JPH1069900A - Pole plate for lead-acid battery - Google Patents

Pole plate for lead-acid battery

Info

Publication number
JPH1069900A
JPH1069900A JP8226242A JP22624296A JPH1069900A JP H1069900 A JPH1069900 A JP H1069900A JP 8226242 A JP8226242 A JP 8226242A JP 22624296 A JP22624296 A JP 22624296A JP H1069900 A JPH1069900 A JP H1069900A
Authority
JP
Japan
Prior art keywords
lead
region
pore
electrode plate
pole plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8226242A
Other languages
Japanese (ja)
Other versions
JP3468492B2 (en
Inventor
Takeshi Hatanaka
剛 畑中
Katsuhiro Takahashi
勝弘 高橋
Yoshiaki Nitta
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22624296A priority Critical patent/JP3468492B2/en
Publication of JPH1069900A publication Critical patent/JPH1069900A/en
Application granted granted Critical
Publication of JP3468492B2 publication Critical patent/JP3468492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance a high-efficiency discharge characteristic and at the same time to control a decrease in life due to an increase in the number of pores to provide a pole plate that provides a balanced, high-performance lead-acid battery by optimizing the porous structure of the pole plate. SOLUTION: 2wt.% sodium sulfate powders are added to lead powders containing 25% metal lead and 75% lead monoxide in a weight ratio and having an oxidation rate of 75%, which are classified to a particle diameter range of 30±10μm as raw materials for positive and negative electrodes. In addition to them, an active-material mixture is prepared for the negative electrode by adding 2wt.% barium sulfate, 1wt.%, carbon powders, and 0.5wt.% lignin. To the mixture, 10wt.% water and 15wt.%, dilute sulfuric acid are added and they are kneaded and pasted, are packed into a cast grating made of a lead-calcium alloy, are aged at high temperature and high humidity, and formed to fabricate positive and negative plates.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池用極板の
改良に関するものであり、特に高出力充放電特性に優れ
た長寿命の鉛蓄電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an electrode plate for a lead storage battery, and more particularly to a long life lead storage battery excellent in high output charge / discharge characteristics.

【0002】[0002]

【従来の技術】鉛蓄電池は、二次電池として比較的安価
で安定な性能を有しているため、自動車用をはじめとし
て、近年ではポータブル機器用の電源やコンピュータの
バックアップ用にも広く普及してきた。さらに最近で
は、電気自動車の主力電源としてだけでなく、起動電源
や回生電流の回収用としても新しく機能が見直されてい
る。これらの用途では、とりわけ高出力性と共に寿命の
安定化の両立が重要な課題となっている。
2. Description of the Related Art Lead-acid batteries are relatively inexpensive and have stable performance as secondary batteries, and therefore have become widespread in recent years, not only for automobiles but also for power supplies for portable devices and for backup of computers. Was. More recently, new functions have been reviewed not only as a main power source for electric vehicles, but also as a starting power source and for recovering regenerative current. In these applications, it is particularly important to achieve both high output power and stable life.

【0003】高率放電特性は、電解液の活物質への供給
に支配されるところが大きい。鉛蓄電池では、放電反応
により正極、負極とも活物質が硫酸鉛(PbSO4)に
変化していく。鉛、二酸化鉛が硫酸鉛に変化するとその
体積は約2倍に増加する。そのため、放電反応が進むに
つれて極板中の空孔が析出した硫酸鉛によって塞がれ、
硫酸イオンの拡散機能が低下する。逆に、この硫酸鉛
は、充電時には正極で二酸化鉛に、負極では鉛にそれぞ
れ変化するが、電極内への電解液供給能力が乏しい場合
には、この反応が円滑に進まず充電効率が低下する。特
に、高電流密度での充放電ほどこの影響が大きくなる。
これらの課題を解決するための方策として、従来は活物
質のもとになる鉛粉に添加する水や硫酸の量を調整し
て、活物質の充填密度を低下させ、極板内に電解液を保
持あるいは拡散できる空隙を多く形成させるという手法
が実用化されている。
[0003] The high-rate discharge characteristics largely depend on the supply of the electrolytic solution to the active material. In a lead storage battery, the active material of both the positive electrode and the negative electrode changes to lead sulfate (PbSO 4 ) due to the discharge reaction. When lead and lead dioxide are changed to lead sulfate, the volume increases about twice. Therefore, as the discharge reaction progresses, pores in the electrode plate are blocked by the precipitated lead sulfate,
The diffusion function of sulfate ions decreases. Conversely, this lead sulfate changes into lead dioxide on the positive electrode and lead on the negative electrode during charging, but when the electrolyte supply capacity into the electrode is poor, this reaction does not proceed smoothly and the charging efficiency decreases. I do. In particular, the effect becomes larger as the charge and discharge at a higher current density occur.
As a measure to solve these problems, conventionally, the amount of water or sulfuric acid added to the lead powder, which is the source of the active material, is adjusted to lower the packing density of the active material, and the electrolytic solution is placed in the electrode plate. A technique of forming a large number of voids capable of holding or diffusing the same has been put to practical use.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
手法では、高率放電特性は初期的には向上するものの、
サイクル寿命が著しく低下し、適切なバランスが達成で
きないのが現状である。本発明は、高率放電特性の向上
を図ると同時に高多孔化による寿命の低下を抑制し、バ
ランスのとれた真に高性能な鉛蓄電池を与える極板を提
供することを目的とする。
However, in the above method, although the high-rate discharge characteristics are initially improved,
At present, the cycle life is significantly reduced, and an appropriate balance cannot be achieved. SUMMARY OF THE INVENTION An object of the present invention is to provide an electrode plate that improves the high-rate discharge characteristics and suppresses a reduction in the life due to the increase in porosity, thereby providing a well-balanced truly high-performance lead-acid battery.

【0005】[0005]

【課題を解決するための手段】本発明は、極板の細孔構
造を最適化することによって上記の課題を解決しようと
するものである。すなわち、本発明の鉛蓄電池用極板
は、充電状態における活物質層の細孔分布が、細孔径
0.8〜10μmの範囲の細孔領域Aと、細孔径0.0
1〜0.2μmの範囲の細孔領域Bにそれぞれ極大値を
持ち、少なくとも2つに明確に分離された分布状態の細
孔構造を有することを特徴とするものである。
SUMMARY OF THE INVENTION The present invention aims to solve the above problems by optimizing the pore structure of the electrode plate. That is, in the lead-acid battery electrode plate of the present invention, the pore distribution of the active material layer in the charged state is such that the pore area A in the pore diameter range of 0.8 to 10 μm and the pore diameter of 0.0
It has a maximum value in each of the pore areas B in the range of 1 to 0.2 μm, and has a pore structure in a distribution state clearly separated into at least two.

【0006】[0006]

【発明の実施の形態】本発明は、単に極板を増孔すると
いう従来の概念を超えて、各種細孔分布を有する極板を
形成し、実験を重ねた結果、寿命と高率放電特性のバラ
ンスのとれる細孔分布を見いだしたことに基づくもので
ある。ここで領域Aの細孔部は、高率放電時の利用率を
高め、領域Bの細孔部は、低率放電も含めた放電容量の
限界を決定する。本発明により、寿命と高率放電特性の
バランスのとれた鉛電池が得られる理由については、明
確ではないが次のように考えられる。放電で発生した領
域Bの鉛イオンは、より大きい細孔領域に拡散し、外部
から拡散する硫酸イオンと反応し硫酸鉛として析出す
る。このとき領域Bに連続して領域Aとの間に中間的な
細孔領域Cが存在すると、その部分での硫酸鉛の析出が
起こり、いずれのイオンの拡散にも障害となる。領域C
を少なくすると、細孔径の大きい領域Aに硫酸鉛が析出
することになり、高率放電時の拡散障害が少なくなる。
また、この領域Cの少ない構造を形成する状態が、活物
質の粒子間結合の強固な状態にあると思われる。本発明
の上記構造は、従来のように広い粒度分布の鉛粉を水と
硫酸で練合したペーストからでは形成困難であり、粒径
をできるだけ±10μmの範囲に統一した鉛粉の適用
や、硫酸ナトリウムあるいは硫酸バリウム等の水溶性塩
を混合する手段を併用する方法によって得ることができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention goes beyond the conventional concept of simply increasing the number of holes in an electrode plate. This is based on finding a pore distribution that balances the above. Here, the pores in the region A increase the utilization rate at the time of high-rate discharge, and the pores in the region B determine the limit of the discharge capacity including low-rate discharge. The reason why a lead battery having a good balance between life and high-rate discharge characteristics can be obtained by the present invention is not clear, but is considered as follows. The lead ions in the region B generated by the discharge diffuse into the larger pore region, react with sulfate ions diffused from the outside, and precipitate as lead sulfate. At this time, if an intermediate pore region C is present between the region A and the region B, lead sulfate precipitates at that portion, which hinders the diffusion of any ions. Area C
When lead is reduced, lead sulfate precipitates in the region A having a large pore diameter, and diffusion hindrance during high-rate discharge is reduced.
Further, it is considered that the state in which the structure having a small number of regions C is formed is a state in which the bonding between particles of the active material is strong. The above structure of the present invention is difficult to form from a paste obtained by kneading lead powder having a wide particle size distribution with water and sulfuric acid as in the past, and application of lead powder having a uniform particle size within a range of ± 10 μm as much as possible, It can be obtained by a method using a means for mixing a water-soluble salt such as sodium sulfate or barium sulfate.

【0007】[0007]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。まず、極板の作製に際して、正極用および負極用原
料として、重量比で金属鉛25%、一酸化鉛75%から
なる酸化度75%の鉛粉で、粒径30±10μmの範囲
に分級したものに硫酸ナトリウム粉末2wt%を添加し
た。負極には、この他重量比2%の硫酸バリウムと1%
の炭素粉末、および0.5%のリグニンを添加して活物
質混合物を調製した。この混合物に対し重量比10%の
水と同じく重量比15%の希硫酸を加えて練合しペース
トとした。
Embodiments of the present invention will be described below with reference to the drawings. First, at the time of producing an electrode plate, as a raw material for a positive electrode and a negative electrode, a lead powder having a degree of oxidation of 75% composed of 25% by weight of metal lead and 75% of lead monoxide was classified into a particle size range of 30 ± 10 μm. 2 wt% of sodium sulfate powder was added to the mixture. For the negative electrode, 2% barium sulfate and 1%
Was added, and 0.5% lignin was added to prepare an active material mixture. The mixture was mixed with 10% by weight of water and 15% by weight of dilute sulfuric acid as in the case of water to obtain a paste.

【0008】上記ペーストを鉛−カルシウム系合金製の
鋳造格子に充填し、常法に従って高温高湿中で熟成し、
ついで化成を行って正極板および負極板を作製した。比
較のために、従来の無差別な粒径の鉛粉に同様にして水
と硫酸を混合したペーストを使用した極板(比較例1)
を構成した。さらに、水量を15wt%増加して得た極
板を(比較例2)を作製した。図1は、実施例および比
較例における正極板の活物質層の細孔分布を示す。本実
施例による極板における活物質層の細孔の分布形態は、
大きく2つに分離して形成されている。これに対して、
比較例1では0.1から0.8μmの領域、すなわち本実
施例によるものの領域Cに大きな極大値が存在する。ま
た、比較例2では、本実施例によるものの領域Cを含め
て広い範囲で細孔が形成されている。なお、細孔分布の
測定は、水銀ポロシメータによるもので、細孔径0.0
03μm以上のものを測定した。次に、上記の各々の正
極板2枚と負極板3枚を、その間にガラス繊維からなる
マット状のセパレータを介在させて組み合わせ、電解液
として希硫酸を含浸させて正極容量規制の2Ah、2V
の電池を作製した。
[0008] The above paste is filled in a casting grid made of a lead-calcium alloy and aged in a high temperature and high humidity according to a conventional method.
Then, a positive electrode plate and a negative electrode plate were formed by chemical conversion. For comparison, an electrode plate using a paste obtained by mixing water and sulfuric acid in the same manner as a conventional lead powder having an indiscriminate particle size (Comparative Example 1)
Was configured. Further, an electrode plate obtained by increasing the amount of water by 15 wt% (Comparative Example 2) was produced. FIG. 1 shows a pore distribution of an active material layer of a positive electrode plate in Examples and Comparative Examples. The distribution form of the pores of the active material layer in the electrode plate according to the present embodiment,
It is formed in two large parts. On the contrary,
In Comparative Example 1, there is a large maximum value in the region of 0.1 to 0.8 μm, that is, in the region C according to the present embodiment. Further, in Comparative Example 2, the pores are formed in a wide range including the region C of the present example. The pore distribution was measured using a mercury porosimeter and had a pore diameter of 0.0
Those having a size of 03 μm or more were measured. Next, each of the two positive plates and the three negative plates described above is combined with a mat-shaped separator made of glass fiber interposed therebetween, and impregnated with dilute sulfuric acid as an electrolytic solution to control the positive electrode capacity to 2 Ah, 2 V
Was prepared.

【0009】なお、記載した容量は、充填されたペース
トに含まれる鉛原子のモル数を算出し、それらが全て2
電子反応を行ったと仮定した場合の理論容量を用いた。
本実施例による電池と比較例1、2の電池を比較的高率
の1Cの定電流で放電した放電容量を表1に示す。ま
た、各電池を2.25Vの準定電圧(最高電流1C)で
2時間充電し、1Cで終止電圧1.3Vまで放電する充
放電を繰り返し、放電容量が初期放電容量の50%に低
下するまでのサイクル寿命の比較を表1に示す。
Note that the stated capacity is calculated by calculating the number of moles of lead atoms contained in the filled paste.
The theoretical capacity assuming that an electronic reaction was performed was used.
Table 1 shows the discharge capacities of the battery of this example and the batteries of Comparative Examples 1 and 2 discharged at a relatively high rate of 1 C constant current. Further, each battery is charged at a quasi-constant voltage of 2.25 V (maximum current 1 C) for 2 hours, and is repeatedly charged and discharged at 1 C to a cutoff voltage of 1.3 V, and the discharge capacity is reduced to 50% of the initial discharge capacity. Table 1 shows a comparison of cycle life up to.

【0010】[0010]

【表1】 [Table 1]

【0011】表1から明らかなように、本実施例による
極板を用いた電池は、比較例2と同様に、比較例1より
高率放電特性が著しく優れている。一方、サイクル寿命
に関しては、本実施例による極板を用いた電池は、比較
例1と同様に、比較例2よりも優れている。これらのこ
とから、本発明を適用することにより優れた高率放電特
性と長寿命を兼ね備えた鉛蓄電池を構成できることが実
証された。
As is apparent from Table 1, the battery using the electrode plate according to the present embodiment is much superior to Comparative Example 1 in the high-rate discharge characteristics, as in Comparative Example 2. On the other hand, as for the cycle life, the battery using the electrode plate according to the present embodiment is superior to Comparative Example 2 as in Comparative Example 1. From these facts, it was demonstrated that by applying the present invention, a lead storage battery having both excellent high-rate discharge characteristics and long life can be configured.

【0012】次に、活物質層の細孔分布において、総細
孔体積を一定にして、領域Aでの極大値に対する、領域
Cの極小値の割合を変化させた場合のサイクル寿命を図
2に示した。図から明らかなように、総細孔体積が同じ
でも寿命に差が生じた。このように、領域Aと領域Bに
極大値が存在すると同時に、明確な分離がされるように
領域Cの細孔体積が制限されることが好ましい。さら
に、図1のように2つの領域A、Bに分離する細孔分布
を有しながら、細孔の総体積は一定のまま、各領域の細
孔体積の比を変化させて放電容量を測定した。その結果
を図3に示した。この結果は、高率放電容量は上記比率
が30%を超えると、本発明の効果が薄れることを示し
ている。
Next, in the pore distribution of the active material layer, the cycle life when the ratio of the minimum value in the region C to the maximum value in the region A is changed while keeping the total pore volume constant is shown in FIG. It was shown to. As is apparent from the figure, there was a difference in the life even when the total pore volume was the same. As described above, it is preferable that the pore volume in the region C is limited so that the maximum value exists in the region A and the region B and the separation is clearly performed at the same time. Further, as shown in FIG. 1, the discharge capacity is measured by changing the ratio of the pore volume of each region while maintaining the total volume of the pores constant while having a pore distribution separated into two regions A and B. did. The result is shown in FIG. This result indicates that when the above-mentioned ratio exceeds 30%, the effect of the present invention is reduced.

【0013】次に、図1のように2つの領域A、Bに分
離しかつ領域Bのピーク細孔体積が領域Aのそれの25
%から30%の範囲である細孔分布をとりながら、領域
Aの細孔体積を変化させた。領域Aの細孔体積と寿命な
らびに1Cでの放電容量の関係を調べた結果を図4に示
した。なお、領域Aの総細孔体積は0.1〜0.14c
c/g程度、領域Bの総細孔体積は0.005〜0.0
4cc/g程度とした。図4から、領域Aの総細孔体積
が0.07cc/g以下になると放電容量が著しく劣化
し、0.14cc/g以上になるとサイクル特性が劣化
することがわかる。この結果から、高率放電特性と寿命
性能のバランスのとれた高性能な鉛蓄電池を得るには、
領域Aの総細孔体積は0.07cc/gから0.14c
c/gの範囲にあることが好ましい。
Next, as shown in FIG. 1, the region A is separated into two regions A and B, and the peak pore volume of the region B is 25% of that of the region A.
The pore volume in the region A was changed while the pore distribution was in the range of 30% to 30%. FIG. 4 shows the results of examining the relationship between the pore volume and the life in the region A and the discharge capacity at 1C. In addition, the total pore volume of the region A is 0.1 to 0.14 c.
c / g, the total pore volume of the region B is 0.005 to 0.0
It was about 4 cc / g. FIG. 4 shows that when the total pore volume in the region A is 0.07 cc / g or less, the discharge capacity is significantly deteriorated, and when the total pore volume is 0.14 cc / g or more, the cycle characteristics are deteriorated. From these results, to obtain a high-performance lead-acid battery with a balance between high-rate discharge characteristics and life performance,
The total pore volume in region A is from 0.07 cc / g to 0.14 c
It is preferably in the range of c / g.

【0014】上記の実施例では、正極用の添加剤として
硫酸ナトリウムを用いたが、この他に、鉛丹や塩基性硫
酸鉛、二酸化鉛などの鉛化合物を用いることができる。
また、実施例では集電体に鋳造格子を用いたが、エキス
パンド格子を用いてもよい。さらに、本発明の極板は、
各種粒度の鉛粉を組み合わせて溶剤系の結着剤、たとえ
ばポリフッ化ビニリデンとN−メチルピロリドンなどを
用いた練合物や無硫酸練合物でも形成可能であり、この
場合は薄型極板での細孔設計ができる利点がある。ま
た、上記の実施例では、正極についての効果を説明した
が、同様の方法で負極についても細孔設計の効果を調査
したところ、正極の場合と類似の結果が得られ、本発明
が負極に対しても効果があることが確認された。また、
実施例では2つの細孔領域について述べたが、さらに大
きな領域や小さな領域に別の極大値を形成することは本
発明の効果を妨げない。
In the above embodiment, sodium sulfate was used as an additive for the positive electrode, but other lead compounds such as lead red, basic lead sulfate, and lead dioxide can also be used.
Further, in the embodiment, the casting grid is used as the current collector, but an expanding grid may be used. Further, the electrode plate of the present invention,
It is also possible to form a solvent-based binder such as a kneaded product using polyvinylidene fluoride and N-methylpyrrolidone or a sulfur-free kneaded product by combining lead powders of various particle sizes. There is an advantage that the pore design can be made. Further, in the above example, the effect on the positive electrode was described.When the effect of pore design was also examined on the negative electrode in the same manner, a result similar to that of the positive electrode was obtained. It was confirmed that it was also effective. Also,
In the embodiment, two pore regions have been described. However, forming another maximum value in a larger region or a smaller region does not prevent the effect of the present invention.

【0015】[0015]

【発明の効果】以上のように本発明によれば、優れた高
率放電特性とサイクル寿命を兼ね備えた鉛蓄電池を得る
ことができる。
As described above, according to the present invention, it is possible to obtain a lead storage battery having both excellent high-rate discharge characteristics and cycle life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による正極板の充電状態におけ
る細孔分布を示す図である。
FIG. 1 is a diagram showing a pore distribution in a charged state of a positive electrode plate according to an embodiment of the present invention.

【図2】領域Aの極大値に対する領域Cの極小値の比率
とサイクル寿命の関係を示す図である。
FIG. 2 is a diagram illustrating a relationship between a ratio of a local minimum value of a region C to a local maximum value of a region A and a cycle life.

【図3】領域Aの総細孔体積に対する領域Bの総細孔体
積の比率と1C放電容量の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a ratio of a total pore volume of a region B to a total pore volume of a region A and a 1C discharge capacity.

【図4】領域Aの総細孔体積と、放電容量およびサイク
ル寿命との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a total pore volume in a region A, a discharge capacity, and a cycle life.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 活物質が鉛あるいは二酸化鉛であって、
充電状態における活物質層の細孔分布が、細孔径0.8
〜10μmの範囲の細孔領域Aと、細孔径0.01〜
0.2μmの範囲の細孔領域Bにそれぞれ極大値を備
え、少なくとも2つに明確に分離された分布状態の細孔
構造を有することを特徴とする鉛蓄電池用極板。
1. The active material is lead or lead dioxide,
The pore distribution of the active material layer in the charged state has a pore diameter of 0.8
A pore area A in the range of 10 to 10 μm, and a pore diameter of 0.01 to
An electrode plate for a lead-acid battery, comprising a maximum value in each of the pore regions B in the range of 0.2 μm, and having a pore structure in a distribution state clearly separated into at least two.
【請求項2】 細孔径0.2μm〜0.8μmの範囲の
細孔領域Cに極小値を備え、前記極小値は領域Aの極大
値の30%以下である請求項1に記載の鉛蓄電池用極
板。
2. The lead-acid battery according to claim 1, wherein a minimum value is provided in a pore region C having a pore diameter of 0.2 μm to 0.8 μm, and the minimum value is 30% or less of the maximum value of the region A. Electrode plate.
【請求項3】 充電状態において領域Aの細孔体積の積
分値が0.07cc/g〜0.14cc/gであり、領
域Bの細孔体積の積分値が領域Aの積分値にの25%以
下である請求項1に記載の鉛蓄電池用極板。
3. In the charged state, the integral value of the pore volume of the region A is 0.07 cc / g to 0.14 cc / g, and the integral value of the pore volume of the region B is 25% of the integral value of the region A. %. The electrode plate for a lead-acid battery according to claim 1, which is not more than 10%.
JP22624296A 1996-08-28 1996-08-28 Plate for lead-acid battery Expired - Fee Related JP3468492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22624296A JP3468492B2 (en) 1996-08-28 1996-08-28 Plate for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22624296A JP3468492B2 (en) 1996-08-28 1996-08-28 Plate for lead-acid battery

Publications (2)

Publication Number Publication Date
JPH1069900A true JPH1069900A (en) 1998-03-10
JP3468492B2 JP3468492B2 (en) 2003-11-17

Family

ID=16842129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22624296A Expired - Fee Related JP3468492B2 (en) 1996-08-28 1996-08-28 Plate for lead-acid battery

Country Status (1)

Country Link
JP (1) JP3468492B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158286A (en) * 2007-12-26 2009-07-16 Gs Yuasa Corporation Lead-acid battery and method of manufacturing the same
JP2013089478A (en) * 2011-10-19 2013-05-13 Gs Yuasa Corp Lead acid battery and manufacturing method therefor
US20140093775A1 (en) * 2012-09-28 2014-04-03 Cabot Corporation Active material compositions comprising high surface area carbonaceous materials
JP2014123525A (en) * 2012-12-21 2014-07-03 Gs Yuasa Corp Negative electrode plate for lead storage battery use, and method for manufacturing the same
US9362596B2 (en) 2013-07-19 2016-06-07 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
WO2017013822A1 (en) * 2015-07-21 2017-01-26 株式会社Gsユアサ Lead acid storage battery
CN111570299A (en) * 2020-05-22 2020-08-25 邱鑫梅 Performance detection and analysis system for production and processing of storage battery
EP3780173A4 (en) * 2018-05-23 2021-05-19 GS Yuasa International Ltd. Lead-acid battery
WO2022259571A1 (en) 2021-06-08 2022-12-15 株式会社Gsユアサ Control valve-type lead storage battery, manufacturing method therefor, and power storage system having control valve-type lead storage battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158286A (en) * 2007-12-26 2009-07-16 Gs Yuasa Corporation Lead-acid battery and method of manufacturing the same
JP2013089478A (en) * 2011-10-19 2013-05-13 Gs Yuasa Corp Lead acid battery and manufacturing method therefor
US20140093775A1 (en) * 2012-09-28 2014-04-03 Cabot Corporation Active material compositions comprising high surface area carbonaceous materials
WO2014052753A1 (en) * 2012-09-28 2014-04-03 Cabot Corporation Active material compositions comprising high surface area carbonaceous materials
CN104685674A (en) * 2012-09-28 2015-06-03 卡博特公司 Active material compositions comprising high surface area carbonaceous materials
JP2015534709A (en) * 2012-09-28 2015-12-03 キャボット コーポレイションCabot Corporation Active material composition comprising high surface area carbon material
JP2014123525A (en) * 2012-12-21 2014-07-03 Gs Yuasa Corp Negative electrode plate for lead storage battery use, and method for manufacturing the same
US9899666B2 (en) 2013-07-19 2018-02-20 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
US9362596B2 (en) 2013-07-19 2016-06-07 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
WO2017013822A1 (en) * 2015-07-21 2017-01-26 株式会社Gsユアサ Lead acid storage battery
US20180205072A1 (en) * 2015-07-21 2018-07-19 Gs Yuasa International Ltd. Lead acid storage battery
EP3780173A4 (en) * 2018-05-23 2021-05-19 GS Yuasa International Ltd. Lead-acid battery
JPWO2019225161A1 (en) * 2018-05-23 2021-05-27 株式会社Gsユアサ Lead-acid battery
CN111570299A (en) * 2020-05-22 2020-08-25 邱鑫梅 Performance detection and analysis system for production and processing of storage battery
CN111570299B (en) * 2020-05-22 2022-04-22 邱鑫梅 Performance detection and analysis system for production and processing of storage battery
WO2022259571A1 (en) 2021-06-08 2022-12-15 株式会社Gsユアサ Control valve-type lead storage battery, manufacturing method therefor, and power storage system having control valve-type lead storage battery

Also Published As

Publication number Publication date
JP3468492B2 (en) 2003-11-17

Similar Documents

Publication Publication Date Title
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JP3468492B2 (en) Plate for lead-acid battery
JP2002313332A (en) Control valve type lead-acid battery
JP2949773B2 (en) Lead storage battery
JP4066509B2 (en) Manufacturing method of lead acid battery
JP2949772B2 (en) Liquid-filled lead-acid battery
JP4857894B2 (en) Lead acid battery
JP2002100347A (en) Lead-acid battery
JPH10270028A (en) Positive electrode plate for lead-acid battery
JPH09147841A (en) Negative electrode plate for lead acid battery and its manufacture
JP3284860B2 (en) Electrode for lead-acid battery and its manufacturing method
JPS59173961A (en) Organic electrolyte secondary battery
JPH11162456A (en) Lead-acid battery
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JP2006202584A (en) Lead-acid battery and its manufacturing method
JP2003346790A (en) Lead acid storage battery
JP2003086178A (en) Sealed lead-acid battery and method of manufacturing the same
JP3414941B2 (en) Electrode plate for lead storage battery and method of manufacturing the same
JP3013623B2 (en) Sealed lead-acid battery
JP2002198041A (en) Manufacturing method of positive pole plate for lead acid battery
JP2023037324A (en) Liquid type lead storage battery
JP3040718B2 (en) Lead storage battery
JP2006049156A (en) Manufacturing method of paste-like active material for positive electrode
JPH01122564A (en) Sealed type lead-acid battery
CN115663172A (en) Positive electrode active material, battery, and electric device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees