JPH10270028A - Positive electrode plate for lead-acid battery - Google Patents

Positive electrode plate for lead-acid battery

Info

Publication number
JPH10270028A
JPH10270028A JP9087664A JP8766497A JPH10270028A JP H10270028 A JPH10270028 A JP H10270028A JP 9087664 A JP9087664 A JP 9087664A JP 8766497 A JP8766497 A JP 8766497A JP H10270028 A JPH10270028 A JP H10270028A
Authority
JP
Japan
Prior art keywords
positive electrode
lead
active material
electrode plate
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9087664A
Other languages
Japanese (ja)
Other versions
JP4186197B2 (en
Inventor
Masahiko Onari
雅彦 小斉
Shoji Yasukawa
祥二 安川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP08766497A priority Critical patent/JP4186197B2/en
Publication of JPH10270028A publication Critical patent/JPH10270028A/en
Application granted granted Critical
Publication of JP4186197B2 publication Critical patent/JP4186197B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the subject electrode which improves the service life of a lead-acid battery and ensures a high capacity by specifying the diameter of a narrow hole corresponding to a specified ratio of the whole narrow hole volume of positive electrode active material. SOLUTION: The hole diamer of 15-35% of the whole narrow hole volume of a positive electrode active material in a positive electrode plate for a lead- acid battery is made 5-50 μm. More preferably, the electrode plate is provided by electrolytically treating a non-formed active material for forming a coaggulation part of tetrabasic lead surfate. By controlling the size of the sulfuric acid coaggulation part in the positive electrode paste, the distribution of 4PbO.Pb SO4 after the aging is changed, whereby 15-35% of the whole narrow hole volume of the positive electrode active material comprises narrow holes with the dia. of 5-50 μm, which is effective in an improvement of the performance of the battery. As for the other holes than those with the dia. of 5-50 μm are almost those with the dia. of 5 μm or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鉛蓄電池用正極板の
改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a positive electrode plate for a lead storage battery.

【0002】[0002]

【従来の技術】現在、鉛蓄電池は自動車用や産業用をは
じめとしてあらゆる分野で用いられている。その中で自
動車用電池は最も需要が高く、軽量化、コストダウン
化、メンテナンスフリー化、長寿命化、品質の安定化が
求められている。
2. Description of the Related Art At present, lead-acid batteries are used in various fields including those for automobiles and industries. Among them, automotive batteries have the highest demand, and are required to be lightweight, cost-saving, maintenance-free, have a long life, and have stable quality.

【0003】現在、鉛蓄電池に用いられている格子合金
は鉛−アンチモン系と鉛−カルシウム−錫系(以後、鉛
−カルシウム系と呼ぶ)に大別でき、鉛蓄電池の特性は
これらの格子合金によって著しく異なることが知られて
いる。すなわち、鉛−アンチモン系合金の正極格子を用
いた鉛蓄電池は深い充放電サイクルに優れた特性を示す
が、自己放電が大きい欠点がある。一方、鉛−カルシウ
ム系合金の正極格子を用いた鉛蓄電池は自己放電が少な
い、使用中の減液が少ないため補水の必要がないなどの
メンテナンスフリー特性に優れているものの、充放電サ
イクルを繰り返すと比較的早期に放電容量が低下するこ
とがあるという欠点がある。
At present, the lattice alloys used in lead-acid batteries can be broadly classified into lead-antimony-based and lead-calcium-tin-based (hereinafter referred to as lead-calcium-based) alloys. Are known to differ significantly. That is, a lead-acid battery using a lead-antimony-based alloy positive electrode grid exhibits excellent characteristics in deep charge / discharge cycles, but has a disadvantage of large self-discharge. On the other hand, a lead-acid battery using a positive electrode grid of a lead-calcium alloy has excellent maintenance-free characteristics such as low self-discharge, little liquid reduction during use and no need for water replenishment, but repeated charge / discharge cycles. However, there is a disadvantage that the discharge capacity may decrease relatively early.

【0004】一般に鉛蓄電池の容量低下は、充放電サイ
クル中に正極活物質粒子が粗大化して粒子間の接合性が
低下するために起ることが知られている。この現象は活
物質の軟化と呼ばれ、特に極板表面の活物質層から起こ
り、次第に内部の活物質へ拡大していくことが知られて
いる。また、活物質の軟化は正極格子合金中のアンチモ
ンが少なくなるほど起こりやすく、アンチモンが正極活
物質の劣化に何らかの影響をおよぼしているものと考え
られている。
[0004] It is generally known that the capacity of a lead storage battery is reduced due to the coarsening of the positive electrode active material particles during the charge / discharge cycle, which lowers the bondability between the particles. This phenomenon is called softening of the active material, and it is known that it occurs particularly from the active material layer on the surface of the electrode plate and gradually spreads to the internal active material. The softening of the active material is more likely to occur as the amount of antimony in the positive electrode lattice alloy decreases, and it is considered that antimony has some influence on the deterioration of the positive electrode active material.

【0005】従来、鉛蓄電池はつぎのように製造されて
いる。すなわち、鉛合金製格子に、酸化度(一酸化鉛の
重量%)60〜95%の鉛粉を希硫酸でペースト状に練
ったものを充填し、熟成および乾燥を施して未化成極板
とする。これらを用いて組み立てた電池を正極活物質の
理論電気量比200〜400%の電気量で電槽化成して
充電済み電池とする。
Conventionally, lead-acid batteries have been manufactured as follows. That is, the lead alloy lattice is filled with a paste obtained by kneading a lead powder having a degree of oxidation (weight% of lead monoxide) of 60 to 95% with dilute sulfuric acid, aging and drying to form an unformed electrode plate. I do. A battery assembled using these components is formed into a battery case with an amount of electricity of 200 to 400% of the theoretical amount of electricity of the positive electrode active material to obtain a charged battery.

【0006】[0006]

【発明が解決しようとする課題】特に鉛−カルシウム系
合金を正極格子として用いたときなどに、上述した熟成
工程を改良し、たとえば、高温高湿熟成を施すことによ
って未化成活物質中に四塩基性硫酸鉛を生成させる方法
などが提案されている。
In particular, when a lead-calcium alloy is used as a positive electrode grid, the above-mentioned aging step is improved. Methods for producing basic lead sulfate have been proposed.

【0007】これまでの熟成生成物である三塩基性硫酸
鉛に比べて四塩基性硫酸鉛の結晶は大きいことから、こ
の方法によれば、四塩基性硫酸鉛の強固な骨格を保った
二酸化鉛が化成時に形成されるために優れた寿命性能が
得られるという利点がある。しかし、四塩基性硫酸鉛の
粗大な結晶は化成性に劣り、すなわちその結晶内部まで
二酸化鉛に化成されないことから、充分な初期性能が得
られないという欠点がある。
[0007] Since the crystals of tetrabasic lead sulfate are larger than the tribasic lead sulfate which has been an aging product to date, according to this method, dioxide having a strong skeleton of tetrabasic lead sulfate is maintained. Since lead is formed during chemical conversion, there is an advantage that excellent life performance can be obtained. However, coarse crystals of tetrabasic lead sulfate have poor chemical conversion properties, that is, they do not convert lead crystals to the inside of the crystals, so that there is a drawback that sufficient initial performance cannot be obtained.

【0008】[0008]

【課題を解決するための手段】本発明は上述したような
問題点を解決するもので、正極活物質の全細孔体積の1
5〜35%が細孔直径5〜50μm であることを特徴
とするものである。これにより、鉛蓄電池正極板の高容
量化および長寿命化をはかるものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has been described in detail.
It is characterized in that 5 to 35% has a pore diameter of 5 to 50 μm. Thus, the capacity and the life of the lead plate of the lead storage battery are increased.

【0009】[0009]

【発明の実施の形態】本発明による鉛蓄電池用正極板
は、正極活物質の全細孔体積の15〜35%が細孔直径
5〜50μm であることを特徴とし、さらに好ましく
は四塩基性硫酸鉛の凝集部を生成させた未化成活物質を
二酸化鉛に電解化成して得られることを特徴とするもの
である。
BEST MODE FOR CARRYING OUT THE INVENTION The positive electrode plate for a lead-acid battery according to the present invention is characterized in that 15 to 35% of the total pore volume of the positive electrode active material has a pore diameter of 5 to 50 μm, more preferably tetrabasic. It is characterized by being obtained by electrolytically converting an unactivated chemical active material, which has formed a lead sulfate aggregate, into lead dioxide.

【0010】[0010]

【実施例】以下、本発明を実施例に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.

【0011】ボールミル式鉛粉100kgと水12リッ
トルと比重1.4の希硫酸8リットルを混練して正極ペ
ーストを作製した。混練手順としては、次の条件で行っ
た。
A positive electrode paste was prepared by kneading 100 kg of ball mill type lead powder, 12 liters of water and 8 liters of dilute sulfuric acid having a specific gravity of 1.4. The kneading procedure was performed under the following conditions.

【0012】まず、所定量の鉛粉および水を混練機に投
入し、これらを5分間混練して均一なスラリーを得た。
このスラリーに所定量の希硫酸を加えて混練し、希硫酸
投入方法の異なる4種類のペーストを作製した。すなわ
ち、〓1のペーストはスラリーを混練しながら全量の希
硫酸を滴下投入し(滴下時間30分間)、〓2のペース
トはスラリーに全量の希硫酸を投入後10分間混練し、
〓3のペーストはスラリーに全量の希硫酸を投入し10
分間放置後に10分間混練し、〓4のペーストはスラリ
ーに全量の希硫酸を投入し30分間放置後に10分間混
練した。
First, a predetermined amount of lead powder and water were charged into a kneader, and these were kneaded for 5 minutes to obtain a uniform slurry.
A predetermined amount of dilute sulfuric acid was added to the slurry and kneaded to prepare four types of pastes having different dilute sulfuric acid injection methods. That is, the paste of No. 1 is kneaded with the slurry and the whole amount of diluted sulfuric acid is dropped therein (dropping time is 30 minutes), and the paste of No. 2 is kneaded for 10 minutes after the whole amount of diluted sulfuric acid is added to the slurry,
For # 3 paste, the entire amount of dilute sulfuric acid was added to the slurry and 10
After kneading for 10 minutes, kneading was performed for 10 minutes. For the # 4 paste, the entire amount of diluted sulfuric acid was added to the slurry, and the mixture was kneaded for 10 minutes after being left for 30 minutes.

【0013】このように練膏方法を変えたのはペースト
中の硫酸の分布を変えるためで、これらのペーストのな
かで硫酸が最も均一に分布しているのは〓1のペースト
で、次いで〓2、〓3、〓4の順に次第に不均一に分布
し、すなわち硫酸の凝集部が大きくなっている。
The reason why the paste method is changed in this way is to change the distribution of sulfuric acid in the paste, and among these pastes, the sulfuric acid is most uniformly distributed in the paste No. 1 and then in the paste No. 1. 2, 分布 3, 〓4 are distributed in a non-uniform manner gradually, that is, the agglomerated portion of sulfuric acid is large.

【0014】これらの4種類のペーストを常法によって
通常のPb−Ca−Sn合金を用いた鋳造格子に充填
し、50℃および70℃の2種類の温度の熟成室中で2
4時間熟成を施した。なお、熟成室中の相対湿度はいず
れの温度においても100%とした。熟成後の極板を5
0℃乾燥室中(相対湿度25%)で3日間乾燥し、表1
に示す8種類の未化成正極板を得た。
These four types of pastes are filled into a casting grid using an ordinary Pb-Ca-Sn alloy by a conventional method, and are placed in an aging room at two temperatures of 50 ° C. and 70 ° C.
Aged for 4 hours. The relative humidity in the aging room was 100% at any temperature. 5 aging electrodes
Dry in a 0 ° C drying room (relative humidity 25%) for 3 days.
The following eight types of unformed positive electrode plates were obtained.

【0015】[0015]

【表1】 ここで用いた、極板の大きさは高さ110mm、幅10
8mm、厚さ2.0mmで、化成後活物質密度は約3.8g
/cm3となるようにした。これらの未化成正極板4枚/セ
ルと、Pb−Ca−Sn合金格子を用いた通常の未化成
負極板5枚/セルとをリブ付ポリエチレンセパレータを
介して積層し、JISD5301に規定される自動車用
鉛蓄電池36B20(5時間率容量:28Ah)を組み
立てた。ついで、これらの電池に電槽化成を施し、5h
R放電試験を繰り返し行った。5hR放電試験において
5.6Aで終止電圧10.5Vまで放電して放電容量を
調べ、2.8Aで放電電気量の135%まで充電する充
放電サイクルを繰り返した。試験温度は25℃とした。
[Table 1] The size of the electrode plate used here is 110 mm in height and 10 mm in width.
8mm, thickness 2.0mm, active material density after formation is about 3.8g
/ cm 3 . These non-formed positive electrode plates / cell and five normal non-formed negative electrode plates / cell using a Pb-Ca-Sn alloy lattice are laminated via a polyethylene separator with ribs, and an automobile specified in JISD5301 The lead-acid storage battery 36B20 (5 hour capacity: 28 Ah) was assembled. Then, these batteries were subjected to battery case formation for 5 hours.
The R discharge test was repeated. In the 5 hR discharge test, the discharge capacity was examined by discharging to a final voltage of 10.5 V at 5.6 A, and a charge / discharge cycle of charging to 135% of the discharged electricity at 2.8 A was repeated. The test temperature was 25 ° C.

【0016】図1にこれらの電池の5hR放電容量の推
移を示す。熟成温度が50℃であればペースト混練時の
希硫酸投入方法にかかわらず、いずれの電池(〓1〜
4)も充分な初期容量を示すものの比較的早期に容量が
低下した。一方、熟成温度が70℃の場合、希硫酸滴下
品(〓5)は優れた寿命性能を示したものの、放電容量
が非常に小さかった。希硫酸全量投入品(〓6〜8)
は、1サイクル目の放電容量が50℃熟成品にはわずか
におよばなかったものの、3サイクル目の放電容量が5
0℃熟成品よりも大きく、しかも優れた寿命性能を示し
た。
FIG. 1 shows the transition of the 5 hR discharge capacity of these batteries. If the aging temperature is 50 ° C., regardless of the method of adding dilute sulfuric acid at the time of kneading the paste, any of the batteries (# 1 to # 1)
4) shows a sufficient initial capacity, but the capacity decreases relatively early. On the other hand, when the aging temperature was 70 ° C., the diluted sulfuric acid dropped product (# 5) exhibited excellent life performance, but had a very small discharge capacity. Dilute sulfuric acid total amount input product ($ 6-8)
Although the discharge capacity in the first cycle was slightly lower than that of the product aged at 50 ° C., the discharge capacity in the third cycle was 5
It was larger than the product aged at 0 ° C. and exhibited excellent life performance.

【0017】このように充放電サイクル中の容量推移が
大きく異なった原因を調査するために3サイクル後の正
極活物質の細孔分布を水銀圧入法によって調べた結果を
図2に示す。熟成温度が50℃であればペースト混練時
の希硫酸投入方法にかかわらず、いずれの正極活物質
(〓1〜4)も直径0.2〜5μmの細孔が多く、全細
孔量は約0.14cc/gであった。一方、熟成温度が
70℃の場合(〓5〜8)、いずれの正極活物質も全細
孔量は約0.14cc/gであり大差なかったものの、
細孔分布は直径0.2〜5μmと5〜50μm の2種
類に大別され、これらの割合がペースト処方によって異
なることがわかった。すなわち、〓5、6、7および8
の正極活物質中の直径5〜50μm の細孔量はそれぞ
れ全細孔量の約45、35、25および15%を占めて
いた。
FIG. 2 shows the results of examining the pore distribution of the positive electrode active material after three cycles by the mercury intrusion method in order to investigate the cause of the large difference in the capacity transition during the charge / discharge cycle. If the aging temperature is 50 ° C., regardless of the method of adding dilute sulfuric acid during kneading of the paste, any of the positive electrode active materials (# 1 to 4) has many pores having a diameter of 0.2 to 5 μm, and the total pore amount is about It was 0.14 cc / g. On the other hand, when the aging temperature was 70 ° C. ($ 5 to 8), all the positive electrode active materials had a total pore amount of about 0.14 cc / g, which was not much different.
The pore distribution is roughly classified into two types, a diameter of 0.2 to 5 μm and a diameter of 5 to 50 μm, and it has been found that these ratios differ depending on the paste formulation. That is, $ 5, 6, 7, and 8
The amount of pores having a diameter of 5 to 50 μm in the positive electrode active material described above accounted for about 45, 35, 25, and 15% of the total amount of pores, respectively.

【0018】上記の正極活物質の細孔分布と電池の寿命
性能との関係から次のことがわかった。正極活物質が有
する細孔直径の大部分が5μm以下の場合(〓1〜
4)、充分な初期容量を示すものの比較的早期に容量が
低下した。正極活物質が直径5〜50μm の細孔を全
細孔量の45%程度以上有する場合(〓5)、優れた寿
命性能を示すものの放電容量は非常に小さかった。正極
活物質が直径5〜50μmの細孔を全細孔量の15〜3
5%有する本発明による電池の場合(〓6〜8)、初期
容量が大きくしかも優れた寿命性能を示した。
The following was found from the relationship between the pore distribution of the positive electrode active material and the life performance of the battery. When the majority of the pore diameter of the positive electrode active material is 5 μm or less (〓1 to
4) Although the capacity was sufficient, the capacity decreased relatively early. When the positive electrode active material had pores having a diameter of 5 to 50 μm or more of about 45% or more of the total pore amount (# 5), the discharge capacity was very small although the life performance was excellent. The positive electrode active material has pores having a diameter of 5 to 50 μm in a total pore amount of 15 to 3 μm.
In the case of the battery according to the present invention having 5% (# 6 to # 8), the initial capacity was large and the life performance was excellent.

【0019】通常正極板の放電容量は活物質内部への電
解液(硫酸イオン)の拡散速度によって律速されること
から、例えば活物質の多孔度が大きい(細孔量が大き
い)ほどその拡散速度が大きく放電容量が増大すること
は知られている。ただし、活物質の多孔度が大きいほど
寿命性能が低下することも知られている。また、多孔度
が同じ場合でも細孔径が大きいほど、硫酸イオンの拡散
速度は大きいはずである。したがって、活物質の細孔径
を大きくすることによって活物質内部まで硫酸イオンの
拡散を助けることは初期性能の向上に非常に有効であ
る。ところが、活物質の細孔径全体を大きくしてしまう
と活物質の表面積が低下し、活物質の反応性が大きく低
下してしまい、放電容量はむしろ低下してしまう。
Usually, the discharge capacity of the positive electrode plate is determined by the diffusion rate of the electrolytic solution (sulfate ions) into the active material. For example, the diffusion rate increases as the porosity of the active material increases (the amount of pores increases). Is known to increase the discharge capacity. However, it is also known that the life performance decreases as the porosity of the active material increases. In addition, even when the porosity is the same, the larger the pore diameter, the higher the diffusion rate of sulfate ions. Therefore, helping the diffusion of sulfate ions into the active material by increasing the pore diameter of the active material is very effective in improving the initial performance. However, if the entire pore diameter of the active material is increased, the surface area of the active material is reduced, the reactivity of the active material is significantly reduced, and the discharge capacity is rather reduced.

【0020】本発明では全細孔量の15〜35%の細孔
のみを直径5〜50μmまで大きくしたことによって、
活物質表面積の低下を招くことなく電解液の拡散速度を
増大させることができたために、3サイクル目以降の放
電容量を従来よりも増大させることができたものと思わ
れる。ただし、1サイクル目の放電容量にその効果がみ
られなかったのは、後述する未化活物質中の四塩基性硫
酸鉛の生成によって化成性が低下し、電槽化成直後の二
酸化鉛量がやや少なかったためと思われる。
In the present invention, only the pores of 15 to 35% of the total pore volume are enlarged to a diameter of 5 to 50 μm,
It is considered that the diffusion rate of the electrolytic solution could be increased without reducing the surface area of the active material, so that the discharge capacity after the third cycle could be increased as compared with the conventional case. However, the reason why the effect was not observed in the discharge capacity in the first cycle was that the formation of tetrabasic lead sulfate in the unactivated active material described below reduced the chemical conversion property, and the amount of lead dioxide immediately after the formation of the battery container was reduced. Probably because it was a little small.

【0021】正極板処方の違いによって正極活物質の細
孔分布の違いがみられた原因を調べるために、これらの
未化成正極板(熟成後正極板)の断面を観察・調査し
た。
In order to investigate the cause of the difference in the pore distribution of the positive electrode active material due to the difference in the positive electrode plate formulation, cross sections of these unformed positive electrode plates (after aging) were observed and investigated.

【0022】ペースト処方の違いによって未化成活物質
中の硫酸の分布が異なるため、50℃熟成品では〓1、
2、3および4の順で次第に凝集部(硫酸の多い部分)
が大きくなった。なお、これらの組成は3PbO・PbSO4・H2O
(三塩基性硫酸鉛)、t-PbOおよびPbO・PbSO4(一塩基性硫
酸鉛)からなり、凝集部は3PbO・PbSO4・H2OおよびPbO・PbS
O4の含有率が高かった。
Since the distribution of sulfuric acid in the unformed active material varies depending on the difference in paste formulation, the product aged at 50 ° C.
Aggregated portion (portion rich in sulfuric acid) gradually in the order of 2, 3 and 4
Has grown. Incidentally, these compositions 3PbO · PbSO 4 · H 2 O
(Tribasic lead sulfate), t-PbO and PbO · PbSO 4 consists (monobasic lead sulfate), aggregation unit 3PbO · PbSO 4 · H 2 O and PbO · PbS
The content of O 4 was high.

【0023】一方、70℃熟成品では〓5、6、7およ
び8の順で次第に凝集部(硫酸の多い部分)が大きくな
った。また、凝集部には4PbO・PbSO4(四塩基性硫酸鉛)が
生成しており、その他の部分は3PbO・PbSO4・H2Oおよびt-
PbOからなっていた。なお、四塩基性硫酸鉛の生成状況
が部位によって異なったのはペースト中の硫酸量の違い
に起因していることから、硫酸量が比較的多い部位は四
塩基性硫酸鉛の生成温度が低いことを示唆している。
On the other hand, in the product aged at 70 ° C., the agglomerated part (the part with a large amount of sulfuric acid) gradually increased in the order of # 5, 6, 7, and 8. Furthermore, the aggregation unit 4PbO · PbSO 4 (tetrabasic lead sulfate) is generated, other portions 3PbO · PbSO 4 · H 2 O and t-
It consisted of PbO. Since the formation status of tetrabasic lead sulfate differs depending on the site, it is due to the difference in the amount of sulfuric acid in the paste. Suggest that.

【0024】次に、これらの未化成活物質の細孔分布を
調べた結果を図3に示す。50℃熟成品(〓1〜4)で
はいずれも直径0.2〜1μmの細孔を有していた。こ
のことは3PbO・PbSO4・H2O、t-PbOおよびPbO・PbSO4の粒子
サイズが比較的近似していることを示唆している。一
方、70℃熟成品では直径0.2〜8μmの細孔と8〜
30μm の細孔の割合がペースト処方によって異なっ
た。すなわち、〓5、6、7および8の正極活物質中に
おける直径5〜50μm の細孔量はそれぞれ全細孔量
の約45、35、25および15%を占めていた。この
ように細孔直径が2つに大別された理由は3PbO・PbSO4・H
2Oやt-PbOの粒子サイズが0.2〜5μmと小さく、4Pb
O・PbSO4の粒子サイズが5〜200μm と大きいため
で、これらの分布状況の違いによって細孔分布が異なっ
たものと思われる。
Next, FIG. 3 shows the results of examining the pore distribution of these unchemically activated materials. Each of the aged products at 50 ° C. (# 1-4) had pores with a diameter of 0.2-1 μm. This suggests that the particle size of 3PbO · PbSO 4 · H 2 O , t-PbO and PbO · PbSO 4 are relatively approximate. On the other hand, in the aged product at 70 ° C., pores having a diameter of 0.2 to 8 μm and
The proportion of 30 μm pores varied with the paste formulation. That is, the amount of pores having a diameter of 5 to 50 μm in the positive electrode active materials of # 5, 6, 7, and 8 respectively accounted for about 45, 35, 25, and 15% of the total amount of pores. The reason why the pore diameter is roughly divided into two is that 3PbO ・ PbSO 4・ H
The particle size of 2 O and t-PbO is as small as 0.2 to 5 μm,
Because the particle size of O · PbSO 4 is as large as 5 to 200 [mu] m, it is believed that the pore distribution is different by the difference of these distribution.

【0025】また、未化成活物質と化成後活物質の細孔
分布を比較すると、細孔直径や細孔量に若干の変化はみ
られるものの、未化成時の細孔分布が化成後にも反映さ
れているといえる。
When the pore distributions of the non-chemically formed active material and the post-chemically formed active material are compared with each other, the pore diameter and the amount of the fine pores are slightly changed, but the pore distribution before the chemical conversion is also reflected after the chemical conversion. It can be said that it is.

【0026】以上のように、正極ペースト中の硫酸凝集
部の大きさをコントロールすることによって、熟成後の
4PbO・PbSO4の分布を変え、このことによって正極活物質
の全細孔体積の15〜35%を細孔直径5〜50μmと
したことは電池性能の向上に非常に有効であった。な
お、正極活物質中の細孔直径5〜50μmを除く細孔に
ついては、そのほとんどが直径5μm 以下の微細な細
孔であることは言うまでもない。
As described above, by controlling the size of the sulfuric acid aggregates in the positive electrode paste,
Changing the distribution of 4PbO · PbSO 4, it has been very effective in improving the battery performance of 15% to 35% of the total pore volume of the positive electrode active material by this was pore diameter 5 to 50 [mu] m. Needless to say, most of the pores in the positive electrode active material except for the pore diameter of 5 to 50 μm are fine pores having a diameter of 5 μm or less.

【発明の効果】以上、実施例で述べたように、本発明に
よる鉛蓄電池を用いれば、鉛蓄電池の寿命性能を向上さ
せることができるだけでなく、高容量化もはかることが
でき、その工業的価値は甚だ大なるものである。
As described above, when the lead storage battery according to the present invention is used, not only the life performance of the lead storage battery can be improved but also the capacity can be increased. The value is enormous.

【図面の簡単な説明】[Brief description of the drawings]

【図1】5hR放電容量の推移を示す図である。FIG. 1 is a view showing a transition of a 5hR discharge capacity.

【図2】正極活物質の細孔分布を示す図である。FIG. 2 is a diagram showing a pore distribution of a positive electrode active material.

【図3】未化成活物質の細孔分布を示す図である。FIG. 3 is a diagram showing a pore distribution of an unformed active material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極活物質の全細孔体積の15〜35%が
細孔直径5〜50μm であることを特徴とする鉛蓄電
池用正極板。
1. A positive electrode plate for a lead storage battery, wherein 15 to 35% of the total pore volume of the positive electrode active material has a pore diameter of 5 to 50 μm.
【請求項2】四塩基性硫酸鉛の凝集部を生成させた未化
成活物質を二酸化鉛に電解化成してなることを特徴とす
る請求項1記載の鉛蓄電池用正極板。
2. The positive electrode plate for a lead-acid battery according to claim 1, wherein the unactivated chemical substance in which the agglomerated portion of tetrabasic lead sulfate is formed is electrolytically formed on lead dioxide.
JP08766497A 1997-03-19 1997-03-19 Positive electrode plate for lead acid battery Expired - Lifetime JP4186197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08766497A JP4186197B2 (en) 1997-03-19 1997-03-19 Positive electrode plate for lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08766497A JP4186197B2 (en) 1997-03-19 1997-03-19 Positive electrode plate for lead acid battery

Publications (2)

Publication Number Publication Date
JPH10270028A true JPH10270028A (en) 1998-10-09
JP4186197B2 JP4186197B2 (en) 2008-11-26

Family

ID=13921222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08766497A Expired - Lifetime JP4186197B2 (en) 1997-03-19 1997-03-19 Positive electrode plate for lead acid battery

Country Status (1)

Country Link
JP (1) JP4186197B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015905A (en) * 2008-07-04 2010-01-21 Gs Yuasa Corporation Positive electrode plate for lead storage battery
JP2013054865A (en) * 2011-09-01 2013-03-21 Gs Yuasa Corp Lead acid battery
WO2013122132A1 (en) * 2012-02-14 2013-08-22 新神戸電機株式会社 Positive electrode plate for lead acid battery, method for producing said electrode plate, and lead acid battery using said positive electrode plate
US9362596B2 (en) 2013-07-19 2016-06-07 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
WO2024047491A1 (en) * 2022-08-30 2024-03-07 Arcactive Limited Lead-acid battery and manufacture method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218223B (en) * 2014-07-01 2016-04-06 超威电源有限公司 A kind of power lead-acid battery pole plate high temperature curing process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015905A (en) * 2008-07-04 2010-01-21 Gs Yuasa Corporation Positive electrode plate for lead storage battery
JP2013054865A (en) * 2011-09-01 2013-03-21 Gs Yuasa Corp Lead acid battery
WO2013122132A1 (en) * 2012-02-14 2013-08-22 新神戸電機株式会社 Positive electrode plate for lead acid battery, method for producing said electrode plate, and lead acid battery using said positive electrode plate
JPWO2013122132A1 (en) * 2012-02-14 2015-05-18 新神戸電機株式会社 Positive electrode plate for lead acid battery, method for producing the electrode plate, and lead acid battery using the positive electrode plate
US9362596B2 (en) 2013-07-19 2016-06-07 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
US9899666B2 (en) 2013-07-19 2018-02-20 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
WO2024047491A1 (en) * 2022-08-30 2024-03-07 Arcactive Limited Lead-acid battery and manufacture method

Also Published As

Publication number Publication date
JP4186197B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
US5302476A (en) High performance positive electrode for a lead-acid battery
JP2003051306A (en) Negative electrode for lead-acid battery
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JP4186197B2 (en) Positive electrode plate for lead acid battery
JP3178015B2 (en) Positive electrode plate for lead storage battery and method for producing the same
JP3505972B2 (en) Lead-acid battery and method of manufacturing lead-acid battery
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP3339080B2 (en) Anode plate for lead storage battery and method of manufacturing the same
JPH10247491A (en) Lead-acid battery and its manufacture
JP2536251B2 (en) Lead acid battery
JP3764978B2 (en) Manufacturing method of lead acid battery
JP3987998B2 (en) Unformed positive electrode plate for lead acid battery
JP2002100347A (en) Lead-acid battery
JPH11162456A (en) Lead-acid battery
JPH05242887A (en) Manufacture of electrode plate for lead-acid battery
JP4066509B2 (en) Manufacturing method of lead acid battery
JPH11329420A (en) Manufacture of lead-acid battery
JP2004055417A (en) Manufacturing method of pasty active material for positive electrode and lead storage battery using it
JP4488220B2 (en) Method for producing positive electrode plate for lead acid battery
JPH1040907A (en) Manufacture of positive electrode plate for lead-acid battery
JP7287884B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP3414941B2 (en) Electrode plate for lead storage battery and method of manufacturing the same
JP3040718B2 (en) Lead storage battery
JPH0837008A (en) Paste type lead-acid battery
JP2000036305A (en) Plate for lead-acid battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050706

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

EXPY Cancellation because of completion of term