JPH11162456A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JPH11162456A
JPH11162456A JP9325919A JP32591997A JPH11162456A JP H11162456 A JPH11162456 A JP H11162456A JP 9325919 A JP9325919 A JP 9325919A JP 32591997 A JP32591997 A JP 32591997A JP H11162456 A JPH11162456 A JP H11162456A
Authority
JP
Japan
Prior art keywords
lead
powder
positive electrode
battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9325919A
Other languages
Japanese (ja)
Inventor
Toshio Shibahara
敏夫 柴原
Ichiro Mukoya
一郎 向谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP9325919A priority Critical patent/JPH11162456A/en
Publication of JPH11162456A publication Critical patent/JPH11162456A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase formation charging efficiency and a high-rate discharging characteristic in a lead-acid battery using a paste type electrode manufactured by a battery jar formation method. SOLUTION: The powder mixed with the powder mainly made of lead monoxide having the average grain size of 1-10 μm, red lead powder having the average grain size of 1-3 μm and a pore forming material such as naphthalene powder is used as the raw material of a positive electrode active material. The ratio of the capacity of fine pores of 1 μm or above against the capacity of all fine pores is set to 30-50% on a positive electrode added with the pore forming material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高率放電特性の優
れた鉛蓄電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead-acid battery having excellent high-rate discharge characteristics.

【0002】[0002]

【従来の技術】密閉形鉛蓄電池は安価で信頼性が高いと
いう特徴を有するため、無停電電源装置用の電源として
広く使用されている。そして、これらの装置に用いられ
る鉛蓄電池は低コスト化が強く要求されており、製造方
法の簡素化が進められている。製造方法を簡素化する一
つの手段として、一般には電槽化成と呼ばれている方
式、すなわち電池を組み立てた後に充電して化成を行う
方式がある。なお、電槽化成方式では化成時に使用する
電解液が完成した電池の電解液となるため、従来のタン
ク槽を用いた化成方式に比べて高い濃度の硫酸を用いる
必要がある。しかし、電槽化成時に高い濃度の電解液を
用いると、正極板の化成充電効率が低くなるという問題
点がある。そこで、化成充電効率を高くする手段とし
て、正極活物質の原材料に四三酸化鉛(Pb34)を添
加する手法が特開昭62−93857号公報や、特開昭
64−89263号公報において開示されている。しか
しながら、一般に市販されている四三酸化鉛を正極活物
質に添加すると、活物質の細孔径が小さくなる傾向があ
る。その結果、電極反応に関与する硫酸イオンの拡散が
起こりにくくなり、高率放電特性が悪くなるという問題
点がある。
2. Description of the Related Art A sealed lead-acid battery is widely used as a power source for an uninterruptible power supply because of its features of low cost and high reliability. The lead storage batteries used in these devices are strongly required to be reduced in cost, and the production method is being simplified. As one means for simplifying the manufacturing method, there is a method generally called battery case formation, that is, a method in which a battery is assembled and then charged to perform formation. In addition, in the case formation method, since the electrolyte used during formation becomes the electrolyte of the completed battery, it is necessary to use sulfuric acid having a higher concentration than the formation method using a conventional tank tank. However, the use of a high-concentration electrolytic solution during the formation of a battery case has a problem that the formation charge efficiency of the positive electrode plate is reduced. Therefore, as a means of increasing the formation charge efficiency, a method of adding lead trioxide (Pb 3 O 4 ) to the raw material of the positive electrode active material is disclosed in JP-A-62-93857 and JP-A-64-89263. Are disclosed. However, when commercially available lead tetroxide is added to the positive electrode active material, the pore size of the active material tends to decrease. As a result, there is a problem that diffusion of sulfate ions involved in the electrode reaction hardly occurs and high-rate discharge characteristics deteriorate.

【0003】一方、活物質の細孔径を大きくする手段と
して造孔剤をペースト状活物質に添加する手法が特開平
4−366551号公報で開示されている。この方法で
は電池の化成充電効率は高くできないものの、高率放電
特性を向上させることができる。
On the other hand, Japanese Patent Application Laid-Open No. 4-366551 discloses a method of adding a pore former to a paste-like active material as a means for increasing the pore diameter of the active material. This method cannot improve the formation charge efficiency of the battery, but can improve the high-rate discharge characteristics.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前記問題点
に鑑みてなされたものであって、正極板の化成充電効率
が高く、かつ高率放電特性に優れた鉛蓄電池を製造する
ことである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and is intended to produce a lead-acid battery having a high formation charge efficiency of a positive electrode plate and excellent high-rate discharge characteristics. is there.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に本発明では、平均粒子径が1〜10μmの一酸化鉛を
主成分とする粉末、平均粒子径が1〜3μmの四三酸化
鉛粉末及び造孔剤を原材料として用いて正極板を作製し
た。そして、この正極板において、細孔径1μm以上の
細孔容積が全細孔容積に対して30%〜50%になるよ
うに添加する造孔剤量を調節することを特徴としてい
る。
According to the present invention, there is provided a powder containing lead monoxide as a main component having an average particle diameter of 1 to 10 μm, and lead trioxide having an average particle diameter of 1 to 3 μm. A positive electrode plate was prepared using the powder and the pore former as raw materials. The positive electrode plate is characterized in that the amount of the pore-forming agent added is adjusted so that the volume of pores having a pore diameter of 1 μm or more is 30% to 50% of the total pore volume.

【0006】[0006]

【発明の実施の形態】本発明では分級によって得られ
た、平均粒子径が0.5、1、10、15μmの一酸化
鉛を主成分とする粉末、平均粒子径が0.5、1、3、
5μmの四三酸化鉛の粉末を用いた。なお、分級して得
た一酸化鉛粉末及び四三酸化鉛粉末の平均粒子径は、H
ORIBA社製のLA−500型、レーザー回折式粒度
分布測定装置を用いて測定した。本発明では、粒子体積
基準で50%粒子径を平均粒子径と規定した。そして、
これらの粉末と平均粒子径が5μmのナフタリン粉末の
混合物と希硫酸とを混練してペースト状活物質とした。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a powder mainly composed of lead monoxide having an average particle diameter of 0.5, 1, 10, and 15 μm, obtained by classification, and having an average particle diameter of 0.5, 1, 3,
5 μm lead tetroxide powder was used. The average particle diameter of the classified lead monoxide powder and lead tetroxide powder is H
It was measured using a LA-500 type laser diffraction particle size distribution analyzer manufactured by ORIBA. In the present invention, the 50% particle diameter based on the particle volume is defined as the average particle diameter. And
A mixture of these powders, a naphthalene powder having an average particle diameter of 5 μm, and dilute sulfuric acid were kneaded to obtain a paste active material.

【0007】このペースト状活物質を鉛−カルシウム合
金製の格子体に充填し、熟成・乾燥することによって未
化成の正極板を得た。ナフタリン粉末粒子は、熟成・乾
燥工程で昇華する。その結果、粒子の存在した部分が空
孔となるため、正極板に1μm以上の孔径を有する細孔
を多数得ることができる。なお、正極板の細孔径はMicr
omeritics 社製の9310型、水銀圧入方式ポロシメータで
測定した。以下に、本発明の一実施例を説明する。
[0007] The paste-like active material was filled in a lead-calcium alloy lattice, aged and dried to obtain an unformed positive electrode plate. The naphthalene powder particles sublime during the aging and drying process. As a result, the portion where the particles are present becomes voids, so that a large number of pores having a pore diameter of 1 μm or more can be obtained in the positive electrode plate. The pore size of the positive electrode plate is Micr
It was measured with a 9310 mercury intrusion porosimeter manufactured by Omeritics. Hereinafter, an embodiment of the present invention will be described.

【0008】[0008]

【実施例】(実施例1〜3、比較例1)一酸化鉛を70
〜80wt.%含むボールミル式鉛粉を分級することに
よって、平均粒子径が1μmの一酸化鉛を主成分とする
粉末を得た。一方、市販されている三井金属(株)製の
四三酸化鉛率が99.9%の粉末を分級することによっ
て、平均粒子径が3μmの四三酸化鉛粉末を得た。前記
した一酸化鉛を主成分とする粉末100重量部と、四三
酸化鉛30重量部とを混合する。この混合粉末100重
量部に平均粒子径が5μmのナフタリン細粒を3、5又
は7重量部添加して新たな3種類の混合粉末を作製し、
それをペースト状活物質の原材料粉末として用いた。一
方、ナフタリンを添加していない一酸化鉛を主成分とす
る粉末と四三酸化鉛の混合粉末をペースト状活物質の原
材料粉末として用いて比較例1とした。これら混合物1
30重量部、濃度35wt.%の硫酸20重量部とを混
練し、正極用のペースト状活物質を作製した。これらに
ついて表1、2に示される組合せで以下の実験をした。
一酸化鉛を70〜80wt.%含む分級をしていないボ
ールミル式鉛粉100重量部、リグニン0.2重量部、
硫酸バリウム1重量部と、濃度35wt.%の硫酸15
重量部を混練して負極用のペースト状活物質を作製し
た。これらの作製したペースト状活物質約35gを、P
b−0.08wt.%Ca−1.5wt.%Sn合金製
で寸法がw 40mm × l 70mm × t 3mmの
格子体に充填し、大気中で40℃、24時間放置して熟
成した後に、50℃で2時間乾燥して未化成の鉛蓄電池
用極板を作製した。この正極板2枚と負極板3枚とをガ
ラス繊維セパレータを介して組み合わせてABS製電槽
に組み込んだ後、濃度30wt.%の希硫酸電解液を注
入した。その後、正極に用いた活物質重量から計算した
理論容量の2.5倍の電気量で充電して電槽化成し、公
称容量7Ah(ただし20時間率容量)の密閉型鉛蓄電
池を作製した。なお、電槽化成時における充電時間は4
0時間である。化成充電効率は正極活物質中の二酸化鉛
(PbO2)量を測定することで算出した。作製した電
池は、JIS C 8702に準拠する以下の条件で試
験した。すなわち、周囲温度として40±2℃、2.2
75V/セルで充電し、3.0CAの電流で終止電圧
1.3V/セルまで放電して容量を確認した。
EXAMPLES (Examples 1 to 3, Comparative Example 1)
~ 80 wt. %, A powder mainly composed of lead monoxide having an average particle diameter of 1 μm was obtained. On the other hand, a commercially available powder of Mitsui Kinzoku Co., Ltd., having a lead tetroxide ratio of 99.9%, was classified to obtain a lead tetroxide powder having an average particle diameter of 3 μm. 100 parts by weight of the powder containing lead monoxide as a main component and 30 parts by weight of lead tetroxide are mixed. To 100 parts by weight of this mixed powder, 3, 5, or 7 parts by weight of naphthalene fine particles having an average particle diameter of 5 μm were added to prepare three new types of mixed powders.
It was used as a raw material powder for a paste-like active material. On the other hand, Comparative Example 1 was used in which a mixed powder of a powder mainly containing lead monoxide to which naphthalene was not added and lead tetroxide was used as a raw material powder of the paste-like active material. These mixture 1
30 parts by weight, concentration 35 wt. % Sulfuric acid (20 parts by weight) was kneaded to prepare a paste active material for a positive electrode. The following experiments were performed on these combinations in combinations shown in Tables 1 and 2.
70 to 80 wt. % Of unmilled ball mill-type lead powder, 100 parts by weight of lignin,
1 part by weight of barium sulfate and a concentration of 35 wt. 15% sulfuric acid
A part by weight was kneaded to prepare a paste-like active material for a negative electrode. About 35 g of these prepared paste-like active materials were
b-0.08 wt. % Ca-1.5 wt. % Sn alloy is filled in a grid having dimensions of w 40 mm × l 70 mm × t 3 mm, left to stand in the air at 40 ° C. for 24 hours, aged, dried at 50 ° C. for 2 hours, and then left unformed. An electrode plate was prepared. The two positive plates and the three negative plates were combined via a glass fiber separator and assembled into an ABS battery case. % Dilute sulfuric acid electrolyte was injected. Thereafter, the battery was charged with an amount of electricity 2.5 times the theoretical capacity calculated from the weight of the active material used for the positive electrode to form a battery case, thereby producing a sealed lead-acid battery having a nominal capacity of 7 Ah (20 hour rate capacity). The charging time during battery formation was 4
0 hours. The formation charge efficiency was calculated by measuring the amount of lead dioxide (PbO 2 ) in the positive electrode active material. The manufactured battery was tested under the following conditions in accordance with JIS C8702. That is, the ambient temperature is 40 ± 2 ° C., 2.2
The battery was charged at 75 V / cell and discharged at a current of 3.0 CA to a final voltage of 1.3 V / cell to confirm the capacity.

【0009】(比較例2)実施例1〜3で使用した平均
粒子径が1μmの一酸化鉛を主成分とする粉末100重
量部、濃度が35wt.%の硫酸16重量部とを混練
し、正極用のペースト状活物質とした。すなわち、比較
例2では四三酸化鉛を添加しない正極板を用いた。これ
を、実施例1〜3で用いた手順で鉛合金製の格子体に充
填し大気中、40℃、24時間放置して熟成した後に5
0℃で2時間乾燥して未化成の鉛蓄電池用正極板を作製
した。この後、(実施例1〜3)に示した条件で負極板
及び電池を作製して試験した。
Comparative Example 2 100 parts by weight of a powder mainly composed of lead monoxide having an average particle diameter of 1 μm and a concentration of 35 wt. % Sulfuric acid (16 parts by weight) was kneaded to obtain a paste active material for a positive electrode. That is, in Comparative Example 2, a positive electrode plate to which lead trioxide was not added was used. This was filled into a lead alloy lattice by the procedure used in Examples 1 to 3 and left in the air at 40 ° C. for 24 hours for aging.
After drying at 0 ° C. for 2 hours, a positive electrode plate for an unformed lead storage battery was produced. Thereafter, a negative electrode plate and a battery were prepared and tested under the conditions shown in (Examples 1 to 3).

【0010】以上、作製した電池を電槽化成した場合の
化成充電効率及び3C放電時間を測定した結果を表1に
示す。四三酸化鉛を正極活物質に添加した電池は化成充
電効率が向上しており、少ない電力消費量で化成するこ
とができるため、低コスト化が可能である。また、実施
例1〜3 のナフタリン粒子を造孔剤として用いて1μ
m以上の細孔容積比率が30〜50%の範囲にある場
合、3C放電時間が10分以上となっており、優れた高
率放電特性が得られている。
Table 1 shows the results of measuring the formation charge efficiency and 3C discharge time when the battery thus prepared was formed into a battery case. A battery in which lead trioxide is added to the positive electrode active material has improved formation charge efficiency and can be formed with a small amount of power consumption, so that cost reduction can be achieved. Further, 1 μm was obtained using the naphthalene particles of Examples 1 to 3 as a pore-forming agent.
When the pore volume ratio of m or more is in the range of 30 to 50%, the 3C discharge time is 10 minutes or more, and excellent high-rate discharge characteristics are obtained.

【0011】[0011]

【表1】 [Table 1]

【0012】(実施例4〜6及び比較例3〜6)一酸化
鉛を70〜80wt.%含むボールミル式鉛粉を分級す
ることによって、平均粒子径が0.5、1、10、15
μmの4種類の一酸化鉛を主成分とする粉末を得た。一
方、市販されている三井金属(株)製の四三酸化鉛率が
99.9%の粉末を分級することによって、平均粒子径
が0.5、1、3、5μmの4種類の四三酸化鉛粉末を
得た。
(Examples 4 to 6 and Comparative Examples 3 to 6) 70 to 80 wt. %, The average particle diameter is 0.5, 1, 10, 15
As a result, four types of powders each containing 4 μm of lead monoxide as a main component were obtained. On the other hand, by classifying a commercially available powder having a lead trioxide ratio of 99.9% manufactured by Mitsui Kinzoku Co., Ltd., four kinds of powders having an average particle diameter of 0.5, 1, 3, and 5 μm are obtained. A lead oxide powder was obtained.

【0013】分級した一酸化鉛を主成分とする粉末10
0重量部と四三酸化鉛30重量部とを混合する。この混
合粉末100重量部に、平均粒子径が5μmのナフタリ
ン細粒を5重量部添加して新たな混合粉末を作製した。
この混合物130重量部、濃度35wt.%の硫酸20
重量部とを混練し、正極用のペースト状活物質を作製し
た。これらの粉末を用いた正極板は表2に示される組合
せで用いた。それを、実施例1〜3で示した条件で格子
体に充填し、大気中で、40℃、24時間放置して熟成
した後に50℃で2時間乾燥して未化成の正極板を作製
した。この後、(実施例1〜3)に示した条件で負極板
及び電池を作製して試験した。
The classified powder 10 mainly composed of lead monoxide 10
0 parts by weight and 30 parts by weight of lead tetroxide are mixed. To 100 parts by weight of the mixed powder, 5 parts by weight of fine particles of naphthalene having an average particle diameter of 5 μm were added to prepare a new mixed powder.
130 parts by weight of this mixture, concentration 35 wt. 20% sulfuric acid 20%
The mixture was kneaded with parts by weight to prepare a paste-like active material for a positive electrode. Positive plates using these powders were used in combinations shown in Table 2. It was filled in a grid under the conditions described in Examples 1 to 3, left in the air at 40 ° C. for 24 hours, aged, and then dried at 50 ° C. for 2 hours to produce an unformed positive electrode plate. . Thereafter, a negative electrode plate and a battery were prepared and tested under the conditions shown in (Examples 1 to 3).

【0014】表2より、粒子径が1〜10μmの一酸化
鉛を主成分とする粉末と1〜3μmの四三酸化鉛粉末及
び造孔剤としてナフタリン粒子を用いることによって3
C放電容量を10分以上にできる。
From Table 2, it can be seen that the use of a powder mainly composed of lead monoxide having a particle diameter of 1 to 10 μm, a lead tetroxide powder having a particle diameter of 1 to 3 μm, and naphthalene particles as a pore-forming agent makes it possible to obtain 3 particles.
C discharge capacity can be increased to 10 minutes or more.

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】上述したように、一酸化鉛を主成分とす
る粉末と四三酸化鉛粉末の混合物を活物質として用いる
ことにより、化成充電高率を高くすることができるため
低コスト化が可能となる。さらに、平均粒子径が1〜1
0μmの一酸化鉛を主成分とする粉末と平均粒子径が1
〜3μmの四三酸化鉛粉末及びナフタリンなどの造孔剤
の混合物を正極活物質に用い、正極活物質における全細
孔容積に対する細孔径1μm以上の細孔容積の割合を3
0%〜50%にすることによって高率放電容量を向上で
きる。
As described above, by using a mixture of a powder containing lead monoxide as a main component and a lead tetroxide powder as an active material, it is possible to increase the rate of formation charge and thus reduce the cost. It becomes possible. Furthermore, the average particle size is 1 to 1
0 μm lead monoxide-based powder and average particle size of 1
A mixture of lead trioxide powder having a pore diameter of 1 μm or more with respect to the total pore volume of the positive electrode active material is 3 μm.
By setting the content to 0% to 50%, the high rate discharge capacity can be improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】平均粒子径が1〜10μmの一酸化鉛を主
成分とする粉末、平均粒子径が1〜3μmの四三酸化鉛
を主成分とする粉末及び造孔剤を用いる鉛蓄電池用正極
板において、1μm以上の細孔径の容積が全細孔容積に
対して、30〜50%であることを特徴とする鉛蓄電
池。
1. A lead-acid battery using a powder mainly composed of lead monoxide having an average particle diameter of 1 to 10 μm, a powder mainly composed of lead tetroxide having an average particle diameter of 1 to 3 μm, and a pore-forming agent. A lead-acid battery, wherein the volume of pores of 1 μm or more in the positive electrode plate is 30 to 50% of the total pore volume.
【請求項2】前記した造孔剤がナフタリン粒子であるこ
とを特徴とする請求項1記載の鉛蓄電池。
2. The lead-acid battery according to claim 1, wherein the pore-forming agent is naphthalene particles.
JP9325919A 1997-11-27 1997-11-27 Lead-acid battery Pending JPH11162456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9325919A JPH11162456A (en) 1997-11-27 1997-11-27 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9325919A JPH11162456A (en) 1997-11-27 1997-11-27 Lead-acid battery

Publications (1)

Publication Number Publication Date
JPH11162456A true JPH11162456A (en) 1999-06-18

Family

ID=18182069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9325919A Pending JPH11162456A (en) 1997-11-27 1997-11-27 Lead-acid battery

Country Status (1)

Country Link
JP (1) JPH11162456A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243679A (en) * 2007-03-28 2008-10-09 Gs Yuasa Corporation:Kk Lead-acid storage battery
JP2010015905A (en) * 2008-07-04 2010-01-21 Gs Yuasa Corporation Positive electrode plate for lead storage battery
WO2013046499A1 (en) * 2011-09-30 2013-04-04 パナソニック株式会社 Lead acid storage battery for energy storage
US9362596B2 (en) 2013-07-19 2016-06-07 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
WO2022259571A1 (en) 2021-06-08 2022-12-15 株式会社Gsユアサ Control valve-type lead storage battery, manufacturing method therefor, and power storage system having control valve-type lead storage battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243679A (en) * 2007-03-28 2008-10-09 Gs Yuasa Corporation:Kk Lead-acid storage battery
JP2010015905A (en) * 2008-07-04 2010-01-21 Gs Yuasa Corporation Positive electrode plate for lead storage battery
WO2013046499A1 (en) * 2011-09-30 2013-04-04 パナソニック株式会社 Lead acid storage battery for energy storage
JP5190562B1 (en) * 2011-09-30 2013-04-24 パナソニック株式会社 Lead-acid battery for energy storage
US9362596B2 (en) 2013-07-19 2016-06-07 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
US9899666B2 (en) 2013-07-19 2018-02-20 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
WO2022259571A1 (en) 2021-06-08 2022-12-15 株式会社Gsユアサ Control valve-type lead storage battery, manufacturing method therefor, and power storage system having control valve-type lead storage battery

Similar Documents

Publication Publication Date Title
JP2004199950A (en) Manufacturing method of positive electrode plate for lead-acid storage battery
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JP2000251896A (en) Lead-acid battery and its manufacture
JPH11162456A (en) Lead-acid battery
JP4186197B2 (en) Positive electrode plate for lead acid battery
KR100266133B1 (en) A method for preparing anode plate of lead storage battery using activated material cured at high temperature
JP2000133253A (en) Lead-acid battery and manufacture of same
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP2002100347A (en) Lead-acid battery
JP2004055309A (en) Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it
JP2004327299A (en) Sealed lead-acid storage battery
JPH11176438A (en) Lead-acid battery, and manufacture of material lead powder for lead-acid battery
JP2004055417A (en) Manufacturing method of pasty active material for positive electrode and lead storage battery using it
JPH0676815A (en) Positive electrode plate for lead-acid battery and manufacture thereof
KR100342198B1 (en) Method for producing the positive plate of a lead battery
JPH11135111A (en) Lead-acid battery
JP2001185151A (en) Sealed lead acid battery
JPH11162455A (en) Lead-acid battery
JPH09147841A (en) Negative electrode plate for lead acid battery and its manufacture
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JP2004079198A (en) Lead accumulator
KR100250866B1 (en) A method for preparing anode plate of lead storage battery
JPH11135117A (en) Lead-acid battery
JPH11185739A (en) Paste type positive electrode plate for lead-acid battery
JP2003132937A (en) Manufacturing method of lead storage battery