JP4857894B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP4857894B2
JP4857894B2 JP2006131343A JP2006131343A JP4857894B2 JP 4857894 B2 JP4857894 B2 JP 4857894B2 JP 2006131343 A JP2006131343 A JP 2006131343A JP 2006131343 A JP2006131343 A JP 2006131343A JP 4857894 B2 JP4857894 B2 JP 4857894B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode plate
lead
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006131343A
Other languages
Japanese (ja)
Other versions
JP2007305368A (en
Inventor
章二 堀江
義文 久間
一宏 杉江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006131343A priority Critical patent/JP4857894B2/en
Publication of JP2007305368A publication Critical patent/JP2007305368A/en
Application granted granted Critical
Publication of JP4857894B2 publication Critical patent/JP4857894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

鉛蓄電池は、車両のエンジン始動用やバックアップ電源用などに用いられている。その中でも始動用の鉛蓄電池は、エンジン始動用セルモータへの電力供給とともに、車両に搭載された各種電気・電子機器へ電力を供給している。エンジン動作中は、発電機であるオルタネータによって鉛蓄電池が充電され、電池は満充電に近い状態に維持される。   Lead-acid batteries are used for vehicle engine start-up and backup power supplies. Among them, the lead acid battery for start-up supplies power to various electric / electronic devices mounted on the vehicle as well as power supply to the engine start cell motor. During engine operation, the lead storage battery is charged by the alternator, which is a generator, and the battery is maintained in a state close to full charge.

近年、環境保全の観点から、車両の燃費向上が検討されている。例えば、車両の一時的な停車中にエンジンを停止するアイドリングストップシステムや、所定の条件下で、オルタネータの発電量を抑制し、エンジン効率を向上させる充電制御システム、また、車両減速時に運動エネルギーを電気エネルギーに変換し、この電気エネルギーを蓄電する回生ブレーキシステム等のシステムが既に実用化されている。   In recent years, improvement in fuel efficiency of vehicles has been studied from the viewpoint of environmental conservation. For example, an idling stop system that stops the engine while the vehicle is temporarily stopped, a charge control system that suppresses the amount of power generated by the alternator under a predetermined condition and improves engine efficiency, and kinetic energy when the vehicle decelerates. A system such as a regenerative brake system that converts electric energy and stores the electric energy has already been put into practical use.

特に、アイドリングストップシステムや、オルタネータの発電量を抑制するシステムを搭載した車両では、従来の車両に比較して、鉛蓄電池への充電量が削減される。一方で、鉛蓄電池は、車両搭載機器への電力供給のために深く放電される。例えば、アイドリングストップシステム搭載車両では、アイドリングストップ中、車両に搭載されたECUや各種灯器類、エアコンといった各種の車両搭載機器は、鉛蓄電池によって駆動される。   In particular, in a vehicle equipped with an idling stop system or a system that suppresses the power generation amount of the alternator, the amount of charge to the lead storage battery is reduced as compared with a conventional vehicle. On the other hand, the lead storage battery is deeply discharged to supply power to the on-vehicle equipment. For example, in an idling stop system-equipped vehicle, during idling stop, various on-vehicle devices such as an ECU, various lamps, and an air conditioner that are mounted on the vehicle are driven by a lead storage battery.

このようなシステムを搭載した車両に用いる鉛蓄電池は、従来の車両に用いる鉛蓄電池に比べて、深い放電が頻繁に入ることになる。したがって、少ない充電量でも、鉛蓄電池が充電不足状態に陥ることがないよう、鉛蓄電池の充電受入性をより十分に確保する必要がある。   A lead storage battery used in a vehicle equipped with such a system is subject to deep discharge more frequently than a lead storage battery used in a conventional vehicle. Therefore, it is necessary to sufficiently ensure the charge acceptability of the lead storage battery so that the lead storage battery does not fall into an insufficiently charged state even with a small charge amount.

鉛蓄電池の充電反応は、正負両極での放電生成物である硫酸鉛を、元の活物質である二酸化鉛または海綿状鉛に戻す反応であるが、硫酸鉛は導電性が低く、また、放置されると再結晶反応によって不活性化してしまう等の特質をもっている。さらに、電解液の成層化等によって生じた硫酸濃度の高い電解液中では、一般にサルフェーションと呼ばれる硫酸鉛の結晶の粗大化が進行する。   The lead-acid battery charging reaction returns lead sulfate, which is a discharge product at both positive and negative electrodes, back to the original active material, lead dioxide or spongy lead, but lead sulfate has low conductivity and is not allowed to stand. In that case, it has characteristics such as being inactivated by recrystallization reaction. Furthermore, in an electrolytic solution having a high sulfuric acid concentration generated by stratification of the electrolytic solution, etc., the coarsening of lead sulfate crystals generally called sulfation proceeds.

その結果、活物質中に粗大化した硫酸鉛結晶が蓄積し、活物質の充電受入性が低下し、電池容量が急激に低下し、短寿命となる。   As a result, coarsened lead sulfate crystals accumulate in the active material, the charge acceptability of the active material decreases, the battery capacity rapidly decreases, and the life becomes short.

このような課題を解決する手段として、特に、負極においては、活物質の導電性を確保するためにカーボンを添加したり、あるいは、硫酸バリウムを添加することによって、放電時の硫酸鉛結晶を微細化させ、硫酸鉛結晶の反応性を高めることが、広く一般的に行われている。ところが、前述したような、従来の車両よりも放電が深く、短時間で多くの充電回復が必要とされる場合では、その効果は不十分となってきている。   As a means for solving such problems, particularly in the negative electrode, in order to ensure the conductivity of the active material, carbon is added, or barium sulfate is added to finely adjust the lead sulfate crystals during discharge. It is widely and generally performed to increase the reactivity of lead sulfate crystals. However, in the case where the discharge is deeper than that of the conventional vehicle and a large amount of charge recovery is required in a short time as described above, the effect is insufficient.

また、例えば特許文献1には、正極活物質1g当たりの電池内の硫酸質量を0.30〜0.45gとし、かつ、セパレータに含まれる電解液量をセパレータ1g当たり3.5〜4.5ccとした制御弁式鉛蓄電池が示されている。ここでは、電解液量を制限することで、酸素ガス吸収反応を促進して、充電受入性の向上が図られている。   For example, Patent Document 1 discloses that the mass of sulfuric acid in the battery per gram of the positive electrode active material is 0.30 to 0.45 g, and the amount of the electrolyte contained in the separator is 3.5 to 4.5 cc per gram of the separator. A control valve type lead acid battery is shown. Here, by limiting the amount of the electrolytic solution, the oxygen gas absorption reaction is promoted to improve the charge acceptability.

一般的に、自動車用の鉛蓄電池は、一部を除き、電池容量や耐過放電性能を考慮して、極板面がすべて電解液に浸漬した状態とした液式の鉛蓄電池が一般的である。したがって、自動車用として、一般的に用いられる液式の鉛蓄電池においては、基本的に酸素ガス吸収反応がほとんど進行しないため、特許文献1に示されたような、酸素ガス吸収反応を活用した、充電受入性改善を行うことができない。   In general, lead-acid batteries for automobiles are generally liquid-type lead-acid batteries with all electrode surfaces immersed in an electrolyte solution, taking into consideration battery capacity and overdischarge resistance, with some exceptions. is there. Therefore, in the liquid lead acid battery generally used for automobiles, since the oxygen gas absorption reaction basically does not proceed, the oxygen gas absorption reaction as shown in Patent Document 1 is utilized. Improve charge acceptance.

さらに、制御弁式鉛蓄電池は、セパレータ中に保持された電解液の極板への移動が損なわれないよう、常にセパレータと極板面とが密着させるために、極板群には10〜30kPa程度の群圧を加える。そのため、制御弁式鉛蓄電池に用いる電槽や蓋等の構造部品は、液式鉛蓄電池のものに比較してより強度を高めた設計が必要となる。その結果、制御弁式鉛蓄電池の製造価格は、液式鉛蓄電池と比較して、より高くなってしまう。   Furthermore, in order to keep the separator and the electrode plate surface in close contact with each other so that the movement of the electrolyte held in the separator to the electrode plate is not impaired, the control valve type lead-acid battery is 10 to 30 kPa in the electrode plate group. Apply a degree of group pressure. Therefore, structural parts such as a battery case and a lid used for the control valve type lead storage battery need to be designed with higher strength than those of the liquid lead storage battery. As a result, the manufacturing price of the control valve type lead storage battery is higher than that of the liquid lead storage battery.

また、液式鉛蓄電池に関しては、電解液中の水分の電気分解あるいは蒸発による、電池外の散逸が避け得ない。電解液中の水分減少により、電解液面が低下し、電池容量が低下し、あるいは負極板同士を集合溶接するストラップが腐食する場合がある。このような場合、電池から排気栓を脱着した上で、液口から水分補給を行う。このような作業の手間を省くためには、水の電気分解や蒸発を抑制することが必要となる。   In addition, for a liquid lead-acid battery, dissipation outside the battery due to electrolysis or evaporation of water in the electrolyte is inevitable. Due to the decrease in the water content in the electrolytic solution, the electrolytic solution surface may decrease, the battery capacity may decrease, or the strap that collectively welds the negative electrode plates may corrode. In such a case, after removing the exhaust plug from the battery, water is replenished from the liquid port. In order to save the labor of such work, it is necessary to suppress electrolysis and evaporation of water.

特に、電気分解による水分減少を抑制するためには、正極および負極の格子中のSbを制限することが有効であるため、Sb量が制限された、Pb−Ca合金が広く用いられている。Sb量を制限することにより、例えば、従来、多用されていた、1.0〜5.0質量%程度のSbを含むPb合金を格子を正極および負極の両方もしくは、正極にのみ用いた場合の電気分解による水分減少量を100とした場合、正極および負極の格子をSbが制限されたPb−Ca合金を用いることにより、この水分減少量をおおよそ10〜30まで低減できる。   In particular, in order to suppress moisture reduction due to electrolysis, it is effective to limit Sb in the positive and negative electrode lattices. Therefore, Pb—Ca alloys with a limited amount of Sb are widely used. By limiting the amount of Sb, for example, a Pb alloy containing about 1.0 to 5.0% by mass of Sb, which has been widely used in the past, is used when the lattice is used for both the positive electrode and the negative electrode or only for the positive electrode. When the amount of water decrease due to electrolysis is 100, this amount of water decrease can be reduced to approximately 10 to 30 by using a Pb—Ca alloy with Sb limited for the positive and negative electrode lattices.

しかしながら、正極および負極にPb−Ca合金の格子を用いると、Pb−Sb合金の格子を用いた場合に比べて、鉛蓄電池の充電受入性が低下する。特に、深い放電と、浅い充電が繰り返された場合、活物質中に粗大な硫酸鉛が固定化され、さらに充電受入性が低下するという悪循環に陥るため、早期に放電容量が低下し、これとともに、鉛蓄電池寿命が低下する。
特開平7−94205号公報
However, when a Pb—Ca alloy lattice is used for the positive electrode and the negative electrode, the charge acceptability of the lead-acid battery is lower than when a Pb—Sb alloy lattice is used. In particular, when deep discharge and shallow charge are repeated, coarse lead sulfate is fixed in the active material, and the charge acceptance is further deteriorated, resulting in a vicious circle. Lead-acid battery life is reduced.
JP-A-7-94205

本発明は、前記したような、電解液中の水分減少を抑制する目的で、正極および負極にPb−Ca合金の格子を用いた液式の鉛蓄電池の充電受入性を向上させ、これにより、寿命特性を改善することを目的とする。   The present invention improves the charge acceptance of a liquid type lead-acid battery using a Pb-Ca alloy lattice for the positive electrode and the negative electrode for the purpose of suppressing water loss in the electrolyte as described above. The purpose is to improve the life characteristics.

前記した課題を解決するために、本発明の請求項1に係る発明は、Pb−Ca合金からなる正極格子と、前記正極格子に充填された正極活物質とからなる正極板、Pb−Ca合金からなる負極格子と、前記負極格子に充填された負極活物質とからなる負極板、ならびに、前記正極板と前記負極板を隔離するセパレータとからなる極板群を電解液に浸漬した構成の液式の鉛蓄電池であって、前記正極活物質内に保持された電解液の硫酸質量(SA)と前記正極活物質(PAM)の質量比(SA/PAM)が0.05〜0.07であって、かつ、前記正極板と前記負極板の間に存在する電解液中の硫酸質量(SB)と前記正極活物質(PAM)の質量比(SB/PAM)が0.05〜0.07であることを特徴とする鉛蓄電池を示すものである。   In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention is a positive electrode plate comprising a positive electrode lattice made of a Pb—Ca alloy and a positive electrode active material filled in the positive electrode lattice, and a Pb—Ca alloy. A negative electrode plate composed of a negative electrode grid comprising the negative electrode grid, a negative electrode active material filled in the negative electrode grid, and an electrode plate group comprising a separator separating the positive electrode plate and the negative electrode plate in an electrolyte. A lead acid battery of the formula, wherein a mass ratio (SA / PAM) of sulfuric acid mass (SA) of the electrolyte held in the positive electrode active material to the positive electrode active material (PAM) is 0.05 to 0.07. And the mass ratio (SB / PAM) of sulfuric acid mass (SB) in the electrolyte solution existing between the positive electrode plate and the negative electrode plate and the positive electrode active material (PAM) is 0.05 to 0.07. The lead acid battery characterized by this is shown.

また、本発明の請求項2に係る発明は、請求項1の構成を有した鉛蓄電池であって、前記正極板と前記負極板の間に存在する電解液の硫酸質量(SB)と正極活物質内に保持された電解液の硫酸質量(SA)の質量比(SB/SA)が0.8〜1.4であることを特徴とする鉛蓄電池を示すものである。   The invention according to claim 2 of the present invention is a lead-acid battery having the configuration of claim 1, wherein the sulfuric acid mass (SB) of the electrolyte existing between the positive electrode plate and the negative electrode plate and the positive electrode active material The lead acid battery is characterized in that the mass ratio (SB / SA) of sulfuric acid mass (SA) of the electrolyte solution held in the battery is 0.8 to 1.4.

本発明によれば、充電受入性が顕著に改善され、これにより優れた寿命特性を有した、液式の鉛蓄電池を提供することができる。   According to the present invention, it is possible to provide a liquid lead-acid battery that has remarkably improved charge acceptability and thereby has excellent life characteristics.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

本発明の鉛蓄電池101は、図1および図2に示したように、正極板102と負極板103、およびこれら間に介挿されたセパレータ104とからなる極板群105が電槽106に収納され、電槽106に蓋107が装着されていることは従来の鉛蓄電池と変わるところはない。   As shown in FIG. 1 and FIG. 2, the lead storage battery 101 of the present invention has an electrode plate group 105 composed of a positive electrode plate 102, a negative electrode plate 103, and a separator 104 interposed therebetween housed in a battery case 106. In addition, the fact that the lid 107 is attached to the battery case 106 is not different from the conventional lead storage battery.

本発明の鉛蓄電池101は液式であり、正極板102および負極板103の極板面を実質上すべて浸漬する電解液111を有する。鉛蓄電池101を充電した際、正極板102および負極板103より発生する酸素・水素ガスを電池外に排出するため、ガス排気口108aを有した排気栓108を有する。なお、排気栓108内には、必要に応じて防爆用のフィルタ109や、防沫板110が配置される。   The lead storage battery 101 of the present invention is a liquid type, and has an electrolytic solution 111 that immerses substantially all the electrode plate surfaces of the positive electrode plate 102 and the negative electrode plate 103. An exhaust plug 108 having a gas exhaust port 108a is provided to discharge oxygen / hydrogen gas generated from the positive electrode plate 102 and the negative electrode plate 103 to the outside of the battery when the lead storage battery 101 is charged. An explosion-proof filter 109 and a splash-proof plate 110 are disposed in the exhaust plug 108 as necessary.

正極板102および負極板103では、いずれもPb−Ca合金の格子を有する。正極および負極のいずれの格子にも、それぞれ正極活物質および負極活物質が充填される。そして、本発明の鉛蓄電池では、正極活物質内に保持された電解液中の硫酸質量(SA)と正極活物質量(PAM)の質量比(SA/PAM)を0.05〜0.07とし、かつ、正極板と負極板の間に存在する電解液中の硫酸質量(SB)と正極活物質(PAM)の質量比(SB/PAM)を0.05〜0.07とする。   Both the positive electrode plate 102 and the negative electrode plate 103 have a lattice of Pb—Ca alloy. Both the positive electrode and the negative electrode are filled with a positive electrode active material and a negative electrode active material, respectively. And in the lead acid battery of this invention, the mass ratio (SA / PAM) of the sulfuric acid mass (SA) in the electrolyte solution hold | maintained in the positive electrode active material and the amount of positive electrode active materials (PAM) is 0.05-0.07. And the mass ratio (SB / PAM) of the sulfuric acid mass (SB) and the positive electrode active material (PAM) in the electrolyte existing between the positive electrode plate and the negative electrode plate is set to 0.05 to 0.07.

なお、本発明において、正極活物質量(PAM)は、鉛蓄電池101を満充電状態とした状態で、極板群105を構成する正極板102に充填された、いわゆる純然とした、鉛蓄電池正極活物質である、二酸化鉛(PbO2)質量をいい、その他の添加物あるいは不純物の質量は含まれない。 In the present invention, the positive electrode active material amount (PAM) is a so-called pure lead acid battery positive electrode filled in the positive electrode plate 102 constituting the electrode plate group 105 in a state where the lead acid battery 101 is fully charged. It refers to the mass of lead dioxide (PbO 2 ), which is the active material, and does not include the mass of other additives or impurities.

また、本発明において、正極活物質内に保持された電解液中の硫酸質量(SA)は、正極の格子に充填された、純然とした正極活物質(二酸化鉛)とその他の添加物および不純物を含む、正極活物質総体の見掛け体積中に保持された電解液、換言すれば、正極活物質総体の空孔中に存在する電解液中に含まれる硫酸質量をいう。   In the present invention, the mass of sulfuric acid (SA) in the electrolyte held in the positive electrode active material is the pure positive electrode active material (lead dioxide) filled in the positive electrode lattice, other additives and impurities. In other words, the amount of sulfuric acid contained in the electrolyte solution held in the apparent volume of the total positive electrode active material, in other words, the electrolyte solution present in the pores of the total positive electrode active material.

また、本発明において、正極板と負極板の間に存在する電解液中の硫酸質量(SB)とは、正極板102と負極板103とが対向した、対向空間体積に存在する電解液に含まれる硫酸質量をいう。より具体的には、正極板102の極板面積Sと正極板102−負極板103の極板面間距離dとの積(S×d)から、セパレータ104の真体積(V)を差し引いた値(S×d−V)をそれぞれの対向空間体積について合計した値とする。   Further, in the present invention, the sulfuric acid mass (SB) in the electrolyte solution existing between the positive electrode plate and the negative electrode plate is the sulfuric acid contained in the electrolyte solution existing in the facing space volume in which the positive electrode plate 102 and the negative electrode plate 103 face each other. Refers to mass. More specifically, the true volume (V) of the separator 104 is subtracted from the product (S × d) of the electrode plate area S of the positive electrode plate 102 and the electrode plate surface distance d between the positive electrode plate 102 and the negative electrode plate 103. The value (S × d−V) is the sum of the respective opposing space volumes.

質量比(SA/PAM)を0.07以下とすることで、活物質内の電解液の硫酸濃度を低く抑え、充電時の過電圧を下げて充電反応を促進させると共に、硫酸鉛の再結晶による粗大化も抑制させる。同時に、質量比(SB/PAM)を0.07以下とすることで、極板間にある電解液から活物質への硫酸の供給を制限して、活物質内の電解液の硫酸濃度上昇を抑えることができる。質量比(SA/PAM)ならびに質量比(SB/PAM)はいずれも0.05未満では硫酸不足によって放電容量が低下し、寿命への悪影響があるため、これらの質量比をいずれも0.05以上とすることが好ましい。   By making the mass ratio (SA / PAM) 0.07 or less, the sulfuric acid concentration of the electrolyte in the active material is kept low, the overvoltage at the time of charging is lowered to promote the charging reaction, and by recrystallization of lead sulfate It also suppresses coarsening. At the same time, by setting the mass ratio (SB / PAM) to 0.07 or less, the supply of sulfuric acid from the electrolyte solution between the electrode plates to the active material is restricted, and the sulfuric acid concentration of the electrolyte solution in the active material is increased. Can be suppressed. When both the mass ratio (SA / PAM) and the mass ratio (SB / PAM) are less than 0.05, the discharge capacity is reduced due to insufficient sulfuric acid, which has an adverse effect on the life. The above is preferable.

なお、活物質の空孔率または見かけ密度によって保持する電解液量は異なるが、活物質の空孔率は寿命や容量に影響するため、目的によって選択できるものである。同様に、電解液中の硫酸濃度についても、充電受入性だけを向上させるには、より低い硫酸濃度が好ましいが、所望とする放電容量が得られる範囲で選択できる。   Although the amount of electrolyte solution to be held varies depending on the porosity or apparent density of the active material, the porosity of the active material affects the life and capacity and can be selected depending on the purpose. Similarly, the sulfuric acid concentration in the electrolytic solution is preferably a lower sulfuric acid concentration in order to improve only the charge acceptance, but can be selected within a range where a desired discharge capacity can be obtained.

セパレータ104に関して、図2においては、U字状セパレータで正極板102を包被した例を示している。なお、セパレータ104の素材として、微孔性の0.1〜0.3mm程度の厚みを有する薄いシート、ガラス繊維あるいは有機繊維からなるマット状のもの、また、形状的には、U字状の他、平板状または袋状のものを用いることもできる。   As for the separator 104, FIG. 2 shows an example in which the positive electrode plate 102 is covered with a U-shaped separator. The material of the separator 104 is a microporous thin sheet having a thickness of about 0.1 to 0.3 mm, a mat-like one made of glass fiber or organic fiber, and the shape is U-shaped. In addition, a flat plate shape or a bag shape can also be used.

上記した、本発明の構成によれば、Pb−Ca合金を正負両極の格子に用いた、液式の鉛蓄電池の、充電受入性を顕著に改善し、特に、深い放電が行われる用途での寿命特性を顕著に改善できる。   According to the configuration of the present invention described above, the charge acceptability of a liquid lead-acid battery using a Pb—Ca alloy for a positive and negative grid is remarkably improved, particularly in applications where deep discharge is performed. The life characteristics can be remarkably improved.

以下に示すように、正極活物質内に保持された電解液中に含まれる硫酸質量(SA)と正極活物質量(PAM)の質量比(SA/PAM)、正極板−負極板間に存在する電解液中に含まれる硫酸質量(SB)と正極活物質量(PAM)の質量比(SB/PAM)および、前記の2つの硫酸質量の質量比(SB/SA)を種々変化させることにより、本発明例および比較例による電池を作成し、充電受入性ならびに寿命特性の評価を行った。   As shown below, the mass ratio (SA / PAM) of the mass of sulfuric acid (SA) and the amount of positive electrode active material (PAM) contained in the electrolyte solution held in the positive electrode active material exists between the positive electrode plate and the negative electrode plate. By varying the mass ratio (SB / PAM) of the sulfuric acid mass (SB) and the amount of positive electrode active material (PAM) contained in the electrolyte solution and the mass ratio of the two sulfuric acid masses (SB / SA) Then, batteries according to the inventive examples and comparative examples were prepared, and the charge acceptability and life characteristics were evaluated.

正極格子は、合金組成としてPb−0.07質量%Ca−1.3質量%SnのPb合金を、段階的に圧延することによって、圧延鉛合金シートとした後に、エキスパンド加工を行って正極格子を形成した。   The positive electrode lattice is formed by rolling a Pb alloy of Pb-0.07 mass% Ca-1.3 mass% Sn as an alloy composition in stages to obtain a rolled lead alloy sheet, and then performing an expanding process to produce a positive electrode lattice. Formed.

正極活物質は、鉛粉(金属鉛、一酸化鉛および鉛丹の混合粉体)を水と希硫酸で混練してペースト状とし、前記の正極格子に所定量充填した後、熟成乾燥することによって正極板を作製した。   The positive electrode active material is made by mixing lead powder (mixed powder of lead metal, lead monoxide, and red lead) with water and dilute sulfuric acid to form a paste, filling the positive electrode grid with a predetermined amount, and then aging and drying. Thus, a positive electrode plate was produced.

負極格子は、Pb−0.07質量%Ca−0.25質量%Sn合金を、正極と同様に圧延した後、エキスパンド加工を施して得た。鉛粉(金属鉛と一酸化鉛の混合粉体)にエキスパンダ(硫酸バリウムおよびリグニン)およびカーボンを添加し、水と希硫酸で混練することにより、負極活物質ペーストを作成した。この負極活物質ペーストを負極格子に充填し、その後、熟成乾燥することによって負極板を得た。   The negative electrode lattice was obtained by rolling a Pb-0.07 mass% Ca-0.25 mass% Sn alloy in the same manner as the positive electrode and then performing an expanding process. An expander (barium sulfate and lignin) and carbon were added to lead powder (mixed powder of metal lead and lead monoxide) and kneaded with water and dilute sulfuric acid to prepare a negative electrode active material paste. The negative electrode active material paste was filled into a negative electrode lattice, and then aged and dried to obtain a negative electrode plate.

セパレータは、厚さ0.3mmの微孔性ポリエチレン製シートをU字折りし、両側部を熱シールすることにより、上部のみが開口した袋状セパレータを作製した。微孔性ポリエチレン製シートは最大孔径10μmの微孔を有したものを用いた。なお、この袋状セパレータに正極板を収納した。   As a separator, a microporous polyethylene sheet having a thickness of 0.3 mm was folded in a U shape, and both sides were heat-sealed to prepare a bag-like separator having only an upper portion opened. The microporous polyethylene sheet used had micropores with a maximum pore diameter of 10 μm. A positive electrode plate was accommodated in this bag-like separator.

電解液は比重(20℃換算値)が1.28となる希硫酸(濃度37.4質量%)を用いた。   As the electrolytic solution, dilute sulfuric acid (concentration: 37.4% by mass) having a specific gravity (20 ° C. converted value) of 1.28 was used.

上記の正極板、負極板ならびにセパレータを用いて、表1に示した組み合わせで、1セル当たり正極板7枚と負極板8枚から成る極板群を備えた、液式の80D26形(JISD5301)の始動用鉛蓄電池(12V55Ah)を作製した。   Liquid type 80D26 (JIS D5301) comprising the above-described positive electrode plate, negative electrode plate, and separator in the combination shown in Table 1 and an electrode plate group consisting of 7 positive electrode plates and 8 negative electrode plates per cell. The lead acid battery for starting (12V55Ah) was produced.

Figure 0004857894
Figure 0004857894

なお、正極活物質内に保持された電解液中に含まれる硫酸質量(SA)と正極活物質量(PAM)の質量比(SA/PAM)については、正極活物質ペーストを作成する際に、鉛粉に対する水および希硫酸の添加量を変化させ、正極活物質の空孔率、もしくは見かけ密度を変えることにより、変化させることができる。   In addition, about the mass ratio (SA / PAM) of the sulfuric acid mass (SA) and the amount of positive electrode active material (PAM) contained in the electrolyte solution held in the positive electrode active material, when preparing the positive electrode active material paste, It can be changed by changing the amount of water and dilute sulfuric acid added to the lead powder and changing the porosity or apparent density of the positive electrode active material.

また、正極板−負極板間に存在する電解液中に含まれる硫酸質量(SB)と正極活物質量(PAM)の質量比(SB/PAM)については、ポリエチレンのシート状セパレータ面に上下方向の線条リブを形成し、この線条リブ高さを変えることで極板間に存在する電解液の体積を変化させることによって可能である。さらには、正極板あたりの活物質の質量を変化させてもよい。   In addition, the mass ratio (SB / PAM) of sulfuric acid mass (SB) and positive electrode active material amount (PAM) contained in the electrolyte solution present between the positive electrode plate and the negative electrode plate is perpendicular to the polyethylene sheet-like separator surface. This is possible by changing the volume of the electrolyte existing between the electrode plates by changing the height of the rib. Furthermore, the mass of the active material per positive electrode plate may be changed.

さらに2つの硫酸質量の質量比(SB/SA)は、前記したように、正極活物質の空孔率または見かけ密度、または、セパレータの線条リブ高さによる極板間に存在する電解液の体積を変化させることによって調整することができる。さらに、正極板に充填された活物質の質量を変化させてもよい。なお、ガラス繊維等の繊維マットをセパレータとして用いる場合、セパレータの厚み、および見掛け体積によってこの値を調整することができる。   Further, as described above, the mass ratio of the two sulfuric acid masses (SB / SA) depends on the porosity or apparent density of the positive electrode active material or the electrolyte solution existing between the electrode plates depending on the height of the ribs of the separator. It can be adjusted by changing the volume. Furthermore, you may change the mass of the active material with which the positive electrode plate was filled. In addition, when using fiber mats, such as glass fiber, as a separator, this value can be adjusted with the thickness and apparent volume of a separator.

表1に示した各電池について、以下に示す試験条件にて充電受入性試験およびサイクル寿命試験を行った。   Each battery shown in Table 1 was subjected to a charge acceptance test and a cycle life test under the test conditions shown below.

(1)充電受入性試験条件
25℃雰囲気下において、試験電池を50Aで60秒間放電する。この放電に引き続いて300Aで1秒間放電する。この300A、1秒間の放電直後に定電圧充電(14.0V、最大充電電流100A)を60秒間行う。本試験では、充電受入性として、この定電圧充電における充電電気量を測定した。
(1) Charging acceptability test conditions In a 25 ° C atmosphere, the test battery is discharged at 50 A for 60 seconds. Following this discharge, discharge is performed at 300 A for 1 second. Immediately after the discharge of 300 A for 1 second, constant voltage charging (14.0 V, maximum charging current 100 A) is performed for 60 seconds. In this test, the amount of charge in this constant voltage charge was measured as charge acceptance.

(2)サイクル寿命試験
40℃雰囲気下において、試験電池を、50Aで60秒間放電し、この放電に引き続いて300Aで1秒間放電する。この300A、1秒間の放電直後に定電圧充電(14.0V、最大充電電流100A)を60秒間行う。この放電(50A、60秒放電および300A、1秒放電)と定電圧充電を1サイクルとして、この放電−充電サイクルの3600サイクル毎に、試験電池を開路状態で47時間放置し、寿命確認放電(300A、1秒間放電)を行う。
(2) Cycle life test In a 40 ° C atmosphere, the test battery is discharged at 50 A for 60 seconds, and this discharge is followed by discharge at 300 A for 1 second. Immediately after the discharge of 300 A for 1 second, constant voltage charging (14.0 V, maximum charging current 100 A) is performed for 60 seconds. With this discharge (50 A, 60 seconds discharge and 300 A, 1 second discharge) and constant voltage charge as one cycle, every 3600 cycles of this discharge-charge cycle, the test battery is left open for 47 hours, and the life confirmation discharge ( 300A, discharge for 1 second).

この3600サイクルの放電−充電サイクルと、この寿命確認放電とを1寿命試験サイクルとし、この寿命試験サイクルを、寿命確認放電における放電末期電圧が7.2Vに低下するまで行う。そしてこの寿命確認放電の放電末期電圧が7.2Vになった時点での放電−充電サイクル数を寿命サイクル数とする。   This 3600 cycle discharge-charge cycle and this life confirmation discharge are defined as one life test cycle, and this life test cycle is performed until the end-of-discharge voltage in the life confirmation discharge is reduced to 7.2V. The number of discharge-charge cycles when the end-of-discharge voltage of this life confirmation discharge reaches 7.2 V is defined as the number of life cycles.

なお、寿命確認放電試験結果は、3600サイクル毎に得られる。ここでは、n寿命試験サイクル(nは1以上の自然数)、すなわち放電−充電サイクル数が3600nサイクルの時点で、寿命確認放電の放電末期電圧Vnが初めて7.2V未満となった場合、(n−1)寿命試験サイクル(放電−充電サイクル数は3600(n−1)サイクル)での放電末期電圧Vn−1から、縦軸(y軸)を寿命確認放電の放電末期電圧V、横軸(x軸)を放電−充電サイクル数としたx−y座標上において、座標(3600(n−1),Vn-1)と座標(3600n,Vn)の2点間を直線で結び、この直線と、放電末期電圧V=7.2Vの直線との交点のx座標を寿命サイクル数とした。 The life confirmation discharge test result is obtained every 3600 cycles. Here, when the n endurance test cycle (n is a natural number of 1 or more), that is, when the number of discharge-charge cycles is 3600 n cycles, the end-of-discharge voltage Vn of the life confirmation discharge is less than 7.2 V for the first time, -1) From the end-of-discharge voltage Vn-1 in the life test cycle (the number of discharge-charge cycles is 3600 (n-1) cycles), the vertical axis (y-axis) is the end-of-discharge voltage V of the life confirmation discharge, and the horizontal axis ( On the xy coordinates where the x-axis) is the number of discharge-charge cycles, the two points of the coordinates (3600 (n-1), Vn -1 ) and the coordinates (3600n, Vn) are connected by a straight line. And the x coordinate of the intersection with the straight line of the final discharge voltage V = 7.2V was defined as the life cycle number.

なお、この寿命試験条件は、深い放電が行われる、アイドリングストップ車用の鉛蓄電池の使用条件を想定したものである。これらの充電受入性試験ならびにサイクル寿命試験の結果を表2に示す。   In addition, this life test condition assumes the use condition of the lead acid battery for idling stop vehicles in which deep discharge is performed. Table 2 shows the results of these charge acceptance tests and cycle life tests.

Figure 0004857894
Figure 0004857894

表2に示した結果から、正極活物質内に保持された電解液中の硫酸質量(SA)と正極活物質量(PAM)の質量比(SA/PAM)が0.05〜0.07であり、かつ、正極板と負極板の間に存在する硫酸質量(SB)と正極活物質量(PAM)の質量比(SB/PAM)が0.05〜0.07の電池については、その他の電池と比較して、充電受入性が顕著に優れており、また、寿命サイクル特性についても、40000を超えたサイクル数を有し、顕著に寿命特性に優れている。その中でも、特に、極板間に存在する電解液中の硫酸質量(SB)と正極活物質内に保持された電解液中の硫酸質量(SA)の質量比(SB/SA)が0.8〜1.4である電池B2、B3およびC3はさらに寿命に優れていた。   From the results shown in Table 2, the mass ratio (SA / PAM) of the sulfuric acid mass (SA) and the positive electrode active material amount (PAM) in the electrolyte retained in the positive electrode active material is 0.05 to 0.07. And a battery having a mass ratio (SB / PAM) of sulfuric acid mass (SB) and positive electrode active material amount (PAM) existing between the positive electrode plate and the negative electrode plate of 0.05 to 0.07, In comparison, the charge acceptability is remarkably excellent, and the life cycle characteristics have a cycle number exceeding 40000, and the life characteristics are remarkably excellent. Among these, in particular, the mass ratio (SB / SA) of the sulfuric acid mass (SB) in the electrolytic solution existing between the electrodes and the sulfuric acid mass (SA) in the electrolytic solution held in the positive electrode active material is 0.8. The batteries B2, B3, and C3, which are ˜1.4, were further excellent in life.

一方、質量比(SA/PAM)が0.045の電池は、充電受入性は比較的良好であったが、寿命が劣っていた。これは、極板内部の硫酸量の不足によって、硫酸分が多く存在する極板表面側で選択的に放電することで、そこに硫酸鉛の蓄積が生じ、硫酸の拡散を阻害して容量低下となり、サイクル寿命の低下を招いたものと考えられる。   On the other hand, the battery having a mass ratio (SA / PAM) of 0.045 had relatively good charge acceptability, but had a poor life. This is due to the insufficient amount of sulfuric acid inside the electrode plate, which causes selective discharge on the surface side of the electrode plate where a large amount of sulfuric acid exists, leading to the accumulation of lead sulfate, which inhibits the diffusion of sulfuric acid and reduces the capacity. Therefore, it is considered that the cycle life was reduced.

質量比(SA/PAM)が0.07を超える電池は、正極活物質の密度を極めて小さくしなければならず、サイクル進行によって活物質相互の結合力が低下することで劣化し、早期に寿命となっていた。   Batteries with a mass ratio (SA / PAM) exceeding 0.07 must have a very low density of the positive electrode active material, deteriorate due to a decrease in the bonding force between the active materials as the cycle progresses, and an early life It was.

以上、説明してきたように、本発明の構成による鉛蓄電池は、優れた充電受入性ならびに寿命特性を有することが確認できた。   As described above, it has been confirmed that the lead storage battery according to the configuration of the present invention has excellent charge acceptability and life characteristics.

以上、本発明の鉛蓄電池によれば、頻繁な深い放電後の充電受入性を改善し、優れた寿命特性を有することができるので、アイドリングストップ車や回生ブレーキシステム搭載車等に好適である。   As described above, according to the lead storage battery of the present invention, the charge acceptability after frequent deep discharge can be improved and excellent life characteristics can be obtained, which is suitable for an idling stop vehicle, a vehicle equipped with a regenerative brake system, and the like.

鉛蓄電池を示す図Diagram showing lead acid battery 鉛蓄電池の要部断面を示す図The figure which shows the principal part cross section of lead acid battery

符号の説明Explanation of symbols

101 鉛蓄電池
102 正極板
103 負極板
104 セパレータ
105 極板群
106 電槽
107 蓋
108 排気栓
108a ガス排気口
109 フィルタ
110 防沫板
111 電解液
DESCRIPTION OF SYMBOLS 101 Lead acid battery 102 Positive electrode plate 103 Negative electrode plate 104 Separator 105 Electrode plate group 106 Battery case 107 Cover 108 Exhaust plug 108a Gas exhaust port 109 Filter 110 Splash-proof plate 111 Electrolyte

Claims (2)

Pb−Ca合金からなる正極格子と、前記正極格子に充填された正極活物質とからなる正極板、Pb−Ca合金からなる負極格子と、前記負極格子に充填された負極活物質とからなる負極板、ならびに、前記正極板と前記負極板を隔離するセパレータとからなる極板群を電解液に浸漬した構成の液式の鉛蓄電池であって、前記正極活物質内に保持された電解液の硫酸質量(SA)と前記正極活物質(PAM)の質量比(SA/PAM)が0.05〜0.07であって、かつ、前記正極板と前記負極板の間に存在する電解液中の硫酸質量(SB)と前記正極活物質(PAM)の質量比(SB/PAM)が0.05〜0.07であることを特徴とする鉛蓄電池。 A positive electrode plate made of a positive electrode lattice made of a Pb-Ca alloy, a positive electrode plate made of a positive electrode active material filled in the positive electrode lattice, a negative electrode lattice made of Pb-Ca alloy, and a negative electrode made of a negative electrode active material filled in the negative electrode lattice A liquid lead-acid battery having a structure in which an electrode group consisting of a plate and a separator separating the positive electrode plate and the negative electrode plate is immersed in an electrolytic solution, wherein the electrolytic solution held in the positive electrode active material Sulfuric acid in the electrolyte solution having a mass ratio (SA / PAM) of sulfuric acid mass (SA) and positive electrode active material (PAM) of 0.05 to 0.07 and existing between the positive electrode plate and the negative electrode plate The lead acid battery characterized by mass ratio (SB / PAM) of mass (SB) and the said positive electrode active material (PAM) being 0.05-0.07. 前記正極板と前記負極板の間に存在する電解液の硫酸質量(SB)と正極活物質内に保持された電解液の硫酸質量(SA)の質量比(SB/SA)が0.8〜1.4であることを特徴とする請求項1に記載の鉛蓄電池。 The mass ratio (SB / SA) of the sulfuric acid mass (SB) of the electrolytic solution existing between the positive electrode plate and the negative electrode plate and the sulfuric acid mass (SA) of the electrolytic solution held in the positive electrode active material is 0.8-1. The lead acid battery according to claim 1, wherein the lead acid battery is 4.
JP2006131343A 2006-05-10 2006-05-10 Lead acid battery Active JP4857894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006131343A JP4857894B2 (en) 2006-05-10 2006-05-10 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006131343A JP4857894B2 (en) 2006-05-10 2006-05-10 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2007305368A JP2007305368A (en) 2007-11-22
JP4857894B2 true JP4857894B2 (en) 2012-01-18

Family

ID=38839136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006131343A Active JP4857894B2 (en) 2006-05-10 2006-05-10 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4857894B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102365783A (en) 2009-05-28 2012-02-29 松下电器产业株式会社 Lead storage battery charging control method, charging control circuit, power source device and lead storage battery
US9356321B2 (en) 2012-12-21 2016-05-31 Panasonic Intellectual Property Management Co., Ltd. Lead-acid battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170173A (en) * 1986-01-21 1987-07-27 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH07113804B2 (en) * 1988-10-28 1995-12-06 シャープ株式会社 Counter reset device for image forming apparatus

Also Published As

Publication number Publication date
JP2007305368A (en) 2007-11-22

Similar Documents

Publication Publication Date Title
JP4953600B2 (en) Lead acid battery
WO2005096431A1 (en) Lead storage battery
JP2015167142A (en) Lead storage battery, and idling stop vehicle using same
JP2003123760A (en) Negative electrode for lead-acid battery
JP2008243493A (en) Lead acid storage battery
JP2008243489A (en) Lead acid storage battery
JP4515902B2 (en) Lead acid battery
JP4857894B2 (en) Lead acid battery
JP2001332264A (en) Lead battery with miniature control valve
JP5116331B2 (en) Lead acid battery
JP2006114417A (en) Lead-acid storage battery
JP2007305370A (en) Lead storage cell
JP5573785B2 (en) Lead acid battery
JPWO2019088040A1 (en) Separator for lead-acid battery and lead-acid battery
JPH1069900A (en) Pole plate for lead-acid battery
JP2004014283A (en) Valve regulated lead battery
WO2020066763A1 (en) Lead battery
JP4904686B2 (en) Lead acid battery
JP5044888B2 (en) Liquid lead-acid battery
JP4470381B2 (en) Lead acid battery
JP4984786B2 (en) Lead acid battery
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JP4904674B2 (en) Lead acid battery
JP2019207786A (en) Lead acid battery
JP2005268061A (en) Lead storage cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

R151 Written notification of patent or utility model registration

Ref document number: 4857894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350