルキルエステル類、アクリルアミ
ド、メタクリルアミドおよびそれらの誘導体、アリルス
ルホン酸、メタリルスルホン酸およびそれらの塩類また
はアルキルエステル類等をあげることができる。また、
不飽和カルボン酸等、耐炎化反応を促進する重合性不飽
和単量体を共重合することが好ましい。その共重合量は
0.1〜10重量%であることが好ましく、0.3〜5
重量%であることがより好ましく、0.5〜3重量%で
あることがさらに好ましい。
As the polyacrylonitrile constituting the precursor fiber of the acrylic carbon fiber, acrylonitrile 8
The polymer is preferably a polymer containing 5% or more and 15% or less of a polymerizable unsaturated monomer copolymerizable with acrylonitrile. As the polymerizable unsaturated monomer, acrylic acid, methacrylic acid, itaconic acid and their alkali metal salts, ammonium salts and alkyl esters, acrylamide, methacrylamide and their derivatives, allylsulfonic acid, methallylsulfonic acid and Examples thereof include salts and alkyl esters thereof. Also,
It is preferable to copolymerize a polymerizable unsaturated monomer such as an unsaturated carboxylic acid which promotes a flame-resistant reaction. The copolymerization amount is preferably from 0.1 to 10% by weight, and from 0.3 to 5% by weight.
%, More preferably 0.5 to 3% by weight.

【0034】不飽和カルボン酸の具体例としては、アク
リル酸、メタクリル酸、イタコン酸、クロトン酸、シト
ラコン酸、エタクリル酸、マレイン酸、メサコン酸等を
あげることができる。また、単糸内部への酸素透過性を
改善して大きな繊度の前駆体繊維を焼成するためには、
不飽和カルボン酸のアルキルエステル、酢酸ビニルから
選ばれた1種以上を共重合することが好ましい。その共
重合量は0.1〜10重量%であることが好ましく、
0.3〜5重量%であることがより好ましく、0.5〜
3重量%であることがさらに好ましい。
Specific examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, citraconic acid, ethacrylic acid, maleic acid, mesaconic acid and the like. In addition, in order to improve the oxygen permeability to the inside of the single yarn and bake the precursor fiber having a large fineness,
It is preferable to copolymerize at least one selected from alkyl esters of unsaturated carboxylic acids and vinyl acetate. The copolymerization amount is preferably 0.1 to 10% by weight,
It is more preferably 0.3 to 5% by weight, and 0.5 to 5% by weight.
More preferably, it is 3% by weight.

【0035】不飽和カルボン酸のアルキルエステルの具
体例としては、アクリル酸メチル、メタクリル酸メチ
ル、メタクリル酸プロピル、メタクリル酸ブチル、メタ
クリル酸イソブチル、メタクリル酸セカンダリーブチル
等を挙げることができるが、その中でもアクリル酸、メ
タクリル酸のプロピル、ブチル、イソブチル、セカンダ
リーブチルエステルが好ましい。
Specific examples of the alkyl ester of an unsaturated carboxylic acid include methyl acrylate, methyl methacrylate, propyl methacrylate, butyl methacrylate, isobutyl methacrylate, and secondary butyl methacrylate. Preferred are propyl, butyl, isobutyl and secondary butyl esters of acrylic acid and methacrylic acid.

【0036】重合方法としては、懸濁重合、溶液重合、
乳化重合など従来公知の方法を採用することができる。
重合度としては、極限粘度([η])で好ましくは1.
0以上、より好ましくは1.35以上、さらに好ましく
は1.7以上である。なお、[η]は5.0以下にする
のが紡糸安定性の点から一般的である。
The polymerization methods include suspension polymerization, solution polymerization,
A conventionally known method such as emulsion polymerization can be employed.
As the degree of polymerization, the intrinsic viscosity ([η]) is preferably 1.
It is 0 or more, more preferably 1.35 or more, and still more preferably 1.7 or more. [Η] is generally set to 5.0 or less from the viewpoint of spinning stability.

【0037】溶液紡糸の場合の溶媒は、有機、無機の公
知の溶媒を使用することができ、具体的にはジメチルス
ルホキシド、ジメチルホルムアミド、ジメチルアセトア
ミド、硝酸、ロダンソーダ水溶液および塩化亜鉛水溶液
などを溶媒とするポリマー溶液を紡糸原液とする。
As the solvent for solution spinning, known organic and inorganic solvents can be used. Specifically, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, nitric acid, an aqueous solution of rhoda soda, an aqueous solution of zinc chloride and the like are used as the solvent. The resulting polymer solution is used as a spinning dope.

【0038】重合体は公知の方法によって前駆体繊維と
することができる。紡糸は、直接凝固浴中へ紡出する湿
式紡糸法や、一旦空気中へ紡出した後に凝固へ導く乾湿
式紡糸法、あるいは乾式紡糸法、溶融紡糸によってもよ
いが、より好ましい断面形状と高い繊維物性が得られる
乾湿式紡糸が好ましい。紡糸に使用される口金の吐出孔
としては、得られる炭素繊維の横断面と同様な対称性を
持つ非円形であることが重要である。その非円形はθ=
360°/n(nは1から10までの整数)で規定され
る回転対称角度θを有するとともに、図心を通る対称面
を少なくとも一つ有するような非円形形状のものであ
る。より好ましい口金の実施態様としては1個の中心孔
とその外側の円周上の回転対称となる位置に複数個穿孔
してなる小孔群を1単位としてなる口金である。
The polymer can be made into a precursor fiber by a known method. Spinning may be performed by a wet spinning method of directly spinning into a coagulation bath, a dry-wet spinning method of once spinning into air and then leading to coagulation, or a dry spinning method or a melt spinning, but a more preferable cross-sectional shape and high Dry-wet spinning, which gives fiber properties, is preferred. It is important that the discharge hole of the spinneret used for spinning has a non-circular shape having the same symmetry as the cross section of the obtained carbon fiber. The non-circle is θ =
It has a rotationally symmetric angle θ defined by 360 ° / n (n is an integer from 1 to 10), and has at least one plane of symmetry passing through the centroid. A more preferable embodiment of the base is a base having a single hole and a group of small holes formed by drilling a plurality of holes at rotationally symmetric positions on the outer circumference of the center hole.

【0039】溶媒、可塑剤を使用する紡糸方法による時
には、紡出糸を直接浴中延伸してもよいし、また、水洗
して溶媒、可塑剤を除去した後に浴中延伸してもよい。
浴中延伸の条件は、通常、50〜98℃の延伸浴中で約
2〜6倍に延伸される。浴中延伸後の水膨潤糸条を乾燥
緻密化するに先だって単繊維間の接着を防止するための
油剤を付与する。油剤としては特に限定されないが、耐
熱性と離型性に優れたシリコーン系油剤が好ましい。油
剤と同時にホウ素化合物を付与することによってホウ素
を繊維内部に含浸することが好ましい。ホウ素化合物と
しては水溶性の化合物が好ましく、ホウ酸が取り扱いの
点で好ましく適用される。処理液のホウ酸濃度は炭素繊
維に転換後にホウ素を50〜5000ppm、より好ま
しくは100〜1000ppm含有するように調整す
る。前駆体繊維内のホウ素の存在分布は繊維表層部の濃
度が高く内層にかけて濃度が低下するような濃度勾配を
有することによって耐炎化時に単繊維の内外層の耐炎化
構造差減少して、より太繊度の前駆体繊維の焼成が可能
となるので好ましい。
In the spinning method using a solvent and a plasticizer, the spun yarn may be directly drawn in a bath, or may be washed with water to remove the solvent and the plasticizer and then drawn in the bath.
The conditions for stretching in a bath are usually about 2 to 6 times stretching in a stretching bath at 50 to 98 ° C. Prior to drying and densifying the water-swollen yarn after drawing in the bath, an oil agent for preventing adhesion between single fibers is applied. The oil agent is not particularly limited, but a silicone oil agent having excellent heat resistance and releasability is preferable. It is preferable to impregnate the fiber with boron by applying a boron compound simultaneously with the oil agent. As the boron compound, a water-soluble compound is preferable, and boric acid is preferably applied in terms of handling. The boric acid concentration of the treatment liquid is adjusted so as to contain 50 to 5000 ppm, more preferably 100 to 1000 ppm of boron after conversion into carbon fiber. The existence distribution of boron in the precursor fiber has a concentration gradient such that the concentration of the surface layer of the fiber is high and the concentration decreases toward the inner layer. Precursor fibers having a fineness can be baked, which is preferable.

【0040】油剤、ホウ素化合物を付与した膨潤糸条は
ホットドラムなどで乾燥することによって乾燥緻密化が
達成される。乾燥温度、時間などは適宜選択することが
できる。また、必要に応じて乾燥緻密化後の糸条をより
高温(たとえば加圧スチーム中)で延伸することもおこ
なわれ、これらによって、所定の繊度、配向度を有する
前駆体繊維とすることができる。
The swollen yarn to which the oil agent and the boron compound are applied is dried and densified by drying with a hot drum or the like. The drying temperature, time and the like can be appropriately selected. In addition, if necessary, the dried and densified yarn is drawn at a higher temperature (for example, in pressurized steam), so that a precursor fiber having a predetermined fineness and orientation can be obtained. .

【0041】本発明の大きな単糸繊度の炭素繊維を得る
には単糸繊度の大きな前駆体繊維を用いることが好まし
い。しかし、繊度が大きすぎると単糸の内外層の均一な
焼成が困難となるため、本発明においては、1.2〜
6.0デニールが好ましく、1.5〜4.0デニールが
より好ましい。
In order to obtain a carbon fiber having a large single-fiber fineness of the present invention, it is preferable to use a precursor fiber having a large single-fiber fineness. However, if the fineness is too large, it becomes difficult to uniformly bake the inner and outer layers of the single yarn.
6.0 denier is preferred, and 1.5 to 4.0 denier is more preferred.

【0042】かかる前駆体繊維を焼成することにより高
性能な炭素繊維とすることができる。耐炎化条件として
は、従来公知の方法を採用することができ、酸化性雰囲
気中200〜300℃の範囲で耐炎化糸の密度が1.2
5〜1.40g/cm3 に達するまで加熱処理するのが
好ましい。太径の前駆体繊維を耐炎化して炭化する場
合、耐炎化しすぎると炭化工程で毛羽が多発するので好
ましくない。
By firing such a precursor fiber, a high-performance carbon fiber can be obtained. As the oxidizing condition, a conventionally known method can be adopted, and the density of the oxidizing yarn is 1.2 in a range of 200 to 300 ° C. in an oxidizing atmosphere.
Heat treatment is preferably performed until the amount reaches 5 to 1.40 g / cm 3 . In the case where the large-diameter precursor fiber is flame-resistant and carbonized, excessive flame resistance is not preferred because fluffing occurs frequently in the carbonization step.

【0043】耐炎化の雰囲気については、公知の空気、
酸素、二酸化窒素、塩化水素などの酸化性雰囲気を使用
できるが、経済性の面から空気が好ましい。
Regarding the atmosphere for oxidization, known air,
An oxidizing atmosphere such as oxygen, nitrogen dioxide or hydrogen chloride can be used, but air is preferred from the viewpoint of economy.

【0044】耐炎化を完了した糸条は、従来公知の方法
で不活性雰囲気中炭化処理をおこなう。炭化温度として
は、得られる炭素繊維の物性から1000℃以上が好ま
しく、さらに必要に応じて2000℃以上の温度で黒鉛
化することができる。
The oxidized yarn is carbonized in an inert atmosphere by a conventionally known method. The carbonization temperature is preferably 1000 ° C. or higher in view of the physical properties of the obtained carbon fiber, and can be graphitized at a temperature of 2000 ° C. or higher if necessary.

【0045】そして、このようにして得られた炭素繊維
は、硫酸水溶液や硝酸水溶液からなる電解槽中で電解酸
化処理を施したり、気相または液相での酸化処理を施す
ことにより、後述する複合材料における炭素繊維とマト
リックス樹脂との親和性や接着性を向上させることがで
き好ましい。
The carbon fiber thus obtained is subjected to an electrolytic oxidation treatment in an electrolytic bath composed of a sulfuric acid aqueous solution or a nitric acid aqueous solution, or to an oxidation treatment in a gas phase or a liquid phase to be described later. It is preferable because the affinity and the adhesion between the carbon fiber and the matrix resin in the composite material can be improved.

【0046】表面処理は、気相酸化および電解酸化など
種々の表面処理方法が検討されているが、短時間で酸化
処理でき、酸化程度のコントロールが容易な電解酸化が
好ましい。電解処理の電解液としては酸性、アルカリ性
いずれも採用でき、酸性電解質としては水溶液中で酸性
を示すものであればよく、具体的には硫酸、硝酸、塩
酸、リン酸、ホウ酸、炭酸等の無機酸、酢酸、酪酸、シ
ュウ酸、アクリル酸、マレイン酸などの有機酸、硫酸ア
ンモニウム、硫酸水素アンモニウム等の塩が挙げられ
る。好ましくは強酸性を示す硫酸、硝酸がよい。アルカ
リ性電解液としては水溶液中でアルカリ性を示すもので
あればよく、具体的には水酸化ナトリウム、水酸化カリ
ウム、水酸化バリウムなどの水酸化物、アンモニア、炭
酸ナトリウム、炭酸水素ナトリウムなどの無機塩類、酢
酸ナトリウム、安息香酸ナトリウム等の有機塩類、さら
にこれらのカリウム塩、バリウム塩あるいは他の金属
塩、およびアンモニウム塩、水酸化テトラエチルアンモ
ニウムまたはヒドラジン等の有機化合物が挙げられる
が、好ましくは樹脂の硬化障害をおこすアルカリ金属を
含まない炭酸アンモニウム、炭酸水素アンモニウム、水
酸化テトラアルキルアンモニウム類などが好ましい。
Various surface treatment methods such as vapor phase oxidation and electrolytic oxidation have been studied for the surface treatment. Electrolytic oxidation, which can be oxidized in a short time and easily controls the degree of oxidation, is preferable. As the electrolytic solution for the electrolytic treatment, either acidic or alkaline can be adopted, and any acidic electrolyte may be used as long as it shows acidity in an aqueous solution, and specifically, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boric acid, carbonic acid, etc. Examples include inorganic acids, organic acids such as acetic acid, butyric acid, oxalic acid, acrylic acid, and maleic acid, and salts such as ammonium sulfate and ammonium hydrogen sulfate. Sulfuric acid and nitric acid which show strong acidity are preferred. Any alkaline electrolyte may be used as long as it shows alkalinity in an aqueous solution, and specifically, hydroxides such as sodium hydroxide, potassium hydroxide, and barium hydroxide, and inorganic salts such as ammonia, sodium carbonate, and sodium hydrogen carbonate. And organic salts such as sodium acetate, sodium benzoate, and the like, potassium salts, barium salts and other metal salts thereof, and ammonium salts, and organic compounds such as tetraethylammonium hydroxide or hydrazine. Ammonium carbonate, ammonium bicarbonate, tetraalkylammonium hydroxides and the like which do not contain alkali metals which cause obstacles are preferred.

【0047】電解液の濃度としては、0.01〜5モル
/l、好ましくは0.1〜1モル/lがよい。すなわ
ち、濃度が濃いほど電解処理電圧は下がるが、取り扱い
性および臭気が強くなり、環境が悪化するので、それら
から最適化することが好ましい。
The concentration of the electrolytic solution is 0.01 to 5 mol / l, preferably 0.1 to 1 mol / l. In other words, the higher the concentration, the lower the electrolytic treatment voltage, but the handleability and odor increase, and the environment deteriorates.

【0048】電解液温度としては0〜100℃、好まし
くは10〜40℃がよい。すなわち、温度が高いと臭気
が強くなり環境が悪化するため低温が好ましいので、運
転コストとの兼ね合いで最適化することが好ましい。
The temperature of the electrolyte is preferably from 0 to 100 ° C., and more preferably from 10 to 40 ° C. That is, if the temperature is high, the odor becomes strong and the environment deteriorates, so that a low temperature is preferable. Therefore, it is preferable to optimize the temperature in consideration of the operating cost.

【0049】電気量は被処理炭素繊維の炭化度に合わせ
て最適化することが好ましく、高弾性率糸はより大きな
電気量が必要である。表層の結晶性の低下を進ませ、生
産性を向上する一方、炭素繊維基質の強度低下を防ぐ観
点から、電解処理は小さい電気量で複数回処理を繰り返
すのが好ましい。具体的には、電解槽1槽あたりの通電
電気量は5クーロン/g・槽(炭素繊維1g、1槽あた
りの電気量)以上、100クーロン/g・槽以下が好ま
しく、より好ましくは10クーロン/g・槽以上、80
クーロン/g・槽以下、さらに好ましくは20クーロン
/g・槽以上、60クーロン/g・槽以下がよい。ま
た、表層の結晶性の低下を適度な範囲とする観点からは
通電処理の総電気量は5〜1000クーロン/g、さら
には10〜500クーロン/gの範囲とするのが好まし
い。
The amount of electricity is preferably optimized according to the degree of carbonization of the carbon fiber to be treated, and a high modulus yarn requires a larger amount of electricity. From the viewpoint of improving the productivity while improving the crystallinity of the surface layer and preventing the strength of the carbon fiber substrate from decreasing, it is preferable to repeat the electrolytic treatment a plurality of times with a small amount of electricity. Specifically, the amount of electricity supplied to one electrolytic cell is preferably 5 coulombs / g · tank (1 g of carbon fiber, the amount of electricity per cell) to 100 coulombs / g · tank, and more preferably 10 coulombs / g. / G · tank or more, 80
Coulomb / g · tank or less, more preferably 20 coulomb / g · tank or more and 60 coulomb / g · tank or less. In addition, from the viewpoint of reducing the crystallinity of the surface layer to an appropriate range, the total amount of electricity in the energization treatment is preferably in the range of 5 to 1000 coulombs / g, and more preferably in the range of 10 to 500 coulombs / g.

【0050】槽数としては2以上が好ましく、4以上が
より好ましい。設備コストの面から10槽以下が好まし
く、電気量、電圧、電流密度等から最適化することが好
ましい。
The number of tanks is preferably 2 or more, more preferably 4 or more. It is preferably 10 tanks or less from the viewpoint of equipment cost, and it is preferable to optimize from the quantity of electricity, voltage, current density and the like.

【0051】電解電圧は安全性の観点から25V以下、
さらには0.5〜20Vが好ましい。電解処理方式とし
てはバッチ式、連続式いずれでもよいが、生産性がよく
バラツキが小さくできる連続式が好ましい。通電方法と
しては、炭素繊維を電極ローラーに直接接触させて通電
する直接通電、あるいは炭素繊維と電極との間に電解液
等を介して通電する間接通電のいずれも採用することが
できるが、電解処理時の毛羽立ち、電気スパーク等が抑
えられる間接通電が好ましい。
The electrolysis voltage is 25 V or less from the viewpoint of safety.
Further, 0.5 to 20 V is preferable. Either a batch type or a continuous type may be used as the electrolytic treatment system, but a continuous type in which the productivity is high and the variation can be reduced is preferable. As the energization method, either direct energization in which the carbon fiber is brought into direct contact with the electrode roller and energization or indirect energization in which the carbon fiber and the electrode are energized through an electrolytic solution or the like can be employed. Indirect energization in which fluffing during processing, electric spark, and the like are suppressed is preferable.

【0052】また、電解処理方法は、電解槽を必要数並
べて1度通糸しても、1槽の電解槽に必要回数通糸して
もよい。電解槽の陽極長は5〜100mmが好ましく、
陰極長は300〜1000mm、さらには350〜90
0mmが好ましい。
In the electrolytic treatment method, the required number of electrolytic cells may be arranged and threaded once, or the thread may be threaded through one electrolytic cell as needed. The anode length of the electrolytic cell is preferably 5 to 100 mm,
The cathode length is 300 to 1000 mm, and moreover 350 to 90
0 mm is preferred.

【0053】電解処理または洗浄処理をおこなった後、
水洗および乾燥することが好ましい。この場合、乾燥温
度が高すぎると炭素繊維の再表面に存在する官能基が熱
分解によって消失しやすいため、できる限り低い温度で
乾燥することが望ましく、具体的には乾燥温度が250
℃以下、より好ましくは210℃以下で乾燥することが
好ましい。
After performing the electrolytic treatment or the cleaning treatment,
Washing and drying are preferred. In this case, if the drying temperature is too high, the functional groups existing on the resurface of the carbon fiber are easily lost by thermal decomposition. Therefore, it is desirable to dry at a temperature as low as possible.
It is preferable to dry at a temperature of not higher than 210 ° C, more preferably at not higher than 210 ° C.

【0054】さらに、必要に応じて従来公知の技術によ
りサイジング付与などをおこなうことができる。
Further, if necessary, sizing can be performed by a conventionally known technique.

【0055】次に、上記炭素繊維を用いた炭素繊維複合
材料について説明する。
Next, a carbon fiber composite material using the carbon fiber will be described.

【0056】上記本発明の製造方法例によってによって
得られた炭素繊維は、単繊維断面を真円を仮定した単繊
維断面半径rに対する炭素繊維の引張強度、引張弾性率
が従来になく高く、さらに一方向炭素繊維複合材料の0
゜曲げ強度が従来になく高い非常に優れたものになる。
The carbon fiber obtained by the above-described example of the production method of the present invention has an unprecedentedly high tensile strength and tensile modulus of the carbon fiber with respect to the radius r of the single fiber cross section assuming that the cross section of the single fiber is a perfect circle. 0 of unidirectional carbon fiber composite material
゜ Bending strength is unprecedented and extremely excellent.

【0057】本発明の炭素繊維複合材料に用いるマトリ
ックス樹脂としては、熱硬化性樹脂、熱可塑性樹脂のい
ずれであってもよく、たとえばエポキシ樹脂、フェノー
ル樹脂、ポリイミド樹脂ポリエステル樹脂、ポリアミド
樹脂等が挙げられる。
The matrix resin used for the carbon fiber composite material of the present invention may be any of a thermosetting resin and a thermoplastic resin, such as an epoxy resin, a phenol resin, a polyimide resin, a polyester resin, and a polyamide resin. Can be

【0058】本発明の炭素繊維複合材料は、プリプレグ
やシートモールディングコンパウンド(SMC)、ある
いはチョップトファイバー等に一旦加工した後にハンド
レイアップ法、プレス成型法、オートクレーブ法により
製造することができる。また、プルトルージョン法、フ
ィラメントワインディング法等により成型することもで
きる。
The carbon fiber composite material of the present invention can be manufactured by a hand lay-up method, a press molding method, or an autoclave method after once processing into a prepreg, a sheet molding compound (SMC), a chopped fiber or the like. Also, it can be molded by a pultrusion method, a filament winding method, or the like.

【0059】[0059]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。
The present invention will be described more specifically with reference to the following examples.

【0060】なお、本発明における炭素繊維の引張強
度、弾性率は次に示す樹脂含浸ストランド法により求め
た。
The tensile strength and elastic modulus of the carbon fiber in the present invention were determined by the following resin impregnated strand method.

【0061】“ベークライト”ERL−4221(登録
商標、ユニオン・カーバイド(株)製)/三フッ化ホウ
素モノエチルアミン(BF3 ・MEA)/アセトン=1
00/3/4部を炭素繊維に含浸し、得られた樹脂含浸
ストランドを130℃で30分間加熱して硬化させ、J
IS−R−7601に規定する樹脂含浸ストランド試験
法に従って測定した。
"Bakelite" ERL-4221 (registered trademark, manufactured by Union Carbide Co., Ltd.) / Boron trifluoride monoethylamine (BF 3 .MEA) / acetone = 1
00/3/4 part is impregnated with carbon fiber, and the obtained resin-impregnated strand is cured by heating at 130 ° C. for 30 minutes.
It was measured according to the resin-impregnated strand test method specified in IS-R-7601.

【0062】単繊維断面の変形度Dは破断端面をSEM
で1000〜5000倍の写真を撮影して形状の観察と
内接円半径R1と内接円半径R2をn=10本測定した
平均値のR1/R2の比から求めた。測定例を図2に示
した。
The degree of deformation D of the cross section of the single fiber was determined by SEM
The photograph was taken at a magnification of 1000 to 5000 times, the shape was observed, and the inscribed circle radius R1 and the inscribed circle radius R2 were determined from the ratio of the average value R1 / R2 obtained by measuring n = 10 pieces. An example of the measurement is shown in FIG.

【0063】また、一方向炭素繊維複合材料の0°引張
強度は次に示す方法により測定した。
The 0 ° tensile strength of the unidirectional carbon fiber composite material was measured by the following method.

【0064】炭素繊維を一方向に引き揃え、東レ(株)
製#2500樹脂をコーティングした樹脂フィルムで両
側からはさんでから加圧ローラーで樹脂を炭素繊維に含
浸し、プリプレグシートを作成する。このシートを繊維
軸を揃えて積層し、オートクレーブを用いて温度130
℃、圧力6kgf/cm2 で2時間処理して樹脂を硬化
させ、厚さ約1mmの平板を作成する。この平板をダイ
ヤモンドカッターを用いて切断し、繊維軸方向に長さ2
90mm、繊維軸と直角方向に幅12.7mmからなる
試験片を作成する。試験片の中央部180mmを残して
両端の両側に炭素繊維とエポキシ樹脂からなる厚さ約1
mmのコンポジット製タブを接着して、引張強度測定用
の試験片とする。後はASTM−D3039に規定する
試験方法に従って測定した。
The carbon fibers are aligned in one direction, and Toray Industries, Inc.
A resin film coated with # 2500 resin is sandwiched from both sides, and then the resin is impregnated into carbon fibers with a pressure roller to prepare a prepreg sheet. The sheets were laminated with their fiber axes aligned, and heated to 130 ° C using an autoclave.
The resin is cured by treating at a temperature of 6 ° C. and a pressure of 6 kgf / cm 2 for 2 hours to produce a flat plate having a thickness of about 1 mm. This flat plate is cut using a diamond cutter and has a length of 2 mm in the fiber axis direction.
A test piece having a width of 90 mm and a width of 12.7 mm perpendicular to the fiber axis is prepared. Approximately 1 thickness of carbon fiber and epoxy resin on both sides of both ends except 180mm at the center of the test piece
A composite tab having a thickness of 1 mm is bonded to form a test piece for measuring tensile strength. Thereafter, the measurement was performed according to the test method specified in ASTM-D3039.

【0065】また、一方向炭素繊維複合材料の0°曲げ
強度は次に示す方法により測定した。
The 0 ° bending strength of the unidirectional carbon fiber composite material was measured by the following method.

【0066】炭素繊維を一方向に引き揃え、東レ(株)
製#2500樹脂をコーティングした樹脂フィルムで両
側からはさんでから加圧ローラーで樹脂を炭素繊維に含
浸し、プリプレグシートを作成する。このシートを繊維
軸を揃えて積層し、オートクレーブを用いて温度130
℃、圧力6kgf/cm2 で2時間処理して樹脂を硬化
させ、厚さ約2mmの平板を作成する。この平板をダイ
ヤモンドカッターを用いて切断し、繊維軸方向に長さ1
00mm、繊維軸と直角方向に幅12.7mmからなる
試験片を作成して、曲げ強度測定用の試験片とする。後
はASTM−D790に規定する試験方法に従って測定
した。
The carbon fibers are aligned in one direction, and Toray Industries, Inc.
A resin film coated with # 2500 resin is sandwiched from both sides, and then the resin is impregnated into carbon fibers with a pressure roller to prepare a prepreg sheet. The sheets were laminated with their fiber axes aligned, and heated to 130 ° C using an autoclave.
The resin was cured by treating at a temperature of 6 ° C. and a pressure of 6 kgf / cm 2 for 2 hours to produce a flat plate having a thickness of about 2 mm. This flat plate is cut using a diamond cutter, and a length of 1
A test piece having a width of 1 mm and a width of 12.7 mm in a direction perpendicular to the fiber axis is prepared as a test piece for measuring bending strength. Thereafter, the measurement was performed according to the test method specified in ASTM-D790.

【0067】ホウ素含有量は次の方法で求めた。The boron content was determined by the following method.

【0068】試料をテフロン製密閉容器にとり、硫酸次
いで硝酸で加熱酸分解した後、定容として、ICP発光
分析装置として、セイコー電子工業製シーケンシャル型
ICP SPS1200−VRを用いて測定した。
A sample was placed in a Teflon sealed container, and subjected to acid decomposition by heating with sulfuric acid and then with nitric acid. The volume was measured as a constant volume using a sequential ICP SPS1200-VR manufactured by Seiko Instruments Inc. as an ICP emission spectrometer.

【0069】単繊維断面半径方向のホウ素の濃度分布は
二次イオン質量分析計(SIMS)によって測定し、繊
維表層部/内層部の濃度比Cを求めた。
The concentration distribution of boron in the radial direction of the cross section of a single fiber was measured by a secondary ion mass spectrometer (SIMS), and the concentration ratio C of the surface layer portion / inner layer portion of the fiber was determined.

【0070】C=C0 /Ci ただし、C0 :SIMSで測定した繊維表面から25n
m深さのホウ素原子カウント数 Ci :SIMSで測定した繊維表面から600nm深さ
のホウ素原子カウント数 装置:ドイツATOMIKA社製 A−DIDA3000 一次イオン :O2 + 一次イオンエネルギ− :12keV 一次イオン電流 :100nA ラスター領域 :250×250μm ゲート率 :30% 分析領域 :75×75μm 検出二次イオン :正イオン 電子スプレー条件 :0.6kV−3.0A(F7.5) 測定時真空度 :1×10-8Toor H−Q−H :#14 [実施例1]ジメチルスルホキシドを溶媒とする溶液重
合法により、アクリロニトリル96重量%、イタコン酸
1重量%とメタクリル酸イソブチル3重量%とからなる
[η]が1.70、重合体濃度20%の紡糸原液を得
た。これを直径0.12mmの円形孔を3000個有す
る口金を通じて一旦空気中に吐出して約3mmの空間部
分を走行させた後、10℃のジメチルスルホキシド30
%水溶液中で凝固させ、凝固糸条を水洗後、4倍まで浴
延伸し、アミノ変性シリコン油剤(アミノ変性量0.8
%)とホウ酸を3:1の割合で調整した工程油剤を付与
した後、表面温度が150℃のホットドラムで乾燥緻密
化した。さらに、加圧スチーム中で3.0倍まで延伸し
て単糸繊度1.5d、総繊度6000Dの前駆体繊維を
得た。
C = C0 / Ci where C0: 25 n from the fiber surface measured by SIMS
Boron atom count number at m depth Ci: Boron atom count number at 600 nm depth from fiber surface measured by SIMS Device: A-DIDA3000 manufactured by ATOMIKA, Germany Primary ion: O 2 + Primary ion energy: 12 keV Primary ion current: 100 nA Raster area: 250 × 250 μm Gate ratio: 30% Analysis area: 75 × 75 μm Detection secondary ion: positive ion Electrospray conditions: 0.6 kV-3.0 A (F7.5) Measurement vacuum degree: 1 × 10 − 8 Toor HQH: # 14 [Example 1] [η] consisting of 96% by weight of acrylonitrile, 1% by weight of itaconic acid and 3% by weight of isobutyl methacrylate was obtained by a solution polymerization method using dimethyl sulfoxide as a solvent. 1.70 A spinning dope having a polymer concentration of 20% was obtained. This was once discharged into the air through a die having 3,000 circular holes having a diameter of 0.12 mm to travel through a space of about 3 mm, and then dimethylsulfoxide 30 at 10 ° C.
% Aqueous solution, the coagulated yarn was washed with water, and then stretched in a bath up to 4 times, to give an amino-modified silicone oil (amino-modified amount 0.8
%) And boric acid at a ratio of 3: 1 were applied, and then dried and densified with a hot drum having a surface temperature of 150 ° C. Further, it was stretched to 3.0 times in pressurized steam to obtain a precursor fiber having a single yarn fineness of 1.5d and a total fineness of 6000D.

【0071】得られた前駆体繊維を240〜260℃の
空気中で、延伸比0.87で加熱して密度1.31g/
cm3 の耐炎化糸を得た。該耐炎化糸を窒素雰囲気中で
最高温度800℃の前炭化炉、次いで最高温度1500
℃の炭化炉で炭化処理した。炭化処理時の延伸比は0.
96とした。
The obtained precursor fiber was heated at a draw ratio of 0.87 in air at 240 to 260 ° C. to obtain a density of 1.31 g /
The flame-resistant yarn of cm 3 was obtained. The flame-resistant yarn is pre-carbonized in a nitrogen atmosphere at a maximum temperature of 800 ° C., and then at a maximum temperature of 1500.
The carbonization was performed in a carbonization furnace at a temperature of ° C. The stretching ratio at the time of carbonization treatment is 0.1.
96.

【0072】続いて濃度0.1モル/lの硫酸水溶液を
電解液として、10クーロン/gで電解表面処理、水洗
し、150℃の加熱空気中で乾燥した。このようにして
得られた円形断面の炭素繊維の物性を表1に示す。
Subsequently, an aqueous solution of sulfuric acid having a concentration of 0.1 mol / l was used as an electrolytic solution and subjected to electrolytic surface treatment at 10 coulomb / g, washed with water, and dried in heated air at 150 ° C. Table 1 shows the physical properties of the thus obtained carbon fiber having a circular cross section.

【0073】[実施例2]直径0.05mmの中心孔と
その外側の円周上の回転対称角度を120゜とする位置
に穿孔された直径0.065mmの外周孔3個からなる
小孔群を3000個有する口金を用いて、工程油剤とし
てアミノ変性シリコンを用いた以外は実施例1と同様に
して三葉形断面の炭素繊維を得た。物性を表1に示す。
[Example 2] A small hole group consisting of a center hole having a diameter of 0.05 mm and three outer holes having a diameter of 0.065 mm drilled at a position where the rotational symmetry angle on the outer circumference is 120 °. And a trilobe-shaped carbon fiber was obtained in the same manner as in Example 1 except that amino-modified silicon was used as a process oil using a base having 3,000 pieces of styrene. Table 1 shows the physical properties.

【0074】[実施例3]工程油剤としてアミノ変性シ
リコンとホウ酸の混合割合を3:2とし、前駆体繊維の
繊度を2.0dとした以外は実施例1と同様にして円形
断面の炭素繊維を得た。物性を表1に示す。
[Example 3] A carbon oil having a circular cross section was prepared in the same manner as in Example 1 except that the mixing ratio of amino-modified silicon and boric acid was 3: 2 and the fineness of the precursor fiber was 2.0 d as an oil agent. Fiber was obtained. Table 1 shows the physical properties.

【0075】[実施例4]工程油剤としてアミノ変性シ
リコンとホウ酸の混合割合を3:1とした以外は実施例
3と同様にして円形断面の炭素繊維を得た。物性を表1
に示す。
Example 4 A carbon fiber having a circular cross section was obtained in the same manner as in Example 3 except that the mixing ratio of amino-modified silicon and boric acid was changed to 3: 1 as the process oil. Table 1 shows physical properties
Shown in

【0076】[比較例1]工程油剤としてアミノ変性シ
リコン(ホウ酸混合なし)を用い、前駆体繊維の繊度を
0.5dとした以外は実施例1と同様にして円形断面の
炭素繊維を得た。物性を表1に示す。
Comparative Example 1 A carbon fiber having a circular cross section was obtained in the same manner as in Example 1 except that amino-modified silicon (no boric acid was mixed) was used as the process oil and the fineness of the precursor fiber was changed to 0.5 d. Was. Table 1 shows the physical properties.

【0077】[比較例2]前駆体繊維の繊度を1.0d
とした以外は比較例2と同様にして円形断面の炭素繊維
を得た。物性を表1に示す。
[Comparative Example 2] The fineness of the precursor fiber was 1.0 d
A carbon fiber having a circular cross section was obtained in the same manner as in Comparative Example 2 except that the above conditions were satisfied. Table 1 shows the physical properties.

【0078】[比較例3]直径0.05mmの中心孔と
その外側の円周上の回転対称角度を120゜とする位置
に穿孔された直径0.065mmの外周孔3個からなる
小孔群を3000個有する口金を用いた以外は実施例2
と同様にして三葉形断面の炭素繊維を得た。物性を表1
に示す。
[Comparative Example 3] A group of small holes consisting of a center hole having a diameter of 0.05 mm and three outer holes having a diameter of 0.065 mm drilled at a position where the rotational symmetry angle on the outer circumference is 120 °. Example 2 except that a base having 3000 pieces was used.
In the same manner as in the above, a carbon fiber having a trilobe-shaped cross section was obtained. Table 1 shows physical properties
Shown in

【0079】[比較例4]前駆体繊維の繊度を1.5d
とした以外は実施例2と同様にして円形断面の炭素繊維
を得た。物性を表1に示す。
[Comparative Example 4] The fineness of the precursor fiber was 1.5 d
A carbon fiber having a circular cross section was obtained in the same manner as in Example 2 except that the above conditions were satisfied. Table 1 shows the physical properties.

【0080】[実施例5]直径0.05mmの中心孔と
その外側の円周上の回転対称角度を120゜とする位置
に穿孔された直径0.065mmの外周孔3個からなる
小孔群を3000個有する口金を用いた以外は実施例3
と同様にして三葉形断面の炭素繊維を得た。物性を表1
に示す。
Fifth Embodiment A small hole group consisting of a center hole having a diameter of 0.05 mm and three outer holes having a diameter of 0.065 mm drilled at a position where the rotational symmetry angle on the outer circumference is 120 °. Example 3 except that a base having 3000 pieces was used.
In the same manner as in the above, a carbon fiber having a trilobal section was obtained. Table 1 shows physical properties
Shown in

【0081】[実施例6]工程油剤としてアミノ変性シ
リコンとホウ酸の混合割合を3:1とした以外は実施例
5と同様にして三葉形断面の炭素繊維を得た。物性を表
1に示す。
Example 6 A carbon fiber having a trilobal cross section was obtained in the same manner as in Example 5, except that the mixing ratio of amino-modified silicon and boric acid was changed to 3: 1 as an oil agent. Table 1 shows the physical properties.

【0082】[実施例7]工程油剤としてアミノ変性シ
リコンとホウ酸の混合割合を4:1とした以外は実施例
5と同様にして三葉形断面の炭素繊維を得た。物性を表
1に示す。
Example 7 A carbon fiber having a trilobal cross section was obtained in the same manner as in Example 5 except that the mixing ratio of amino-modified silicon and boric acid was changed to 4: 1 as an oil agent. Table 1 shows the physical properties.

【0083】[実施例8]炭化温度を1700℃とし、
電解表面処理を15ク−ロン/gとした以外は実施例6
と同様にして三葉形断面の炭素繊維を得た。物性を表1
に示す。
Example 8 The carbonization temperature was 1700 ° C.
Example 6 except that the electrolytic surface treatment was changed to 15-cron / g.
In the same manner as in the above, a carbon fiber having a trilobe-shaped cross section was obtained. Table 1 shows physical properties
Shown in

【0084】[実施例9]実施例8で得た電解表面処理
前の炭素繊維を最高温度が2000℃の黒鉛化炉で延伸
比1.02で焼成し、20ク−ロン/gの電解表面処理
を施して三葉形断面の炭素繊維を得た。物性を表1に示
す。
Example 9 The carbon fiber obtained in Example 8 before the electrolytic surface treatment was fired in a graphitization furnace having a maximum temperature of 2000 ° C. at a draw ratio of 1.02 to obtain an electrolytic surface of 20-cron / g. By performing the treatment, a carbon fiber having a trilobal cross section was obtained. Table 1 shows the physical properties.

【0085】[実施例10]実施例8で得た電解表面処
理前の炭素繊維を最高温度が2400℃の黒鉛化炉で延
伸比1.05で焼成し、40ク−ロン/gの電解表面処
理を施して三葉形断面の炭素繊維を得た。物性を表1に
示す。
[Example 10] The carbon fiber before the electrolytic surface treatment obtained in Example 8 was fired in a graphitization furnace having a maximum temperature of 2400 ° C at a draw ratio of 1.05, and the electrolytic surface of 40-cron / g was obtained. By performing the treatment, a carbon fiber having a trilobal cross section was obtained. Table 1 shows the physical properties.

【0086】[実施例11]直径0.07mmの中心孔
とその外側の円周上の回転対称角度を120゜とする位
置に穿孔された直径0.10mmの外周孔3個からなる
小孔群を3000個有する口金を用いて前駆体繊維の繊
度を3.0dとした以外は実施例6と同様にして三葉形
断面の炭素繊維を得た。物性を表1に示す。
[Embodiment 11] A small hole group consisting of a central hole having a diameter of 0.07 mm and three outer peripheral holes having a diameter of 0.10 mm drilled at a position where the rotational symmetry angle on the outer circumference is 120 °. Carbon fiber having a trilobal cross section was obtained in the same manner as in Example 6, except that the fineness of the precursor fiber was set to 3.0 d using a die having 3,000 pieces of carbon fiber. Table 1 shows the physical properties.

【0087】[実施例12]工程油剤としてアミノ変性
シリコンとホウ酸の混合割合を3:2とし、前駆体繊維
の繊度を4.0dとした以外は実施例11と同様にして
三葉形断面の炭素繊維を得た。物性を表1に示す。
Example 12 A three-lobed cross section was prepared in the same manner as in Example 11 except that the mixing ratio of amino-modified silicon and boric acid was 3: 2 and the fineness of the precursor fiber was 4.0 d as the process oil. Was obtained. Table 1 shows the physical properties.

【0088】[実施例13]前駆体繊維の繊度を6.0
dとした以外は実施例12と同様にして三葉形断面の炭
素繊維を得た。物性を表1に示す。
Example 13 The fineness of the precursor fiber was 6.0.
A carbon fiber having a trilobe-shaped cross section was obtained in the same manner as in Example 12, except that d was used. Table 1 shows the physical properties.

【0089】[比較例5]前駆体繊維の繊度を7.0d
とした以外は実施例12と同様にして三葉形断面の炭素
繊維を得た。物性を表1に示す。
Comparative Example 5 The fineness of the precursor fiber was 7.0 d.
A carbon fiber having a trilobal cross section was obtained in the same manner as in Example 12 except that the above conditions were adopted. Table 1 shows the physical properties.

【0090】[0090]

【表1】 [Table 1]

【0091】[0091]

【発明の効果】以上説明したように、本発明の炭素繊維
および炭素繊維強化複合材料においては、特定の太径の
横断面を有する炭素繊維としたため、圧縮系の基本特性
を向上することができ、構造材料として好適な複合材料
を提供することができる。
As described above, in the carbon fiber and the carbon fiber reinforced composite material of the present invention, since the carbon fiber has a specific large diameter cross section, the basic characteristics of the compression system can be improved. Thus, a composite material suitable as a structural material can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)ないし(C)、および(a)ないし
(c)は、実施例および比較例で用いた口金の紡出孔形
状と得られる炭素繊維の横断面の形状例を示す横断面図
である。
1 (A) to 1 (C) and 1 (a) to 1 (c) are cross-sectional views showing examples of the shape of a spun hole of a die used in Examples and Comparative Examples and a cross-sectional shape of a carbon fiber obtained. FIG.

【図2】炭素繊維横断面の変形度Dの定義を説明するた
めの説明図である。
FIG. 2 is an explanatory diagram for explaining a definition of a degree of deformation D of a carbon fiber cross section.

【符号の説明】[Explanation of symbols]

R1:外接円半径 R2:内接円半径 R1: radius of circumscribed circle R2: radius of inscribed circle

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29K 105:06 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI B29K 105: 06

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】繊維断面形状を真円と仮定した単繊維断面
半径r(μm)と引張弾性率YM(GPa)が下記式1
を満足することを特徴とする炭素繊維。 YM>480−46.2r −−−−−− 式1
A single fiber section radius r (μm) and a tensile modulus of elasticity YM (GPa), assuming that the fiber section shape is a perfect circle, are expressed by the following formula (1).
A carbon fiber characterized by satisfying the following. YM> 480-46.2r --------- Formula 1
【請求項2】繊維断面形状を真円と仮定した単繊維断面
半径r(μm)と引張強度TS(GPa)が下記式2を
満足することを特徴とする炭素繊維。 TS>9.18−1.02r −−−−−− 式2
2. A carbon fiber characterized in that a single fiber cross-sectional radius r (μm) and a tensile strength TS (GPa) satisfying the following formula 2 assuming that the fiber cross-sectional shape is a perfect circle. TS> 9.18-1.02r Formula 2
【請求項3】一方向炭素繊維複合材料の0°曲げ強度
が、0°引張強度の75%以上であることを特徴とする
請求項1または請求項2記載の炭素繊維。
3. The carbon fiber according to claim 1, wherein the 0 ° bending strength of the unidirectional carbon fiber composite material is 75% or more of the 0 ° tensile strength.
【請求項4】一方向炭素繊維複合材料の0°曲げ強度が
2GPa以上であることを特徴とする請求項1ないし請
求項3のいずれかに記載の炭素繊維。
4. The carbon fiber according to claim 1, wherein the unidirectional carbon fiber composite material has a 0 ° bending strength of 2 GPa or more.
【請求項5】炭素繊維の引張弾性率YM(GPa)と一
方向炭素繊維複合材料の0゜曲げ強度BS(MPa)が
下記式3を満足することを特徴とする請求項1ないし請
求項4のいずれかに記載の炭素繊維。 BS≧2270−1.87YM −−−−−− 式3
5. The method according to claim 1, wherein the tensile modulus YM (GPa) of the carbon fiber and the 0 ° bending strength BS (MPa) of the unidirectional carbon fiber composite material satisfy the following expression (3). The carbon fiber according to any one of the above. BS ≧ 2270-1.87YM −−−−− Formula 3
【請求項6】繊維断面形状を真円と仮定した単繊維断面
半径が4〜10μmであることを特徴とする請求項1な
いし請求項5のいずれかに記載の炭素繊維。
6. The carbon fiber according to claim 1, wherein the single fiber has a cross-sectional radius of 4 to 10 μm assuming that the fiber cross-sectional shape is a perfect circle.
【請求項7】繊維横断面形状がその図心を通る対称面を
少なくとも一つ有すると共に、θ=360°/n(nは
1から10までの整数)で規定される回転対称角度θを
有する非円形状であることを特徴とする請求項1ないし
請求項6のいずれかに記載の炭素繊維。
7. The fiber cross-sectional shape has at least one plane of symmetry passing through its centroid, and has a rotational symmetry angle θ defined by θ = 360 ° / n (n is an integer from 1 to 10). The carbon fiber according to any one of claims 1 to 6, wherein the carbon fiber has a non-circular shape.
【請求項8】単繊維の横断面形状が3〜5葉の多葉形で
あり、それぞれの葉がその付け根から先端に向かって一
旦膨らみを有し、実質的に複数個の円が接合した形から
なり、かつ、該横断面における外接円半径R1と内接円
半径R2との比(R1/R2)で定義される変形度Dが
1.5〜3であることを特徴とする請求項1ないし請求
項7のいずれかに記載の炭素繊維。
8. The single fiber has a multi-lobed shape of 3 to 5 leaves in cross section, each leaf has a swelling from its root to its tip, and substantially a plurality of circles are joined. A deformation degree D defined by a ratio (R1 / R2) of a circumscribed circle radius R1 and an inscribed circle radius R2 in the cross section is 1.5 to 3. The carbon fiber according to any one of claims 1 to 7.
【請求項9】ホウ素を50〜5000ppm含有するこ
とを特徴とする請求項1ないし請求項8のいずれかに記
載の炭素繊維。
9. The carbon fiber according to claim 1, comprising 50 to 5000 ppm of boron.
【請求項10】単繊維の表層部にホウ素の最大濃度部を
有し、下記式4で定義する表層と内層の濃度比Cが5〜
1000であることを特徴とする請求項1ないし請求項
9のいずれかに記載の炭素繊維。 C=C0 /Ci −−−−−− 式4 ただし、C0 :SIMSで測定した繊維表面から25n
m深さのホウ素原子カウント数 Ci :SIMSで測定した繊維表面から600nm深さ
のホウ素原子カウント数
10. The single fiber has a maximum concentration portion of boron in the surface layer portion thereof, and the concentration ratio C between the surface layer and the inner layer defined by the following formula 4 is 5 to 5.
The carbon fiber according to any one of claims 1 to 9, wherein the number is 1,000. C = C0 / Ci Formula 4 where C0: 25 n from the fiber surface measured by SIMS
Boron atom count number at m depth Ci: Boron atom count number at 600 nm depth from fiber surface measured by SIMS
【請求項11】請求項1ないし請求項10のいずれかに
記載の炭素繊維からなることを特徴とする炭素繊維強化
複合材料。
11. A carbon fiber reinforced composite material comprising the carbon fiber according to any one of claims 1 to 10.
JP28722897A 1997-10-20 1997-10-20 Carbon fiber and carbon fiber-reinforced composite material Pending JPH11124743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28722897A JPH11124743A (en) 1997-10-20 1997-10-20 Carbon fiber and carbon fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28722897A JPH11124743A (en) 1997-10-20 1997-10-20 Carbon fiber and carbon fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JPH11124743A true JPH11124743A (en) 1999-05-11

Family

ID=17714705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28722897A Pending JPH11124743A (en) 1997-10-20 1997-10-20 Carbon fiber and carbon fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JPH11124743A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050171A1 (en) 2010-10-13 2012-04-19 三菱レイヨン株式会社 Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
EP2840172A1 (en) 2012-04-18 2015-02-25 Mitsubishi Rayon Co., Ltd. Carbon fiber bundle and method of producing carbon fibers
JP2016125172A (en) * 2015-01-07 2016-07-11 東レ株式会社 Carbon fiber bundle and manufacturing method therefor
US10017881B2 (en) 2011-07-22 2018-07-10 Mitsubishi Chemical Corporation Polyacrylonitrile-based copolymer, polyacrylonitrile-based precursor fiber for carbon fiber, carbon fiber bundles, process for producing stabilized fiber bundles, and process for producing carbon fiber bundles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050171A1 (en) 2010-10-13 2012-04-19 三菱レイヨン株式会社 Carbon-fiber-precursor fiber bundle, carbon fiber bundle, and uses thereof
US10017881B2 (en) 2011-07-22 2018-07-10 Mitsubishi Chemical Corporation Polyacrylonitrile-based copolymer, polyacrylonitrile-based precursor fiber for carbon fiber, carbon fiber bundles, process for producing stabilized fiber bundles, and process for producing carbon fiber bundles
EP2840172A1 (en) 2012-04-18 2015-02-25 Mitsubishi Rayon Co., Ltd. Carbon fiber bundle and method of producing carbon fibers
US9873777B2 (en) 2012-04-18 2018-01-23 Mitsubishi Chemical Corporation Carbon fiber bundle and method of producing carbon fibers
EP3572564A1 (en) * 2012-04-18 2019-11-27 Mitsubishi Chemical Corporation Carbon fiber bundle and method of producing carbon fibers
JP2016125172A (en) * 2015-01-07 2016-07-11 東レ株式会社 Carbon fiber bundle and manufacturing method therefor

Similar Documents

Publication Publication Date Title
KR101335140B1 (en) Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
JP4617940B2 (en) Polyacrylonitrile-based polymer for carbon fiber precursor fiber, carbon fiber precursor fiber, and method for producing carbon fiber
JP5434187B2 (en) Polyacrylonitrile-based continuous carbon fiber bundle and method for producing the same
CN111793857A (en) Carbon fiber surface treatment method
JP2530767B2 (en) Carbon fiber and manufacturing method thereof
KR0156870B1 (en) Noncircular cross-section carbon fibers, process for producing the same and composite containing them
JP2005133274A (en) Carbon fiber and composite material containing the same
JP2003073932A (en) Carbon fiber
JPH11124743A (en) Carbon fiber and carbon fiber-reinforced composite material
JP2892127B2 (en) Non-circular cross-section carbon fiber, method for producing the same, and carbon fiber composite material
JP2000160436A (en) Carbon fiber, and production of precursor for carbon fiber
JP2002266173A (en) Carbon fiber and carbon fiber-reinforced composite material
JP2004238761A (en) Carbon fiber strand and fiber-reinforced composite material
WO2015133514A1 (en) Carbon fibres, and production method therefor
JPH086210B2 (en) High-strength and high-modulus carbon fiber and method for producing the same
JP4875238B2 (en) Method for producing carbon fiber and precursor thereof, and method for attaching oil agent
JPH11152626A (en) Carbon fiber and its production
JPH08296124A (en) Non-circular cross section carbon fiber and carbon fiber-reinforced composite material
JP5226238B2 (en) Carbon fiber and composite material using the same
JP2002266172A (en) Carbon fiber, precursor fiber for carbon fiber, method for manufacturing these fibers and prepreg
JPS60239521A (en) Acryl-based carbon fiber bundle exhibiting excellent composite property, and its manufacture
WO2019146487A1 (en) Flame-retardant fiber bundle and method for manufacturing carbon fiber bundle
JP2005314830A (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same