JP2013089478A - Lead acid battery and manufacturing method therefor - Google Patents

Lead acid battery and manufacturing method therefor Download PDF

Info

Publication number
JP2013089478A
JP2013089478A JP2011229426A JP2011229426A JP2013089478A JP 2013089478 A JP2013089478 A JP 2013089478A JP 2011229426 A JP2011229426 A JP 2011229426A JP 2011229426 A JP2011229426 A JP 2011229426A JP 2013089478 A JP2013089478 A JP 2013089478A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
positive electrode
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011229426A
Other languages
Japanese (ja)
Other versions
JP5780106B2 (en
Inventor
Kohei Koga
航平 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2011229426A priority Critical patent/JP5780106B2/en
Publication of JP2013089478A publication Critical patent/JP2013089478A/en
Application granted granted Critical
Publication of JP5780106B2 publication Critical patent/JP5780106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the cycle life performance for high rate charge/discharge.SOLUTION: In a lead acid battery including a positive electrode plate consisting of a positive electrode grid and a positive electrode active material, a negative electrode plate consisting of a negative electrode grid and a negative electrode active material, and an electrolyte, the negative electrode active material has a total pore volume of 0.15-0.20 cm/g measured by a method of mercury penetration with reference to the weight when dry of the negative electrode active material subjected to formation, and the ratio of pores having pore diameter of 0.01-1 μm to total pores of the negative electrode active material is 50 vol% or more.

Description

この発明は鉛蓄電池とその製造方法に関する。   The present invention relates to a lead storage battery and a method for manufacturing the same.

活物質の多孔度は鉛蓄電池の性能に関与する要素の一つである。例えば特許文献1(JPH06-176761A)は、正極活物質の多孔度を増して正極活物質中に含まれる電解液量を増すと、高率放電容量を増すことができると記載している。特許文献1は、従来例として、吸水性高分子、シリカ、グラファイト、ガラス繊維等の保液性物質を添加することを指摘し、これらの保液性物質はコストが高く、かつ活物質との結合が弱いため活物質の強度を低下させることを指摘している。そして特許文献1は、杉の木粉を200-500℃で炭化した炭化木粉を鉛蓄電池の正極活物質に添加することを提案し、例えば32-42メッシュの炭化木粉を添加することにより、鉛蓄電池の容量が増すとしている。   The porosity of the active material is one of the factors involved in the performance of lead acid batteries. For example, Patent Document 1 (JPH06-176761A) describes that a high-rate discharge capacity can be increased by increasing the porosity of the positive electrode active material and increasing the amount of the electrolyte contained in the positive electrode active material. Patent Document 1 points out that a liquid-retaining substance such as a water-absorbing polymer, silica, graphite, and glass fiber is added as a conventional example, and these liquid-retaining substances are expensive and have an active material. It is pointed out that the strength of the active material is reduced due to the weak bond. And patent document 1 proposes adding the carbonized wood powder which carbonized cedar wood powder at 200-500 degreeC to the positive electrode active material of lead acid battery, for example, by adding 32-42 mesh carbonized wood powder. The capacity of lead-acid batteries is going to increase.

特許文献2(JP2003-86178A)は、未化成の負極活物質(熟成及び乾燥後の負極ペースト)の全細孔容積と平均細孔径との、大電流放電の持続時間への影響を検討している。特許文献2によると、全細孔容が0.11cm/g〜0.14cm/gで、平均細孔径が0.95μm〜1.3μmとすると、ハイレート放電特性が向上するとしている。また特許文献2では、平均細孔径を小さくすると全細孔容積が減少すると共に、ハイレート放電の持続時間も短くなるとのデータを記載している。 Patent Document 2 (JP2003-86178A) examines the influence of the total pore volume and average pore diameter of a non-formed negative electrode active material (negative electrode paste after aging and drying) on the duration of large current discharge. Yes. According to Patent Document 2, the total pore volume is in 0.11cm 3 /g~0.14cm 3 / g, the average pore diameter and 0.95Myuemu~1.3Myuemu, are the high-rate discharge characteristics are improved. Patent Document 2 describes data that when the average pore diameter is reduced, the total pore volume is reduced and the duration of the high-rate discharge is also shortened.

ところで近年の鉛電池の使われ方として、アイドリングストップモード等の、満充電されていない状態で大電流で充放電を繰り返す使われ方が普及するようになった。満充電されていない状態で大電流での充放電を繰り返し行うと、負極活物質内に還元が困難な硫酸鉛が析出することにより、鉛蓄電池が早期に寿命を迎えるサルフェーションが主要な寿命要因の一つとなる。発明者らは、正極活物質の多孔度を増す従来技術と同様に、負極活物質の多孔度を増すことにより、大電流での充放電を伴う使われ方での、鉛蓄電池の性能を向上させることを検討した。以下、大電流での充放電をハイレート充放電という。この検討で、直径が0.01μm〜1μmの小さな細孔が占める割合を増すことにより、ハイレート充放電を繰り返した際の寿命性能を向上させることができることが判明し、この発明に到った。   By the way, as a usage method of the lead battery in recent years, the usage method of repeatedly charging and discharging with a large current in a state where the battery is not fully charged, such as an idling stop mode, has become widespread. When charging / discharging with a large current is repeated in a state in which the battery is not fully charged, lead sulfate, which is difficult to reduce, precipitates in the negative electrode active material. Become one. The inventors have improved the performance of lead-acid batteries when used with charging / discharging at a large current, by increasing the porosity of the negative electrode active material, as in the prior art that increases the porosity of the positive electrode active material. We considered making it. Hereinafter, charging / discharging with a large current is referred to as high-rate charging / discharging. From this study, it has been found that increasing the proportion of small pores having a diameter of 0.01 μm to 1 μm can improve the life performance when high-rate charge / discharge is repeated, leading to the present invention.

JPH06-176761AJPH06-176761A JP2003-86178AJP2003-86178A

この発明の課題は、ハイレート充放電に対する鉛蓄電池の寿命性能を向上させることにある。   The subject of this invention is improving the lifetime performance of the lead acid battery with respect to high-rate charging / discharging.

この発明の鉛蓄電池は、正極格子と正極活物質とから成る正極板と、負極格子と負極活物質とから成る負極板と、電解液とを備える鉛蓄電池において、
前記負極活物質は、化成済み負極活物質の乾燥時重量を基準として水銀圧入法で測定した全細孔容積が0.15cm3/g〜0.20cm3/gで、負極活物質の全細孔中で細孔直径が0.01μm〜1μmの細孔が占める割合が50vol%以上であることを特徴とする。
A lead storage battery of the present invention is a lead storage battery comprising a positive electrode plate made of a positive electrode grid and a positive electrode active material, a negative electrode plate made of a negative electrode grid and a negative electrode active material, and an electrolyte.
The negative active material is a chemical already negative active total pore volume of the dry weight of the material was measured by mercury porosimetry as a reference 0.15cm 3 /g~0.20cm 3 / g, a total pore in the anode active material The ratio of pores having a pore diameter of 0.01 μm to 1 μm is 50 vol% or more.

この発明の鉛蓄電池の製造方法は、負極格子に負極活物質ペーストを充填し負極板とするステップと、正極格子に正極活物質ペーストを充填し正極板とするステップと、充填済みの負極板と正極板とを熟成及び乾燥するステップと、熟成及び乾燥済みの負極板と正極板とに充電するステップ、とを行う鉛蓄電池の製造方法において、
前記負極活物質ペーストを充填するステップで、微粒子を含有する負極活物質ペーストを充填することにより、化成済み負極活物質の乾燥時重量を基準として水銀圧入法で測定した全細孔容積を0.15cm3/g〜0.20cm3/g、負極活物質の全細孔中で、細孔直径が0.01μm〜1μmの細孔が占める割合を50vol%以上とすることを特徴とする。
The lead storage battery manufacturing method of the present invention includes a step of filling a negative electrode lattice with a negative electrode active material paste to form a negative electrode plate, a step of filling a positive electrode lattice with a positive electrode active material paste to form a positive electrode plate, a filled negative electrode plate, In the method for producing a lead-acid battery, the step of aging and drying the positive electrode plate, and the step of charging the aging and dried negative electrode plate and the positive electrode plate,
In the step of filling the negative electrode active material paste, by filling the negative electrode active material paste containing fine particles, the total pore volume measured by the mercury intrusion method based on the dry weight of the formed negative electrode active material is 0.15 cm. 3 / g to 0.20 cm 3 / g, wherein the proportion of pores having a pore diameter of 0.01 μm to 1 μm in all pores of the negative electrode active material is 50 vol% or more.

従来技術の鉛蓄電池では、負極活物質中の細孔には直径が2〜3μm程度のものが多量に含まれており、直径1μm以下の細孔が占める割合は全細孔容積の30%程度である。これに対して、直径が0.01μm〜1μmの小さな細孔が占める割合を増すと、
・ 放電時に硫酸鉛が析出するサイトが増すことと、小さな細孔内で硫酸鉛の粒子が成長するため、硫酸鉛の粒子が微細になる。
・ 硫酸鉛の粒子が微細になると、大電流で硫酸鉛を金属鉛に還元する大電流充電が容易になる。
・ 従って、ハイレート充放電でのサイクル寿命性能を向上させることができる。
In the lead-acid battery of the prior art, the pores in the negative electrode active material contain a large amount of pores with a diameter of about 2 to 3 μm, and the proportion of pores with a diameter of 1 μm or less accounts for about 30% of the total pore volume It is. In contrast, when the proportion of small pores with a diameter of 0.01 μm to 1 μm is increased
-Lead sulfate particles become finer because the number of sites where lead sulfate precipitates during discharge increases and lead sulfate particles grow in small pores.
・ When the particles of lead sulfate become finer, it becomes easier to charge with a large current to reduce lead sulfate to metallic lead with a large current.
Therefore, cycle life performance in high rate charge / discharge can be improved.

好ましくは、前記負極活物質は、平均粒子径が0.02μm以上で0.1μm以下の微粒子を、2質量%以上で7質量%以下含有する。直径が0.01μm〜1μmの細孔が占める割合を増すための手法の一つは、微粒子を負極活物質に含有させることにより、大きな細孔を塞ぐとと共に、小さな細孔を大量に発生させることである。特に平均粒子径が0.02μm以上で0.1μm以下の微粒子を含有させることにより、細孔直径が0.01μm〜1μmの細孔が占める割合を増すことができる。そしてその含有量を2質量%以上で7質量%以下とすると、ハイレート充放電でのサイクル寿命性能を特に高くできる。微粒子は例えばTiO2、シリカ、アルミナ、カーボンブラック等とするが、その種類は任意である。この明細書において、鉛蓄電池に関する記載は鉛蓄電池の製造方法にもそのまま当てはまり、逆に鉛蓄電池の製造方法に関する記載は鉛蓄電池にもそのまま当てはまる。 Preferably, the negative electrode active material contains 2% by mass or more and 7% by mass or less of fine particles having an average particle size of 0.02 μm or more and 0.1 μm or less. One way to increase the proportion of pores with a diameter of 0.01 μm to 1 μm is to block the large pores and generate a large number of small pores by incorporating fine particles into the negative electrode active material. It is. In particular, by containing fine particles having an average particle size of 0.02 μm or more and 0.1 μm or less, the proportion of pores having a pore diameter of 0.01 μm to 1 μm can be increased. When the content is 2% by mass or more and 7% by mass or less, the cycle life performance in high rate charge / discharge can be particularly improved. The fine particles are, for example, TiO 2 , silica, alumina, carbon black, etc., but the type is arbitrary. In this specification, the description regarding the lead storage battery also applies to the manufacturing method of the lead storage battery, and the description regarding the manufacturing method of the lead storage battery also applies to the lead storage battery.

実施例(試料No.11 TiO2 0.05μm×4.0質量%)での細孔直径に対する微分空孔量を示す図The figure which shows the amount of differential vacancies with respect to the pore diameter in the example (sample No.11 TiO 2 0.05 μm × 4.0 mass%) 比較例(試料No.1 TiO2 1.0μm×0.1質量%)での細孔直径に対する微分空孔量を示す図The figure which shows the amount of differential vacancies with respect to the pore diameter in the comparative example (sample No. 1 TiO 2 1.0 μm × 0.1 mass%)

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。   Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art.

微粒子として、電子顕微鏡を用いて実測した1次平均粒子径(以下単に、平均粒子径)が0.05μm,0.1μm,2μmのTiO2を負極活物質に含有させ、負極活物質の全細孔容積と細孔径の分布とを調整した。負極格子としてPb-Ca-Sn合金を用い、ボールミル法で製造した鉛粉にTiO2微粒子と、リグニンと硫酸バリウムとポリプロピレン繊維とを添加した。0〜8質量%のTiO2微粒子を含み、リグニン含有量は0.2質量%、硫酸バリウム含有量は0.6質量%、ポリプロピレン繊維含有量は0.1質量%となるように、鉛粉含有量を調整した。上記の組成の負極活物質原料粉体100質量%に対し、20℃で比重が1.40の硫酸20質量%とイオン交換水80質量%とを加えて混練し、負極活物質ペーストとした。負極活物質ペーストを上記の負極格子に充填し、50℃相対湿度50%で50時間熟成後に、50℃相対湿度20%で30時間乾燥させて、未化成の負極板とした。各負極活物質は、TiO2含有量が異なる他は同じ組成で、かつ負極板を化成するまでの条件も同じである。TiO2に替えて、シリカ、アルミナ、カーボンブラック等の他の微粒子を用いても良い。負極格子の組成、鉛粉の製造方法とその酸化度、微粒子以外の鉛粉への添加物等は任意である。また微粒子は負極活物質ペーストに添加しても良いが、鉛粉に微粒子を混合した後にペースト化すると、分散性が向上するので好ましい。 As the fine particles, TiO 2 whose primary average particle diameter (hereinafter simply referred to as average particle diameter) measured using an electron microscope is 0.05 μm, 0.1 μm, and 2 μm is contained in the negative electrode active material, and the total pore volume of the negative electrode active material And the pore size distribution were adjusted. A Pb—Ca—Sn alloy was used as a negative electrode lattice, and TiO 2 fine particles, lignin, barium sulfate, and polypropylene fibers were added to lead powder produced by a ball mill method. The lead powder content was adjusted so as to contain 0 to 8% by mass of TiO 2 fine particles, the lignin content was 0.2% by mass, the barium sulfate content was 0.6% by mass, and the polypropylene fiber content was 0.1% by mass. A negative electrode active material paste was prepared by adding 20% by mass of sulfuric acid having a specific gravity of 1.40 at 20 ° C. and 80% by mass of ion-exchanged water to 100% by mass of the negative electrode active material raw material powder having the above composition. The negative electrode active material paste was filled into the above negative electrode lattice, aged for 50 hours at 50 ° C. and 50% relative humidity, and then dried for 30 hours at 50 ° C. and 20% relative humidity to obtain an unformed negative electrode plate. Each negative electrode active material has the same composition except that the TiO 2 content is different, and the conditions until the negative electrode plate is formed are also the same. Instead of TiO 2 , other fine particles such as silica, alumina, and carbon black may be used. The composition of the negative electrode lattice, the method for producing lead powder and its oxidation degree, additives to lead powder other than fine particles, etc. are arbitrary. The fine particles may be added to the negative electrode active material paste, but it is preferable to form a paste after mixing the fine particles with the lead powder because dispersibility is improved.

定法に従い正極板を作成した。正極格子にはPb-Ca-Sn合金を用い、正極活物質ペーストとして、鉛粉に補強剤を加え硫酸とイオン交換水とを加えて混練したものを正極格子に充填し、熟成と乾燥とを施して、未化成の正極板とした。正極板の組成と製造条件は、全ての試験例で共通である。また正極板の組成と製造条件は任意である。   A positive electrode plate was prepared according to a conventional method. Pb-Ca-Sn alloy is used for the positive electrode lattice, and the positive electrode active material paste is filled with lead powder, reinforcing agent, sulfuric acid and ion-exchanged water and kneaded. To give an unformed positive electrode plate. The composition and manufacturing conditions of the positive electrode plate are common to all test examples. The composition and production conditions of the positive electrode plate are arbitrary.

未化成の負極板1枚をガラスセパレータで包み、両側から2枚の正極板で挟み、圧迫力を加えながら電槽に挿入した。次いで所定量の希硫酸を加え、0.1Aで20時間充電することにより、単セル型の化成済みの制御弁式鉛蓄電池を作成した。なお制御弁式に替えて液式の鉛蓄電池でも良く、電解液にはAl3+イオン、Na+イオン等を含有させても良い。 One unformed negative electrode plate was wrapped with a glass separator, sandwiched between two positive electrode plates from both sides, and inserted into the battery case while applying a pressing force. Then, a predetermined amount of dilute sulfuric acid was added and charged at 0.1 A for 20 hours to produce a single-cell control valve-type lead storage battery. Instead of the control valve type, a liquid lead-acid battery may be used, and the electrolyte may contain Al 3+ ions, Na + ions, or the like.

負極活物質の重量、細孔容積の測定等では、化成済み(使用を開始した後の鉛蓄電池では再充電済み)の負極板から負極活物質を取り出し、水洗により電解液を洗い流した後に乾燥させたものを用いた。負極活物質の重量は乾燥後の重量で、全細孔容積と細孔径の分布は水銀圧入法で乾燥後の負極活物質に対して測定した。   For measurement of the weight and pore volume of the negative electrode active material, the negative electrode active material is taken out from the formed negative electrode plate (recharged for lead-acid batteries after use), washed with water and dried. Used. The weight of the negative electrode active material was the weight after drying, and the distribution of the total pore volume and pore diameter was measured with respect to the dried negative electrode active material by mercury porosimetry.

鉛蓄電池の5hR放電容量は0.6Ahで、この容量に対して3CAのハイレート放電を、25℃の水槽中で電圧が1.0Vを下回るまで行った。ハイレート放電後に0.06A×15時間の充電により満充電状態とし、次いで25℃の水槽中で3CA×5分間の放電と、3CA×5分間の充電とを繰り返し、放電の終期電圧が1.0Vを下回るまでのサイクル数を、ハイレート充放電サイクル寿命として測定した。これらの測定では、試料を3個ずつ用い、結果はその平均で表す。結果を表1に示し、寿命性能はハイレート充放電でのサイクル寿命を、試料No.1(比較例1)の性能を100とする相対値で示す。   The 5hR discharge capacity of the lead storage battery was 0.6Ah, and 3CA high-rate discharge was performed on this capacity until the voltage dropped below 1.0V in a 25 ° C water bath. Fully charged by 0.06A x 15 hours after high-rate discharge, then repeat 3CA x 5 minutes of discharge and 3CA x 5 minutes of charge in a 25 ° C water bath, and the final voltage of the discharge falls below 1.0V The number of cycles until was measured as a high rate charge / discharge cycle life. In these measurements, three samples are used, and the results are expressed as the average. The results are shown in Table 1, and the life performance indicates the cycle life in high rate charge / discharge as a relative value with the performance of Sample No. 1 (Comparative Example 1) as 100.

図1(試料No.11 TiO2 0.05μm×4.0質量%)及び図2(試料No.1 TiO2 1.0μm×0.1質量%)は、TiO2微粒子の細孔容積分布への影響を示す。縦軸でのVは細孔容積を、Dは細孔直径を示す。TiO2微粒子の含有量が僅かな図2の比較例では、細孔容積は直径が2〜3μm付近に集中し、直径1μm以下の細孔が占める割合は30vol%である。またTiO2微粒子の含有量を0としても、細孔容積の分布は図2とほぼ同じで、含有量が0.1質量%以下の微粒子は負極活物質の細孔にほとんど影響を与えないことが分かった。これに対して、図1のようにTiO2微粒子を4質量%含有させると、細孔直径が2〜3μmのピークは消失し、分布のピークは直径が0.1μm付近へ移動し、ピークの0.1μmは含有させたTiO2の平均粒子径の0.05μmよりもやや大きい。また全細孔容積は0.12cm3/gから0.17cm3/gへと増加した。 FIG. 1 (Sample No. 11 TiO 2 0.05 μm × 4.0 mass%) and FIG. 2 (Sample No. 1 TiO 2 1.0 μm × 0.1 mass%) show the influence on the pore volume distribution of TiO 2 fine particles. V on the vertical axis represents the pore volume, and D represents the pore diameter. In the comparative example of FIG. 2 in which the content of TiO 2 fine particles is small, the pore volume is concentrated in the vicinity of a diameter of 2 to 3 μm, and the proportion of pores having a diameter of 1 μm or less is 30 vol%. In addition, even when the content of TiO 2 fine particles is 0, the pore volume distribution is almost the same as in FIG. 2, and the fine particles with a content of 0.1% by mass or less have little effect on the pores of the negative electrode active material. It was. On the other hand, when 4% by mass of TiO 2 fine particles are contained as shown in FIG. 1, the peak having a pore diameter of 2 to 3 μm disappears, and the distribution peak moves to the vicinity of 0.1 μm in diameter. μm is slightly larger than 0.05 μm of the average particle diameter of the contained TiO 2 . And the total pore volume increased from 0.12 cm 3 / g to 0.17 cm 3 / g.

微粒子の影響を表1に示す。平均粒子径の影響を検討すると、微粒子の平均粒子径を2.0μmとした場合(試料No.15-No.16)、ハイレート充放電でのサイクル寿命性能の向上は僅かである。これに対して微粒子の平均粒子径を0.1μm及び0.05μmとすると、ハイレート充放電でのサイクル寿命性能が著しく向上する。図1から明らかなように、微粒子の平均粒子径よりもやや大きな細孔が増加し、この一方で平均粒子径が0.02μmよりも小さな微粒子は製造が難しいので、微粒子の平均粒子径は0.5μm〜0.02μmが好ましく、より好ましくは0.3μm〜0.02μmとし、特に好ましくは0.1μm〜0.02μmとする。   Table 1 shows the influence of the fine particles. When the influence of the average particle size is examined, when the average particle size of the fine particles is set to 2.0 μm (sample No. 15 to No. 16), the cycle life performance in the high rate charge / discharge is slightly improved. On the other hand, when the average particle diameter of the fine particles is 0.1 μm and 0.05 μm, the cycle life performance in high rate charge / discharge is remarkably improved. As is apparent from FIG. 1, the pores slightly larger than the average particle size of the fine particles increase, and on the other hand, it is difficult to produce fine particles having an average particle size smaller than 0.02 μm, so the average particle size of the fine particles is 0.5 μm. ˜0.02 μm is preferable, more preferably 0.3 μm to 0.02 μm, and particularly preferably 0.1 μm to 0.02 μm.

Figure 2013089478
Figure 2013089478

微粒子の含有量の影響を検討すると、0.4質量%(試料No.1,2)ではハイレート充電でのサイクル寿命性能は不十分で、0.9質量%以上8質量%以下で寿命性能が向上し、特に2〜7質量%含有させると(試料No.4-7,No.10-13)、寿命性能は著しく向上する。従って、微粒子に関して最も好ましい条件は、平均粒子径が0.1μm〜0.02μmで、負極活物質中の含有量が2質量%〜7質量%であり、この時、直径が0.01〜1μmの細孔が全細孔容積に占める割合は61〜76vol%、全細孔容積は0.16cm3/g〜0.19cm3/gである。 When the influence of the content of fine particles is examined, the cycle life performance at high rate charging is insufficient at 0.4% by mass (sample No. 1 and 2), and the life performance is improved at 0.9% to 8% by mass. When 2 to 7% by mass is contained (Sample No. 4-7, No. 10-13), the life performance is remarkably improved. Accordingly, the most preferable conditions for the fine particles are that the average particle diameter is 0.1 μm to 0.02 μm, and the content in the negative electrode active material is 2% by mass to 7% by mass. At this time, pores having a diameter of 0.01 to 1 μm are formed. percentage of total pore volume 61~76vol%, total pore volume is 0.16cm 3 /g~0.19cm 3 / g.

微粒子のハイレート充放電でのサイクル寿命性能への影響を、発明者は以下のように推定した。
(1) 図1のように、微粒子を含有させることにより大きな細孔が減少し、小さな細孔が細孔径分布の中心になると、放電時に硫酸鉛が生成するサイトが増すと共に細孔径が小さいので、硫酸鉛が大きな粒子まで成長し難くなる。
(2) 硫酸鉛が微細な粒子のままでとどまっていると、充電による金属鉛への還元が容易になり、サルフェーションが進行し難くなる。
The inventor estimated the influence on the cycle life performance at the high rate charge / discharge of the fine particles as follows.
(1) As shown in FIG. 1, when the fine pores are reduced by the inclusion of fine particles and the small pores become the center of the pore size distribution, the number of sites where lead sulfate is generated during discharge increases and the pore size is small. , Lead sulfate is difficult to grow to large particles.
(2) If the lead sulfate remains in the form of fine particles, the reduction to metal lead by charging becomes easy, and sulfation is difficult to proceed.

以上のように、実施例では平均粒径が0.1〜0.05μmのTiO2微粒子を0.9質量%以上で8質量%以下、好ましくは2.0質量%以上で7質量%以下含有させることにより、ハイレート充放電に対するサイクル寿命性能を向上させることができる。なおTiO2に替えて、例えば平均粒子径が0.08μmのシリカを負極活物質中に3質量%含有させても、同様にハイレート充放電寿命を向上させることができる。 As described above, in the examples, high rate charge / discharge is achieved by containing TiO 2 fine particles having an average particle size of 0.1 to 0.05 μm in an amount of 0.9 mass% to 8 mass%, preferably 2.0 mass% to 7 mass%. Cycle life performance can be improved. Note that, in place of TiO 2 , for example, even when silica having an average particle diameter of 0.08 μm is contained in 3% by mass in the negative electrode active material, the high-rate charge / discharge life can be similarly improved.

Claims (3)

正極格子と正極活物質とから成る正極板と、負極格子と負極活物質とから成る負極板と、電解液とを備える鉛蓄電池において、
前記負極活物質は、化成済み負極活物質の乾燥時重量を基準として水銀圧入法で測定した全細孔容積が0.15cm3/g〜0.20cm3/gで、負極活物質の全細孔中で細孔直径が0.01μm〜1μmの細孔が占める割合が50vol%以上であることを特徴とする、鉛蓄電池。
In a lead storage battery comprising a positive electrode plate made of a positive electrode lattice and a positive electrode active material, a negative electrode plate made of a negative electrode lattice and a negative electrode active material, and an electrolyte solution,
The negative active material is a chemical already negative active total pore volume of the dry weight of the material was measured by mercury porosimetry as a reference 0.15cm 3 /g~0.20cm 3 / g, a total pore in the anode active material The lead acid battery is characterized in that the proportion of pores having a pore diameter of 0.01 μm to 1 μm is 50 vol% or more.
前記負極活物質は、平均粒子径が0.02μm以上で0.1μm以下の微粒子を、2質量%以上で7質量%以下含有することを特徴とする、請求項1の鉛蓄電池。   2. The lead acid battery according to claim 1, wherein the negative electrode active material contains fine particles having an average particle size of 0.02 μm or more and 0.1 μm or less in a range of 2% by mass to 7% by mass. 負極格子に負極活物質ペーストを充填し負極板とするステップと、
正極格子に正極活物質ペーストを充填し正極板とするステップと、
充填済みの負極板と正極板とを熟成及び乾燥するステップと、
熟成及び乾燥済みの負極板と正極板とに充電するステップ、とを行う鉛蓄電池の製造方法において、
前記負極活物質ペーストを充填するステップで、微粒子を含有する負極活物質ペースト鉛粉を充填することにより、化成済み負極活物質の乾燥時重量を基準として水銀圧入法で測定した全細孔容積を0.15cm3/g〜0.20cm3/g、負極活物質の全細孔中で、細孔直径が0.01μm〜1μmの細孔が占める割合を50vol%以上とすることを特徴とする、鉛蓄電池の製造方法。
Filling a negative electrode grid with a negative electrode active material paste to form a negative electrode plate;
Filling a positive electrode grid with a positive electrode active material paste to form a positive electrode plate;
Aging and drying the filled negative electrode plate and positive electrode plate;
In the method for producing a lead storage battery, the step of charging the aged and dried negative electrode plate and the positive electrode plate,
In the step of filling the negative electrode active material paste, by filling the negative electrode active material paste lead powder containing fine particles, the total pore volume measured by mercury porosimetry based on the dry weight of the formed negative electrode active material 0.15cm 3 /g~0.20cm 3 / g, in total pore of the negative electrode active material, characterized in that the ratio of pore diameter occupied pores 0.01μm~1μm and 50 vol% or more, the lead storage battery Manufacturing method.
JP2011229426A 2011-10-19 2011-10-19 Lead-acid battery and method for manufacturing the same Active JP5780106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011229426A JP5780106B2 (en) 2011-10-19 2011-10-19 Lead-acid battery and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229426A JP5780106B2 (en) 2011-10-19 2011-10-19 Lead-acid battery and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2013089478A true JP2013089478A (en) 2013-05-13
JP5780106B2 JP5780106B2 (en) 2015-09-16

Family

ID=48533181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229426A Active JP5780106B2 (en) 2011-10-19 2011-10-19 Lead-acid battery and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5780106B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362596B2 (en) 2013-07-19 2016-06-07 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
EP3780173A4 (en) * 2018-05-23 2021-05-19 GS Yuasa International Ltd. Lead-acid battery
WO2024047491A1 (en) * 2022-08-30 2024-03-07 Arcactive Limited Lead-acid battery and manufacture method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107606927A (en) * 2017-09-26 2018-01-19 安徽轰达电源有限公司 A kind of plate drying process prepared for accumulator plate and its monitoring system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091572A (en) * 1983-10-24 1985-05-22 Yuasa Battery Co Ltd Sealed lead storage battery
JPS63126161A (en) * 1986-11-17 1988-05-30 Matsushita Electric Ind Co Ltd Enclosed type lead storage battery
JPH09119115A (en) * 1995-10-24 1997-05-06 Sekisui Jushi Co Ltd Soundproof wall
JPH1069900A (en) * 1996-08-28 1998-03-10 Matsushita Electric Ind Co Ltd Pole plate for lead-acid battery
US5759716A (en) * 1996-04-08 1998-06-02 Ensci Inc Battery element containing metal inhibiting additives
JP2003086178A (en) * 2001-09-14 2003-03-20 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091572A (en) * 1983-10-24 1985-05-22 Yuasa Battery Co Ltd Sealed lead storage battery
US4725516A (en) * 1983-10-24 1988-02-16 Yuasa Battery Company Limited Sealed lead-acid battery
JPS63126161A (en) * 1986-11-17 1988-05-30 Matsushita Electric Ind Co Ltd Enclosed type lead storage battery
JPH09119115A (en) * 1995-10-24 1997-05-06 Sekisui Jushi Co Ltd Soundproof wall
US5759716A (en) * 1996-04-08 1998-06-02 Ensci Inc Battery element containing metal inhibiting additives
JPH1069900A (en) * 1996-08-28 1998-03-10 Matsushita Electric Ind Co Ltd Pole plate for lead-acid battery
JP2003086178A (en) * 2001-09-14 2003-03-20 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362596B2 (en) 2013-07-19 2016-06-07 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
US9899666B2 (en) 2013-07-19 2018-02-20 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
EP3780173A4 (en) * 2018-05-23 2021-05-19 GS Yuasa International Ltd. Lead-acid battery
WO2024047491A1 (en) * 2022-08-30 2024-03-07 Arcactive Limited Lead-acid battery and manufacture method

Also Published As

Publication number Publication date
JP5780106B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP6015427B2 (en) Negative electrode plate for lead acid battery and method for producing the same
CN104769756B (en) The composition of the deep-circulating performance of valve-control type lead-acid accumulator of the enhancing filled with gel electrolyte
WO2013046499A1 (en) Lead acid storage battery for energy storage
US10522837B2 (en) Lead-acid battery
JP5780106B2 (en) Lead-acid battery and method for manufacturing the same
CN110571433A (en) negative electrode carbon additive for improving charge acceptance of lead-carbon battery and application thereof
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JP2010225408A (en) Lead storage battery
JP6060909B2 (en) Positive electrode plate for lead acid battery, method for producing the electrode plate, and lead acid battery using the positive electrode plate
JP2010192257A (en) Manufacturing method of lead-acid battery, and paste type negative electrode plate for lead-acid battery
JP6701600B2 (en) Lead acid battery
JP5211681B2 (en) Method for producing lead-acid battery
WO2009093464A1 (en) Positive electrode composition for secondary battery, process for production thereof, and secondary battery using positive electrode composition for secondary battery
JP5578123B2 (en) Liquid lead-acid battery
JP5787181B2 (en) Lead acid battery
JP5598368B2 (en) Lead acid battery and negative electrode active material thereof
WO2019225161A1 (en) Lead-acid battery
JP2019053998A (en) Lead acid storage battery
JP4984430B2 (en) Method for producing paste active material for negative electrode
JP6649690B2 (en) Lead storage battery
CN108777288A (en) A kind of high performance and long service life power lead-acid storage battery positive electrode
JP2013048082A (en) Lead acid battery
JP2013080594A (en) Control valve type lead acid battery
JP6775764B2 (en) Lead-acid battery
JP2016096025A (en) Control valve-type lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150629

R150 Certificate of patent or registration of utility model

Ref document number: 5780106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150