JPH1041577A - Upconversion laser - Google Patents

Upconversion laser

Info

Publication number
JPH1041577A
JPH1041577A JP19057096A JP19057096A JPH1041577A JP H1041577 A JPH1041577 A JP H1041577A JP 19057096 A JP19057096 A JP 19057096A JP 19057096 A JP19057096 A JP 19057096A JP H1041577 A JPH1041577 A JP H1041577A
Authority
JP
Japan
Prior art keywords
excitation
laser
chloride
light emission
transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19057096A
Other languages
Japanese (ja)
Inventor
Masaharu Ishiwatari
正治 石渡
Yasuhiro Hanaue
康宏 花上
Akira Okubo
晶 大久保
Hiroyuki Shiraishi
浩之 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP19057096A priority Critical patent/JPH1041577A/en
Publication of JPH1041577A publication Critical patent/JPH1041577A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a purple or violaceous laser beam emit efficiently also at room temperatures, by a method in which a purple light emission, which is accompanied by a transition to the specified state of neodymium ions, is used on the basis of an excitation of the neodymium ions from its ground state to a specified energy level. SOLUTION: ND<3+> is excited from its ground state (<4> I9/2 ) to an energy level (<2> H9/2 +<4> F5/2 ) and goes through two factors or more of excitations to utilize a purple light emission, which is finally generated by a transition from the state of<4> D3/2 ) of the ND<3+> to the state of<4> I11/2 of the ND<3+> . Here, in an ND3+ - containing chloride crystal, an absorption, which is accompanied by the excitation of the ND<3+> from the ground state (<4> I9/2 ) to the energy level (<2> H9/2 +<4> F5/2 ), is seen in the extent of about 790 to 830nm and the strongest absroption is seen in the vicinity of 810nm. As a compound which is used as a laser medium, the chloride crystal containing the ND<3+> as its luminous ions or a chloride glass is proper. Thereby, a purple light emission in the vicinity of 390nm or a violaceous light emission in the vicinity of 415nm can be efficiently obtained at room temperatures using a laser beam in the vicinity of 800nm ans its excitation source.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体レーザーに
よって容易に得られる近赤外線レーザー光を励起源と
し、光記録などに有利な短波長レーザー光を発生させる
アップコンバージョンレーザーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an up-conversion laser that uses near-infrared laser light, which is easily obtained by a semiconductor laser, as an excitation source and generates short-wavelength laser light that is advantageous for optical recording and the like.

【0002】[0002]

【従来技術】短波長レーザーを用いた光記録手段は記録
密度を高めるうえで有利であるために、半導体レーザ
ー、SHGレーザー、アップコンバージョンレーザーな
どの各種のレーザーについて、小型で安価な短波長レー
ザーが研究されている。このうち半導体レーザーは41
0nm波長域での発振が実験レベルでは得られているが、
実用化されているものは600nm以上のものであり、よ
り波長の短いものが求められている。また、SHGレー
ザーは十分な性能を得るにはコストや安定性に問題があ
る。一方、アップコンバージョンレーザーについても、
Nd:LaF3を用いて380nmの紫色発光を得た報告
や、ErないしTmを添加したYLiF4およびBaY2
8を用いて450nm〜600nmの青色ないし緑色発光
を得た報告などが多数知られているが、いずれも発光効
率などが低く実用化されていない。
2. Description of the Related Art Since optical recording means using a short-wavelength laser is advantageous in increasing the recording density, small and inexpensive short-wavelength lasers have been used for various lasers such as semiconductor lasers, SHG lasers, and up-conversion lasers. Has been studied. Of these, 41 are semiconductor lasers.
Oscillation in the 0 nm wavelength range has been obtained at the experimental level,
Practical ones have a wavelength of 600 nm or more, and shorter wavelengths are required. In addition, the SHG laser has problems in cost and stability to obtain sufficient performance. On the other hand, for up-conversion lasers,
A report of obtaining 380 nm purple emission using Nd: LaF 3 , and YLiF 4 and BaY 2 added with Er or Tm
Although such reports to obtain a blue to green emission 450nm~600nm with F 8 are known many, both like luminous efficiency is not practically reduced.

【0003】短波長のアップコンバージョンレーザーを
実用化するには、安価で扱い易い半導体レーザーを励起
源として用いることができ、かつ発光効率の良い材料を
レーザー媒体とすることが望まれる。ところが、Ndイ
オンを発光イオンとする従来の蛍光体では励起源として
590nmや750nmの光を利用しており、半導体レーザ
ーを励起源として利用することができない。また、従来
のアップコンバージョンレーザーは、レーザー媒体とし
て結晶を用いたものは大部分が室温よりかなり低い13
0K以下でしか発振しないと云う問題もある。
In order to put a short wavelength up-conversion laser into practical use, it is desirable to use a semiconductor laser which can be used at a low cost and is easy to handle as an excitation source and which has good luminous efficiency. However, a conventional phosphor using Nd ions as light-emitting ions uses light of 590 nm or 750 nm as an excitation source, and a semiconductor laser cannot be used as an excitation source. In addition, most of conventional up-conversion lasers using a crystal as a laser medium are substantially lower than room temperature.
There is also a problem that oscillation occurs only below 0K.

【0004】[0004]

【発明の解決課題】本発明は、アップコンバージョン材
料を用いた従来のレーザーにおける上記問題を解決した
ものであって、酸化物材料やフッ化物材料に比べて格段
に発光効率の良い塩化物材料からなるアップコンバージ
ョン蛍光体をレーザー媒体として用い、現在一般に利用
されているGaAlAs系ないしGsAs系等の半導体
レーザーによって容易に得られる800nm付近のレーザ
ー光を励起源として、室温においても紫色〜青紫色のレ
ーザー光を効率良く生じる短波長アップコンバージョン
レーザーを提供するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problem in a conventional laser using an up-conversion material, and uses a chloride material having a much higher luminous efficiency than an oxide material or a fluoride material. A violet to blue-violet laser even at room temperature, using an up-conversion phosphor as a laser medium, and using a laser light of around 800 nm easily obtained by a GaAlAs-based or GsAs-based semiconductor laser generally used at present as an excitation source. An object of the present invention is to provide a short-wavelength up-conversion laser that efficiently generates light.

【0005】[0005]

【課題の解決手段】本発明者等は、鋭意検討の結果、N
3+を含むいくつかの化合物において、室温下で単一の
ガリウム−砒素系半導体レーザー(波長808nm,35mW)を
励起光として紫色の発光が得られることを見出した。従
来、このような励起波長の半導体レーザーによる発光現
象は殆ど知られていない。詳しい検討の結果、この紫色
発光は波長約388nmであり、Nd3+イオンの 43/2
から411/2への遷移に伴うものであり、この他に、4
3/2から413/2への遷移に伴う青紫色発光(波長415n
m)、および43/2から基底状態(49/2)への遷移に伴
う発光(波長363nm)も認められた。そして、これらの
発光は基底状態(49/2)のNd3+が上記半導体レーザー
によって、(29/245/2)のエネルギー準位に励起
され、その後、何通りかの複雑な励起過程を経て、4
3/2のエネルギー準位まで励起されていることが判明し
た。
The present inventors have conducted intensive studies and found that N
In some compounds including d 3+ , it was found that a single gallium-arsenic semiconductor laser (wavelength: 808 nm, 35 mW) can emit violet light at room temperature using excitation light. Heretofore, almost no emission phenomenon by a semiconductor laser having such an excitation wavelength has been known. Result of detailed study, the violet emission is the wavelength of about 388 nm, of Nd 3+ ions 4 D 3/2
From 4 I to 11/2 , and 4 D
Blue-violet emission accompanying the transition from 3/2 to 4 I 13/2 (wavelength 415n
m), and fourth light emitting accompanying transition from D 3/2 to the ground state (4 I 9/2) (wavelength 363 nm) was also observed. Then, these light emission by Nd 3+ are the semiconductor laser in the ground state (4 I 9/2), it is excited in the energy level of the (2 H 9/2 + 4 F 5/2 ), then what Street through Kano complex excitation process, 4 D
It turned out that it was excited to the energy level of 3/2 .

【0006】本発明は上記知見に基づくものであり、本
発明によれば(1)Nd3+を含む透明体をレーザー媒体
とし、Nd3+の基底状態(49/2)から(29/2
45/2)への励起に基づき、43/2から411/2への遷
移に伴う紫色発光を用いることを特徴とするアップコン
バージョンレーザーが提供される。さらに、本発明によ
れば、(2) Nd3+を含む透明体をレーザー媒体と
し、Nd3+の基底状態(49/2)から(29/245/2
への励起に基づき、43/2から413/2への遷移に伴う
青紫色発光を用いることを特徴とするアップコンバージ
ョンレーザーが提供される。
The present invention is based on the above-mentioned findings. According to the present invention, (1) a transparent medium containing Nd 3+ is used as a laser medium, and the ground state of Nd 3+ ( 4 I 9/2 ) is changed to ( 2 H 9/2 +
There is provided an up-conversion laser characterized by using violet emission accompanying transition from 4 D 3/2 to 4 I 11/2 based on excitation to 4 F 5/2 ). Furthermore, according to the present invention, (2) a laser medium transparent body containing Nd 3+, from the ground state of Nd 3+ (4 I 9/2) ( 2 H 9/2 + 4 F 5/2)
Based on the excitation of the up-conversion laser which comprises using a blue-violet emission accompanying the transition from the 4 D 3/2 to 4 I 13/2 is provided.

【0007】本発明のアップコンバージョンレーザー
は、(3)ガリウム−砒素系の半導体レーザー光を励起
源とし、紫色〜青紫色のレーザー光を得る上記(1)また
は(2)に記載のレーザー、(4)透明体がNd3+を含む
塩化物結晶である上記(1)〜(3)の何れかに記載のレーザ
ー、(5)透明体がNd3+を含み、陰イオン成分として
塩化物を主体とするガラスである上記(1)〜(3)の何れか
に記載のレーザー、(6)透明体がNd3+以外の希土類
元素イオンを発光関与イオンとして含む上記(1)〜(5)の
何れかに記載のレーザーを含む。
The upconversion laser according to the present invention is: (3) the laser according to the above (1) or (2), wherein gallium-arsenic semiconductor laser light is used as an excitation source to obtain violet to bluish purple laser light; 4) The laser according to any one of the above (1) to (3), wherein the transparent body is a chloride crystal containing Nd 3+ , (5) The transparent body contains Nd 3+ , and chloride is used as an anion component. The laser according to any one of the above (1) to (3), which is a glass as a main component, (6) the above (1) to (5), wherein the transparent body contains a rare earth element ion other than Nd 3+ as a light emission-related ion. The laser according to any one of the above.

【0008】[0008]

【具体的な説明】以下、本発明をNd3+のエネルギー準
位図を参照して具体的に説明する。図1はNd3+のエネ
ルギー準位を簡略に示したものである。なお、希土類イ
オンのエネルギー準位は化合物の組成や形態にあまり依
存しないことが知られているので、図1は水溶液中での
データを基にしている(J. Chem. Phys. 49, (1968) 44
24)。図中の矢印は本発明において推定される励起過程
を示す。
DETAILED DESCRIPTION The present invention will be specifically described below with reference to an energy level diagram of Nd 3+ . FIG. 1 schematically shows the energy levels of Nd 3+ . It is known that the energy level of rare earth ions does not depend much on the composition and morphology of the compound, and FIG. 1 is based on data in an aqueous solution (J. Chem. Phys. 49, (1968) ) 44
twenty four). The arrows in the figure indicate the excitation process estimated in the present invention.

【0009】本発明における励起発光過程は、その一例
として図示するように、以下の(イ)〜(ヘ)または(ト)の過
程を経ているものと推察される。 (イ) 基底状態(49/2) ---→ 29/245/2 への励
起 (ロ) 29/245/2 ---→ 43/2 への遷移 (ハ) 43/2 ---→ 21/225/2 への
励起 (ニ) 21/225/2 ---→ 211/2 への遷移 (ホ) 211/2 ---→ 43/2 への励起 (ヘ) 43/2 ---→ 411/2 への遷移 (ト) 43/2 ---→ 413/2 への遷移 上記励起過程において、43/243/245/24
1/2211/2215/2のエネルギー準位を示す(以
下、43/2と略記する)。なお、以上の励起過程は最も
単純な例を示したものであり、励起による蛍光スペクト
ルがNd濃度に依存していることからも明かなように、
Nd3+が基底状態(49/2)から(29/245/2)へ
励起された後は、実際には複数のNd3+の間でのエネル
ギー交換などを含めたより複雑な過程で励起されている
ものと考えられる。
The excitation light emission process in the present invention is presumed to have gone through the following processes (a) to (f) or (g) as shown as an example. (B) Ground state ( 4 I 9/2 ) --- → Excitation to 2 H 9/2 + 4 F 5/2 (b) 2 H 9/2 + 4 F 5/2 --- → 4 F Transition to 3/2 (c) Excitation to 4 F 3/2 --- → 2 P 1/2 + 2 D 5/2 (d) 2 P 1/2 + 2 D 5/2 --- → Transition to 2 H 11/2 (e) Excitation to 2 H 11/2 --- → 4 D 3/2 (f) Transition to 4 D 3/2 --- → 4 I 11/2 ( g ) 4 D 3/2 --- → 4 in the transition above excitation process to I 13/2, 4 D 3/2 is 4 D 3/2 + 4 D 5/2 + 4 D
Shows the energy levels of 1/2 + 2 I 11/2 + 2 L 15/2 ( hereinafter, abbreviated as 4 D 3/2). Note that the above excitation process is a simplest example, and as is clear from the fact that the fluorescence spectrum due to the excitation depends on the Nd concentration,
After the Nd 3+ is excited from the ground state (4 I 9/2) to (2 H 9/2 + 4 F 5/2 ) it is like actually energy exchange between a plurality of Nd 3+ It is considered that it is excited by a more complicated process.

【0010】一般に励起過程が複雑になれば、その中間
過程でのエネルギーロスが大きい材料では効率の良い励
起が行われないことは容易に想像でき、そのため、本発
明で得られた紫色や青紫色の発光はこれまで殆ど知られ
ていなかった。事実、実施例に示すように、一般的なレ
ーザー材料を用いた場合には本発明のような紫色や青紫
色の発光は得られない。ところが、Nd3+を発光イオン
として含む塩化物系の結晶体やガラス体ではガリウム−
砒素半導体レーザー光を励起源として紫色や青紫色の発
光を得ることができるのであり、従って、本発明の上記
励起過程が効率良く行われているものと考えられる。一
般に、励起過程が効率良く行われるためには、(a)励起
の中間過程での安定度が高い、(b)エネルギーの移動が
円滑に行われるように準位間のエネルギー差が適切な大
きさであるなどの要件を満たす必要がある。上記塩化物
材料はフォノンエネルギーが小さいために熱輻射の確率
が低く、励起状態の安定度が高いので上記(a)の要件を
満たし、またエネルギー準位の母体材料に基づく微妙な
ズレが上記(b)の要件を満たすものと思われる。なお、
本発明はNd3+の上記励起過程による発光が得られる材
料であれば良いので、Nd3+が上記励起過程を経る材料
であれば塩化物系材料に限らない。
In general, if the excitation process is complicated, it can be easily imagined that efficient excitation will not be performed with a material having a large energy loss in the intermediate process. Therefore, the purple or blue-violet light obtained by the present invention can be easily obtained. Has not been known so far. In fact, as shown in Examples, when a general laser material is used, purple or blue-violet light emission as in the present invention cannot be obtained. However, in a chloride-based crystal or glass containing Nd 3+ as a light-emitting ion, gallium-
It is possible to obtain violet or blue-violet light emission using the arsenic semiconductor laser light as an excitation source, and thus it is considered that the above-described excitation process of the present invention is performed efficiently. In general, in order for the excitation process to be performed efficiently, (a) the stability in the intermediate process of the excitation is high, and (b) the energy difference between the levels is appropriately large so that the energy transfer is performed smoothly. It is necessary to meet requirements such as The chloride material has a low probability of thermal radiation due to low phonon energy, and has a high stability of the excited state, and thus satisfies the requirement of the above (a), and the subtle deviation based on the base material of the energy level is the above ( It seems to meet the requirement of b). In addition,
Since the present invention may be any material which emission by the excitation process of Nd 3+ is obtained, Nd 3+ is not limited to chloride-based material as long as the material undergoing the excitation process.

【0011】参考までに、紫色発光について、従来知ら
れているNd3+の発光過程を示したエネルギー準位図を
図2に示す。なお、これはNd:LaF3結晶を用いたも
のである(Appl.Phys.Lett.52(16),18 April 1988, 130
0-1302p)。図2のNd3+を利用した従来の紫色発光
は、図中(a),(b)の2種によるものであり、各々次のよ
うな発光過程からなる。(a)の場合は、IRによって基
底状態(49/2)から46/2に励起し、さらに黄色光によ
43/2から43/2への励起を経て、43/2から4
11/2への遷移によって紫色光を生じる。(b)の場合は、
黄色光による基底状態(49/2)から45/2への励起と4
3/2から43/2への励起によって紫色発光(43/2から
411/2への遷移)を生じる。これらは何れの場合も黄色
光を励起光として用いており、そのために励起の中間過
程でのエネルギーロスを低減させて紫色発光が得られる
ものと考えられ、本発明の発光過程とは明らかに異なっ
たものである。
For reference, FIG. 2 shows an energy level diagram showing a conventionally known Nd 3+ emission process for purple emission. This uses Nd: LaF 3 crystal (Appl. Phys. Lett. 52 (16), 18 April 1988, 130).
0-1302p). The conventional purple light emission using Nd 3+ shown in FIG. 2 is due to two kinds of light emission (a) and (b) in the figure, and each of the light emission processes is as follows. the case of (a), through excitation and excited from the ground state (4 I 9/2) to 4 F 6/2 by IR, further from 4 F 3/2 by the yellow light to 4 D 3/2, 4 D 3/2 to 4 I
The transition to 11/2 produces purple light. In the case of (b),
Excitation from the ground state (4 I 9/2) by the yellow light to 4 G 5/2 and 4
Excitation from F 3/2 to 4 D 3/2 causes purple emission (from 4 D 3/2
4 I 11/2 transition). In each case, yellow light is used as excitation light, and it is considered that purple light emission is obtained by reducing energy loss in the intermediate step of excitation, which is clearly different from the light emission process of the present invention. It is a thing.

【0012】本発明のアップコンバージョンレーザー
は、Nd3+をその基底状態(49/2)から(29/24
5/2)に励起し、2律以上の励起を経て最終的に43/2
励起し、43/2から411/2への遷移によって生じる紫
色発光を利用するものであり、従って、励起源として
は、Nd3+をその基底状態から(29/245/2)に励
起するためのエネルギーを有する光が用いられる。ここ
で、Nd3+を含む塩化物結晶(実施例1の試料No.3に相
当)について、760nm付近から840nm付近に至る波
長域における室温下での吸収スペクトルを図3に示す。
同図に示すように、概ね790nm〜830nmの範囲にお
いて、基底状態(49/2)から 29/245/2への励起
に伴う吸収が見られ、810nm付近において最も強い吸
収が見られる。一方、同一の塩化物結晶について、励起
波長を変化させた際の発光の強さを調べると、この吸収
の大きさにほぼ準じており、最も発光の強い領域は80
6nmである。この波長はガリウム−砒素系の化合物半導
体レーザーの発振波長域と一致しており、比較的強力な
励起光を容易に得ることができる波長である。
[0012] upconversion laser of the present invention, the Nd 3+ from its ground state (4 I 9/2) (2 H 9/2 + 4 F
Those excited to 5/2), eventually excited to 4 D 3/2 through the excitation of two or more law utilizes a violet emission caused by a transition from 4 D 3/2 to 4 I 11/2 There, therefore, as the excitation source, the light having an energy for exciting the Nd 3+ from its ground state to a (2 H 9/2 + 4 F 5/2 ) is used. Here, FIG. 3 shows an absorption spectrum at room temperature of a chloride crystal containing Nd 3+ (corresponding to sample No. 3 of Example 1) in a wavelength range from around 760 nm to around 840 nm.
As shown in the figure, generally in the range of 790Nm~830nm, absorption was observed due to the excitation from the ground state (4 I 9/2) to 2 H 9/2 + 4 F 5/2, most near 810nm Strong absorption is seen. On the other hand, when the intensity of light emission of the same chloride crystal when the excitation wavelength was changed was examined, the intensity was almost in accordance with the magnitude of the absorption.
6 nm. This wavelength coincides with the oscillation wavelength range of the gallium-arsenic compound semiconductor laser, and is a wavelength at which relatively strong excitation light can be easily obtained.

【0013】本発明においてレーザー媒体として用いる
化合物の例としては、Nd3+を発光イオンとする塩化物
結晶あるいは塩化物ガラスが挙げられる。これらは、N
d以外の希土類元素イオンを発光関与イオンとして含む
ものでも良い。具体的な例としては、特開平7-97572号
公報に記載されている、一般式:REBa2Cl7(式
中、REは希土類元素)で示される塩化物であって、Nd
を含むものが挙げられる。上記塩化物結晶はBa2原子
と希土類1原子に対して7原子の塩素が配位した構造で
あり、通常のNdBa3Cl9の構造とは異なる安定な透
明結晶である。
Examples of the compound used as a laser medium in the present invention include a chloride crystal or a chloride glass having Nd 3+ as a light-emitting ion. These are N
Rare earth element ions other than d may be included as light emission-related ions. A specific example is a chloride represented by the general formula: REBa 2 Cl 7 (where RE is a rare earth element) described in JP-A-7-97572, and Nd
And the like. The chloride crystal has a structure in which 7 atoms of chlorine are coordinated with 2 atoms of Ba and 1 atom of rare earth, and is a stable transparent crystal different from the structure of ordinary NdBa 3 Cl 9 .

【0014】上記結晶構造を有する塩化物としては、一
般式:Ndx(RE1-x)Ba2Cl7、(REはGdおよび/ま
たはY、xは0<x<0.5)で表される希土類含有塩化バリ
ウムなどである。また、塩化物ガラスとしては、特願平
07-051786号に記載されている塩化バリウム−塩化ガド
リニウム−塩化ネオジウム系のガラスが挙げられる。
The chloride having the above crystal structure is represented by the general formula: Nd x (RE 1 -x ) Ba 2 Cl 7 (where RE is Gd and / or Y, and x is 0 <x <0.5). Rare earth-containing barium chloride. In addition, as a chloride glass,
Barium chloride-gadolinium chloride-neodymium chloride based glass described in 07-051786.

【0015】[0015]

【発明の実施形態】以下、本発明の実施例を示す。な
お、これらは例示であり、本発明の範囲を限定するもの
ではない。
The embodiments of the present invention will be described below. In addition, these are illustrations and do not limit the scope of the present invention.

【0016】実施例1 酸化イットリウム、酸化ガドリニウム、酸化ネオジム、
無水塩化バリウム、炭素粉末を表1に示す量比に配合し
たものを、グラッシーカーボン製のルツボに入れ、石英
ガラス製反応容器内において、塩素ガス導入下、900
℃で2時間加熱して反応させ、塩化物融体を得た。塩素
ガスを吹き込んで残存する酸化物および水分を反応器か
ら追い出した後に、上記塩化物融体を石英管に吸い上
げ、棒状に冷却し固化させた。この石英管の両端を真空
封止して加熱炉に入れ、帯溶融法によって単結晶に育成
した。育成条件は最高温度850℃、温度勾配約5℃/m
m、移動速度7mm/hである。この塩化物単結晶(直径4.5
mm)を厚さ4.8mmに研磨し、シリコーンオイルを満た
した容器内で、近赤外線レーザー(Ti:サファイヤレーサ゛ー、ハ゜ル
ス幅約10ns、ヒ゛ーム径約1mm2、波長806nm、約2mJ/ハ゜ルス)で
励起した際の蛍光スペクトルを測定した。図4に代表例
として試料No.3の蛍光スペクトルを示した。他の試料に
ついてもほぼ同様の蛍光スペクトルが得られた。なお、
図4は励起波長806nmの場合であり、最も発光強度が
強いが、励起波長795nm〜815nmを用いた場合でも
発光が観察された。次に、表1に示す組成の塩化物単結
晶について(45/229/2)準位への励起による4
3/2から411/2への遷移に伴う発光の利得の測定を行っ
たところ、効率の大小はあるものの、全ての試料につい
て利得が得られた。
Example 1 Yttrium oxide, gadolinium oxide, neodymium oxide,
A mixture of anhydrous barium chloride and carbon powder in the ratios shown in Table 1 was placed in a glassy carbon crucible, and 900 g of chlorine gas was introduced in a quartz glass reaction vessel.
The mixture was reacted by heating at 2 ° C. for 2 hours to obtain a chloride melt. After blowing out the residual oxides and moisture from the reactor by blowing chlorine gas, the chloride melt was sucked up into a quartz tube, cooled and solidified in a rod shape. Both ends of this quartz tube were sealed in a vacuum, placed in a heating furnace, and grown into a single crystal by a band melting method. Growth conditions are maximum temperature of 850 ℃, temperature gradient of about 5 ℃ / m
m, moving speed 7 mm / h. This chloride single crystal (diameter 4.5
mm) is polished to a thickness of 4.8 mm, and in a container filled with silicone oil, with a near-infrared laser (Ti: sapphire laser, pulse width about 10 ns, beam diameter about 1 mm 2 , wavelength 806 nm, about 2 mJ / pulse) The fluorescence spectrum upon excitation was measured. FIG. 4 shows the fluorescence spectrum of Sample No. 3 as a representative example. Approximately similar fluorescence spectra were obtained for the other samples. In addition,
FIG. 4 shows the case where the excitation wavelength is 806 nm, and the light emission intensity is the strongest, but light emission was observed even when the excitation wavelength was 795 nm to 815 nm. Next, 4 D by the excitation of chloride composition shown in Table 1 for a single crystal to (4 F 5/2 + 2 H 9/2 ) level
When the gain of the luminescence accompanying the transition from 3/2 to 4 I 11/2 was measured, the gain was obtained for all the samples, although the efficiency was large or small.

【0017】一方、二波長励起や極低温での紫色発光が
示されているYLiF4結晶(1%Nd含有)について、上
記と同じ条件でアップコンバージョン蛍光スペクトルの
測定を試みたが、レーザー出力を4mJまで高めても(4
5/229/2)から基底状態への遷移に相当する59
0nm付近に痕跡程度の蛍光が観察されただけであり、従
って、本発明のような励起が生じていないことが示され
た。
On the other hand, for a YLiF 4 crystal (containing 1% Nd) exhibiting two-wavelength excitation and violet emission at an extremely low temperature, an up-conversion fluorescence spectrum was measured under the same conditions as described above. Even if increased to 4mJ ( 4
Corresponds to a transition from the G 5/2 + 2 G 9/2) to the ground state 59
Only traces of fluorescence were observed around 0 nm, indicating that no excitation as in the present invention had occurred.

【0018】表1 Table 1

【0019】実施例2 原料を表2に示す量比に配合したものを、グラッシーカ
ーボン製のルツボに入れ、石英ガラス製反応容器内にお
いて、アルゴン雰囲気下で加熱し溶融させた。溶融後、
試料No.9,11,12をアルゴンと四塩化炭素の混合ガス下を
2時間かけて吹き込み完全に酸化物イオン等を除去し
た。一方、試料No.10,13については、臭素と一酸化炭素
を吹き込み、同様の処理を施した。これらの融体を石英
管に吸い上げ、棒状に冷却し固化させた。この石英管の
両端を真空封止して加熱炉に入れ、再溶融した後に、直
ちにガラス転移温度まで冷却し、2時間アニールした。
その後、1k/minの割合で徐冷して塩化物主体のガラス
試料を得た。
Example 2 A mixture of the raw materials in the ratios shown in Table 2 was placed in a glassy carbon crucible, and heated and melted in a quartz glass reaction vessel under an argon atmosphere. After melting,
Sample Nos. 9, 11, and 12 were blown under a mixed gas of argon and carbon tetrachloride over 2 hours to completely remove oxide ions and the like. On the other hand, for samples Nos. 10 and 13, bromine and carbon monoxide were blown, and the same treatment was performed. These melts were sucked into a quartz tube, cooled into a rod shape, and solidified. Both ends of the quartz tube were vacuum-sealed, placed in a heating furnace, re-melted, immediately cooled to a glass transition temperature, and annealed for 2 hours.
Thereafter, the sample was gradually cooled at a rate of 1 k / min to obtain a glass sample mainly composed of chloride.

【0020】これらの塩化物ガラスについて、実施例1
と同様に先ず蛍光スペクトルを測定した。代表例として
試料No.9のスペクトルを図5に示した。他の試料につい
てもほぼ同様の蛍光スペクトルが得られた。次に、表2
に示す組成の塩化物ガラスについて(45/229/2
準位への励起による43/2から411/2への遷移に伴う
発光の利得の測定を行ったところ、効率の大小はあるも
のの、全ての試料について利得が得られた。一方、フッ
化物アップコンバージョンガラスとして代表的なZBLAN
ガラス(ZrF4:BaF2:LaF3:AlF3:NaF)について、1
〜3%のNdF3を添加し、上記と同一の条件でアップ
コンバージョン蛍光の測定を試みたが、全く蛍光が得ら
れなかった。
Example 1 for these chloride glasses
First, the fluorescence spectrum was measured in the same manner as described above. FIG. 5 shows the spectrum of Sample No. 9 as a representative example. Approximately similar fluorescence spectra were obtained for the other samples. Next, Table 2
( 4 F 5/2 + 2 H 9/2 )
When the gain of light emission due to the transition from 4 D 3/2 to 4 I 11/2 due to the excitation to the level was measured, the gain was obtained for all samples, although the efficiency was large or small. On the other hand, ZBLAN, a typical fluoride upconversion glass,
For glass (ZrF 4 : BaF 2 : LaF 3 : AlF 3 : NaF), 1
〜3% of NdF 3 was added, and an attempt was made to measure upconversion fluorescence under the same conditions as above, but no fluorescence was obtained.

【0021】表2 Table 2

【0022】実験例 Nd0.021.98BaF6.4Cl1.6、 Nd0.01Gd0.99
BaPbF3.5Cl3.5の組成からなる試料について、実
施例1と同様に、(45/229/2)準位への励起によ
43/2から411/2への遷移に伴う発光を測定したと
ころ、いずれの試料についても発光が観察された。な
お、これらの試料は多結晶体であり、透明体ではないの
で、レーザー発振を直接行うことはできないが、本発明
の励起過程が認められる。
Experimental Example Nd 0.02 Y 1.98 BaF 6.4 Cl 1.6 , Nd 0.01 Gd 0.99
Samples having the composition BaPbF 3.5 Cl 3.5, in the same manner as in Example 1, from (4 F 5/2 + 2 H 9/2 ) 4 D 3/2 by the excitation of the level to 4 I 11/2 When light emission accompanying the transition was measured, light emission was observed for all samples. Since these samples are polycrystalline and not transparent, laser oscillation cannot be performed directly, but the excitation process of the present invention is observed.

【0023】[0023]

【発明の効果】本発明のアップコンバージョンレーザー
は、800nm付近のレーザー光を励起源として、室温に
おいて390nm付近の紫色ないし415nm付近の青紫色
の発光を効率良く得ることができる。さらに、現在一般
に利用されており、出力の大きな800nm付近のレーザ
ー光を生じるガリウム−砒素系の半導体レーザーを励起
源として利用することができるので、実用性に優れる。
The up-conversion laser of the present invention can efficiently emit violet light of about 390 nm to blue-violet light of about 415 nm at room temperature using a laser light near 800 nm as an excitation source. Further, a gallium-arsenic semiconductor laser which is generally used at present and generates a laser beam having a large output of about 800 nm can be used as an excitation source, so that it is excellent in practicality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の発光過程を示すNd3+のエネルギー
準位図
FIG. 1 is an energy level diagram of Nd 3+ showing a light emitting process of the present invention.

【図2】 従来の発光過程を示すNd3+のエネルギー準
位図
FIG. 2 is an energy level diagram of Nd 3+ showing a conventional light emitting process.

【図3】 Nd3+の基底状態から(45/229/2)準
位への励起による吸収スペクトル図
[Figure 3] absorption spectrum due to excitation from the ground state of Nd 3+ to (4 F 5/2 + 2 H 9/2 ) level

【図4】 実施例1の発光スペクトル図FIG. 4 is an emission spectrum diagram of Example 1.

【図5】 実施例2の発光スペクトル図FIG. 5 is an emission spectrum diagram of Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 白石 浩之 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hiroyuki Shiraishi 1-297 Kitabukuro-cho, Omiya-shi, Saitama Mitsubishi Materials Research Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ネオジムイオン(以下、Nd3+と示す)を
含む透明体をレーザー媒体とし、Nd3+の基底状態(4
9/2)から(29/245/2)への励起に基づき、4
3/2から411/2への遷移に伴う紫色発光を用いることを
特徴とするアップコンバージョンレーザー。
A transparent medium containing neodymium ions (hereinafter, referred to as Nd 3+ ) is used as a laser medium, and a ground state of Nd 3+ ( 4
Based on the excitation from the I 9/2) to (2 H 9/2 + 4 F 5/2 ), 4 D
Upconversion laser, which comprises using a violet emission accompanying the transition from 3/2 to 4 I 11/2.
【請求項2】 Nd3+を含む透明体をレーザー媒体と
し、Nd3+の基底状態(49/2)から(29/245/2)へ
の励起に基づき、43/2から413/2への遷移に伴う青
紫色発光を用いることを特徴とするアップコンバージョ
ンレーザー。
Wherein the laser medium transparent body containing Nd 3+, based on the excitation from the ground state of Nd 3+ (4 I 9/2) to (2 H 9/2 + 4 F 5/2 ), upconversion laser, which comprises using a blue-violet emission with a 4 D 3/2 to transition to 4 I 13/2.
【請求項3】 ガリウム−砒素系の半導体レーザー光を
励起源とし、紫色〜青紫色のレーザー光を得る請求項1
または2に記載のレーザー。
3. A violet to blue-violet laser beam is obtained by using a gallium-arsenic semiconductor laser beam as an excitation source.
Or the laser according to 2.
【請求項4】 透明体がNd3+を含む塩化物結晶である
請求項1〜3の何れかに記載のレーザー。
4. The laser according to claim 1, wherein the transparent body is a chloride crystal containing Nd 3+ .
【請求項5】 透明体がNd3+を含み、陰イオン成分と
して塩化物を主体とするガラスである請求項1〜3の何
れかに記載のレーザー。
5. The laser according to claim 1, wherein the transparent body is glass containing Nd 3+ and mainly containing chloride as an anion component.
【請求項6】 透明体がNd3+以外の希土類元素イオン
を発光関与イオンとして含む請求項1〜5の何れかに記
載のレーザー。
6. The laser according to claim 1, wherein the transparent body contains a rare-earth element ion other than Nd 3+ as an emission-related ion.
JP19057096A 1996-07-19 1996-07-19 Upconversion laser Withdrawn JPH1041577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19057096A JPH1041577A (en) 1996-07-19 1996-07-19 Upconversion laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19057096A JPH1041577A (en) 1996-07-19 1996-07-19 Upconversion laser

Publications (1)

Publication Number Publication Date
JPH1041577A true JPH1041577A (en) 1998-02-13

Family

ID=16260270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19057096A Withdrawn JPH1041577A (en) 1996-07-19 1996-07-19 Upconversion laser

Country Status (1)

Country Link
JP (1) JPH1041577A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003052891A2 (en) * 2001-12-17 2003-06-26 Krupke William F Diode-pumped visible wavelength alkali laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003052891A2 (en) * 2001-12-17 2003-06-26 Krupke William F Diode-pumped visible wavelength alkali laser
WO2003052891A3 (en) * 2001-12-17 2004-01-22 William F Krupke Diode-pumped visible wavelength alkali laser

Similar Documents

Publication Publication Date Title
Man et al. Upconversion luminescence of Er3+ in alkali bismuth gallate glasses
Stevenson et al. Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass–ceramics
Choi et al. Spectroscopic properties of and energy transfer in PbO–Bi2O3–Ga2O3 glass doped with Er2O3
CN111377609B (en) Preparation method of transparent glass with mid-infrared 3.9 mu m luminescence characteristic at room temperature
Lavın et al. Stimulated and upconverted emissions of Nd3+ in a transparent oxyfluoride glass-ceramic
CN112010557A (en) Transparent glass with middle infrared 3.5 mu m luminescence characteristic and preparation method thereof
Hu et al. Enhanced 2.7 μm emission from diode-pumped Er3+/Pr3+ co-doped LiYF4 single crystal grown by Bridgman method
JP5170502B2 (en) Fluoride bulk single crystal material for upconversion
JPH1041577A (en) Upconversion laser
Sun et al. Intense frequency upconversion emission of Er3+/Yb3+-codoped natrium–barium–strontium–lead–bismuth glasses
CN1298896C (en) Er3+,Yb3+,Ce3+Co-doped CaF2Laser crystal and growing method thereof
Yang et al. Frequency upconversion properties of Yb3+-Er3+ co-doped oxyfluoride germanate glass
Sun et al. Efficient frequency upconversion emission of Er3+/Yb3+-codoped potassium–magnesium–lead–bismuth glasses pumped at 975 nm
CN1636906A (en) Er3+/Yb3+Co-doped oxychloride tellurate glass and preparation method thereof
Somaiah et al. Vk centers, energy transfer and thermoluminescence of europium activated LiBaF3
Tkachuk et al. Optical spectra and emission characteristics of terbium-doped potassium–lead double chloride crystals (KPb 2 Cl 5: Tb 3+)
JPH09208947A (en) Up-conversion phosphor and its production
JP3529162B2 (en) Infrared visible wavelength up-conversion material
CN118087040A (en) Er3+ doped rare earth-based double perovskite single crystal and preparation method and application thereof
JP3106806B2 (en) Production method of transparent halide containing rare earth
CN105293926A (en) Rear earth ion-doped K2GdBr5 microcrystalline glass and preparation method thereof
Xu et al. Blue upconversion luminescence in Tm^(3+)/Yb^(3+) co-doped new oxyfluoride tellurite glass
JPH10273337A (en) Glass material for wavelength transformation
Zhang et al. Nd 3+, Yb 3+ and Ho 3+ Codoped Oxyfluoride Glass Ceramics with High Efficient Green Upconversion Luminescence
Liang et al. Intense upconversion emission of Er3+/Yb3+-codoped Bi2O3-Ge2-Na2O glasses

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007