JP3106806B2 - Production method of transparent halide containing rare earth - Google Patents

Production method of transparent halide containing rare earth

Info

Publication number
JP3106806B2
JP3106806B2 JP05256556A JP25655693A JP3106806B2 JP 3106806 B2 JP3106806 B2 JP 3106806B2 JP 05256556 A JP05256556 A JP 05256556A JP 25655693 A JP25655693 A JP 25655693A JP 3106806 B2 JP3106806 B2 JP 3106806B2
Authority
JP
Japan
Prior art keywords
transparent
rare earth
raw material
melt
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05256556A
Other languages
Japanese (ja)
Other versions
JPH0790268A (en
Inventor
正治 石渡
悦治 木村
道広 田中
康宏 花上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP05256556A priority Critical patent/JP3106806B2/en
Publication of JPH0790268A publication Critical patent/JPH0790268A/en
Application granted granted Critical
Publication of JP3106806B2 publication Critical patent/JP3106806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Luminescent Compositions (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、希土類含有ハロゲン化
物透明体の製造方法に関する。本発明により製造される
透明体は、光波長上方変換(アップコンバージョン)材
料、特に可視光レーザ発振素子の母材として有用であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth-containing transparent halide. The transparent body produced according to the present invention is useful as a light wavelength up-conversion (up-conversion) material, particularly as a base material of a visible light laser oscillation device.

【0002】[0002]

【従来技術】一般に蛍光発光においては、放出される光
の波長は吸収された光の波長よりも長い。ところが、希
土類イオンの中には、励起光よりも短波長の光を放出す
るアップコンバージョンと呼ばれる蛍光を示すものがあ
る。かかる現象は、従来、ディスプレイの発光体や赤外
光の検出器等としての応用が考えられていたが、最近で
は、赤外半導体レーザ光を可視光に変換することにより
実現される可視光レーザ、特に青・緑色光レーザ発振素
子の母材として検討が進められており、そのために透明
体の発光体が求められている。
2. Description of the Related Art Generally, in fluorescent light emission, the wavelength of emitted light is longer than the wavelength of absorbed light. However, some rare-earth ions exhibit fluorescence called up-conversion that emits light having a shorter wavelength than the excitation light. Conventionally, such a phenomenon was considered to be applied as a light-emitting body of a display or a detector of infrared light, but recently, a visible light laser realized by converting infrared semiconductor laser light into visible light has been realized. In particular, studies have been made on a base material of a blue / green light laser oscillation element, and a transparent luminous body is required for that purpose.

【0003】アップコンバージョン蛍光を示す透明材料
としてはこれまでに種々のガラス材料が提案されてい
る。例えば、特開平3-295828号公報には、重金属酸化物
あるいは希土類元素酸化物を含有する酸化物ガラスが記
載されている。また、特開平4-12035 号公報には、ジル
コニウムおよびバリウムのフッ化物を主成分として、ラ
ンタン、アルミニウム、ナトリウム、インジウムならび
にエルビウムおよびイッテルビウムの各フッ化物を含有
する希土類含有フッ化物ガラスが、さらに、特開平4-32
8191号公報には、アルカリ金属、リチウムおよびジルコ
ニウムの各フッ化物を主成分として、エルビウム、ツリ
ウムおよびホルミウムのいずれかならびにイッテルビウ
ムのフッ化物を含有する希土類含有フッ化物ガラスが、
それぞれ提案されている。
Various glass materials have been proposed as transparent materials exhibiting up-conversion fluorescence. For example, JP-A-3-295828 describes an oxide glass containing a heavy metal oxide or a rare earth element oxide. Further, JP-A-4-12035 discloses a rare earth-containing fluoride glass containing fluorides of zirconium and barium as main components and fluorides of lanthanum, aluminum, sodium, indium and erbium and ytterbium, JP-A-4-32
No. 8191, alkali metal, lithium and zirconium each as a main component, erbium, any one of thulium and holmium and rare earth-containing fluoride glass containing ytterbium fluoride,
Each has been proposed.

【0004】ところが、これらの材料は発光源であるE
3+などの希土類イオンの濃度を高めることが本質的に
難しいために光路長の短いコンパクトな発光素子を得る
ことができない。また、仮に高濃度で希土類イオンを含
有させたとしても濃度消光と呼ばれる現象のために逆に
発光効率が低下することが知られている。さらに、これ
らはいずれもガラス材料であり、溶融原料を急冷して製
造するものであるために多成分ガラスに共通する問題点
として均質な組成を得るのが難しいという大きな問題が
ある。また、上記ガラス材料はいずれもフッ化物ないし
酸化物であるが、希土類塩としてはむしろ塩化物あるい
は臭化物の方が優れた特性を有することが知られている
(田部他「セラミックス」、26(1991)144 頁)。にも拘
らずフッ化物等が提案されてきたのは、塩化物や臭化物
は極めて吸湿性が高く、合成・使用ともに困難であるた
めに実用材料としては適さないと考えられていたためで
ある。
However, these materials use E as a light source.
Since it is inherently difficult to increase the concentration of rare earth ions such as r 3+, it is not possible to obtain a compact light emitting element having a short optical path length. Further, even if rare earth ions are contained at a high concentration, it is known that the luminous efficiency is reduced due to a phenomenon called concentration quenching. Further, since these are all glass materials and are manufactured by rapidly cooling a molten raw material, there is a major problem common to multi-component glasses that it is difficult to obtain a homogeneous composition. In addition, although all of the above glass materials are fluorides or oxides, chlorides or bromides are known to have more excellent properties as rare earth salts (Tabe et al., “Ceramics”, 26 (1991)). P. 144). Nevertheless, fluorides and the like have been proposed because chlorides and bromides are considered to be unsuitable as practical materials because they have extremely high hygroscopicity and are difficult to synthesize and use.

【0005】ガラス以外の透明材料としては結晶体を用
いることも考えられる。この場合、多結晶体は透過率を
高めることが困難であるため、実質上、単結晶に限られ
るが、希土類ハロゲン化物は、単塩(希土類元素のみを
陽イオンとして含有)については、るつぼ中で原料を融
解してから徐冷することによって結晶構造解析を行なう
に足る程度の単結晶が得られているものの、大部分の複
合塩はレーザ波長変換素子として実用に供し得る程度の
大きさ(数mm角)に達する単結晶が得られていない。ま
た単結晶育成のために必要な状態図、結晶構造などの基
礎データもほとんど得られていない。
As a transparent material other than glass, it is conceivable to use a crystal. In this case, since it is difficult to increase the transmittance of the polycrystal, it is practically limited to a single crystal, but rare earth halides are contained in a single salt (containing only a rare earth element as a cation) in a crucible. Although the raw material is melted and then slowly cooled, a single crystal sufficient for crystal structure analysis is obtained, but most of the complex salts are large enough to be practically used as a laser wavelength conversion element ( Single crystal reaching several mm square) has not been obtained. Also, few basic data such as a phase diagram and a crystal structure necessary for growing a single crystal have been obtained.

【0006】[0006]

【発明の解決課題】本発明は、従来技術における上記問
題点の解消を目的として、希土類イオン濃度、発光効率
および可視光透過率がいずれも高く、なおかつ実用的な
大きさを有して取扱い性にも優れた希土類を含有するハ
ロゲン化物透明体の製造方法を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention aims at solving the above-mentioned problems in the prior art, and has a high rare earth ion concentration, a high luminous efficiency, and a high visible light transmittance, yet has a practical size and is easy to handle. It is an object of the present invention to provide a method for producing a halide transparent material containing a rare earth element which is excellent in the above.

【0007】[0007]

【発明の構成】本発明によれば、以下の希土類含有ハロ
ゲン化物透明体の製造方法が提供される。 (1)希土類を含むハロゲン化物の製造において、原料
を溶融し、該融体をこれに対して不活性な物質からなる
細管に充填した後、帯溶融法により再溶融して透明化す
ることを特徴とする希土類含有ハロゲン化物透明体の製
造法。 (2)原料を溶融した後に、該融体にハロゲンガスを導
入して不純物を除去し、引き続き該融体を石英ガラスの
細管に吸引して充填し、帯溶融法により再溶融して透明
化する(1) の製造方法。 (3)得られる透明体の組成式が、R1x R2(1-x) Baz Cl
3+2z (ここでR1 とR2 は同一または異種の希土類元素、0.
01<x≦1、 1<z<4)で表わされる上記(1) の製
造方法。 (4)得られる透明体の組成式がErBaz Cl3+2zまたはTm
Baz Cl3+2z(zは上記定義と同じ)である上記(3) の製
造方法。
According to the present invention, there is provided the following process for producing a rare earth-containing halide transparent material. (1) In the production of a halide containing a rare earth element, it is necessary to melt a raw material, fill the melt into a thin tube made of a substance which is inactive against the raw material, and then re-melt it by a band melting method to make it transparent. A method for producing a rare-earth-containing transparent halide. (2) After the raw material is melted, halogen gas is introduced into the melt to remove impurities, and then the melt is sucked and filled into a narrow tube of quartz glass, and re-melted by a band melting method to make it transparent. (1). (3) The composition formula of the obtained transparent body is R1 x R2 (1-x) Ba z Cl
3 + 2z (where R1 and R2 are the same or different rare earth elements,
01 <x ≦ 1, 1 <z <4) The method according to (1) above. (4) The composition formula of the obtained transparent body is ErBa z Cl 3 + 2z or Tm
The process according to (3) above, wherein Ba z Cl 3 + 2z (z is the same as defined above).

【0008】本発明は、希土類含有ハロゲン化物を透明
体として得るための製造方法を与える。本発明の方法
は、基本的にはハロゲン化物原料に帯溶融(ゾーン・メ
ルティング)法を適用したものである。帯溶融法そのも
のは非調和融解組成の化合物の単結晶育成のために一般
的に用いられる方法であるが、本発明においては原料、
融体および得られる結晶体を保持する態様に特徴を有す
る。すなわち、本発明では、原料をこれに対して不活性
な細管に充填して帯溶融法を適用する点、およびこの際
に、原料を溶融して融体として充填する点が特徴であ
る。かかる方法をとることにより、該細管を満たす大き
さの透明結晶体が得られる。
The present invention provides a production method for obtaining a rare earth-containing halide as a transparent body. The method of the present invention is basically a method in which a zone melting method is applied to a halide material. The zone melting method itself is a method generally used for growing a single crystal of a compound having an anharmonic melting composition.
It is characterized in that it retains the melt and the obtained crystal. That is, the present invention is characterized in that the raw material is filled in a narrow tube which is inert thereto and the band melting method is applied, and at this time, the raw material is melted and filled as a melt. By adopting such a method, a transparent crystal having a size that fills the capillary can be obtained.

【0009】細管が原料に対して不活性であるとは原料
およびこれから発生するガス等と実質的に反応しないも
のをいい、さらに水分や酸素などに対して不透過性の緻
密質材料が用いられる。また、後述するように透明であ
ることが好ましい。かかる条件を満たす材料の例として
は、石英ガラスが挙げられる。細管の内径は6mm以下が
好ましい。これより径の大きい管を用いると、熱膨張の
違いに起因する応力によって結晶に亀裂が入ったり、石
英管が割れたりすることがある。また、後述の吸い上げ
による充填法は、管径が大きすぎると充填密度の低下を
生じやすく、透過率の高い透明体を製造するのが難しく
なる。管長は必要とする透明体や加熱炉の大きさなどに
応じて適宜定められる。
[0009] The term "inert with respect to the raw material" means that the capillary does not substantially react with the raw material and gas generated therefrom, and a dense material which is impermeable to moisture, oxygen and the like is used. . Further, as described later, it is preferably transparent. An example of a material satisfying such conditions is quartz glass. The inner diameter of the thin tube is preferably 6 mm or less. If a tube having a larger diameter is used, the crystal may be cracked or the quartz tube may be broken due to stress caused by a difference in thermal expansion. Further, in the filling method by suction described below, if the pipe diameter is too large, the packing density tends to decrease, and it becomes difficult to produce a transparent body having a high transmittance. The tube length is appropriately determined according to the required size of the transparent body and the heating furnace.

【0010】本発明では、原料を溶融した後に細管に充
填する。塊状や粉末状の試料を充填する方法では充填密
度が不足して安定した結晶育成が困難であり、さらに粉
末充填作業中に雰囲気から汚染される虞があるが、本発
明では溶融体を用いて充填しているためこのような問題
がない。なお、再溶融の際の上記細管の破損や雰囲気か
らの汚染あるいは原料から発生するハロゲンによる装置
の損傷を避けるため、細管をこれよりも大きな石英管な
どに真空封入して用いてもよい。
In the present invention, the raw material is melted and then filled into a thin tube. In the method of filling a lump or powdery sample, the packing density is insufficient and stable crystal growth is difficult, and there is a possibility that the powder may be contaminated from the atmosphere during the powder filling operation. There is no such problem because of filling. In order to avoid breakage of the thin tube at the time of re-melting, contamination from the atmosphere, or damage to the apparatus due to halogen generated from the raw material, the thin tube may be used by being vacuum-sealed in a larger quartz tube or the like.

【0011】細管への充填は種々の方法で行なうことが
できるが、溶融体を原料としているため吸い上げ法が特
に有利である。具体的には管の一方の端にスポイトのよ
うな吸引手段を結合して溶融原料の吸い上げを行なう。
原料の溶融および管への充填は、アルゴンのような不活
性ガス雰囲気下で行なうことが好ましく、溶融した原料
には対応するハロゲンガスを吹き込んでその他の陰イオ
ン成分、例えば炭酸イオンなどの不純物を揮発除去する
ことが好ましい。
The filling of the thin tube can be carried out by various methods, but the suction method is particularly advantageous because the molten material is used as a raw material. Specifically, a suction means such as a dropper is connected to one end of the tube to suck up the molten raw material.
The melting of the raw material and the filling of the tube are preferably performed in an atmosphere of an inert gas such as argon, and the molten raw material is blown with a corresponding halogen gas to remove impurities such as other anionic components such as carbonate ions. It is preferable to volatilize and remove.

【0012】帯溶融法そのものは既知の方法に従って行
なえばよい。本発明に即して説明すれば、上記溶融原料
の充填された細管を冷却または放冷して原料を凝固さ
せ、しかる後、側端の一部を加熱して内部の原料を帯状
に再溶融し、加熱部分を長手方向に移動して再溶融部分
を徐々に移動させる。なお、帯溶融法では試料の両端に
無効部分が生じるために、試料をなるべく長い棒状にす
ることが望ましい。
The band melting method itself may be performed according to a known method. According to the present invention, the thin tube filled with the molten raw material is cooled or allowed to cool to solidify the raw material, and then, a part of the side end is heated to remelt the internal raw material in a belt shape. Then, the heated portion is moved in the longitudinal direction to gradually move the re-melted portion. In the band melting method, ineffective portions are formed at both ends of the sample. Therefore, it is desirable to make the sample as long as possible.

【0013】透明体の育成速度、すなわち、上記原料溶
融部の移動速度は毎時20mm以下が望ましい。これより速
い育成速度では透過率の低下を招きやすい。原料溶融部
の温度は目的組成によるが、例えば希土類塩化物系の場
合、通常300 〜800 ℃程度である。
It is desirable that the growth speed of the transparent body, that is, the moving speed of the above-mentioned raw material melting portion is not more than 20 mm per hour. At a higher growth rate, the transmittance tends to decrease. The temperature of the raw material melting portion depends on the target composition. For example, in the case of rare earth chloride, it is usually about 300 to 800 ° C.

【0014】本発明で得られる透明体は単結晶であると
考えられる。本発明により従来製造が困難であった大き
さの透明結晶体が得られる理由の詳細は明らかではない
が、(i) 原料を溶融して充填するために細管内の充填密
度が高い、(ii)細管を用いることにより結晶の成長方向
が限定されるので軸のずれが生じない、(iii) 原料に対
して不活性な容器に充填しているため雰囲気中の水分に
よる結晶の崩壊が避けられる、(iv)結晶育成と同時に精
製効果がある、(v) 帯溶融によるため温度、出発原料の
組成などの結晶育成条件の最適値からのずれがある程度
許容される、等の理由が考えられる。
The transparent material obtained in the present invention is considered to be a single crystal. Although the details of the reason why a transparent crystal having a size conventionally difficult to produce can be obtained by the present invention are not clear, (i) the packing density in the narrow tube is high because the raw material is melted and filled, (ii) (3) The use of a thin tube restricts the crystal growth direction, so that no axis shift occurs. (Iii) Since the raw material is filled in a container inert to the raw material, the collapse of the crystal due to moisture in the atmosphere can be avoided. (Iv) Refining effect at the same time as crystal growth; (v) Deviation from optimum values of crystal growth conditions such as temperature and composition of starting materials due to zone melting is allowed to some extent.

【0015】本発明により製造される希土類含有ハロゲ
ン化物透明体の組成は広い範囲に及び、高純度の原料の
製造が難しく、また、状態図などの基礎データの乏しい
希土類含有ハロゲン物にも適用できる。一例として、従
来製造が困難であった希土類−バリウム系ハロゲン化
物:R1x R2(1-x) Baz Cl3+2z (ここでR1 とR2 は同
一または異種の希土類元素、0.01<x≦1、 1<z<
4)の透明結晶体を得ることができる。特に、赤外光に
対して優れた発光効率を有するErBaz Cl3+2zおよびTmBa
z Cl3+2z(1<z<4)の希土類−バリウム系複合塩化
物の透明体を得ることができる。
The composition of the rare earth-containing halide transparent body produced according to the present invention covers a wide range, it is difficult to produce a high-purity raw material, and it can be applied to rare earth-containing halides having poor basic data such as phase diagrams. . As an example, a conventional manufacturing is difficult rare earth - barium halide: R1 x R2 (1-x ) Ba z Cl 3 + 2z ( where R1 and R2 are rare earth elements of the same or different, 0.01 <x ≦ 1 , 1 <z <
The transparent crystal of 4) can be obtained. In particular, ErBa z Cl 3 + 2z and TmBa having excellent luminous efficiency for infrared light
A transparent rare earth-barium complex chloride of z Cl 3 + 2z (1 <z <4) can be obtained.

【0016】上記希土類含有ハロゲン化物透明体は比較
的強度が弱く、応力が加わると容易に破壊され、また破
壊されるほどの応力が加わらなくとも透過率の低下を招
く。さらに大気中の水分や酸素によって容易に分解する
問題もある。しかし、本発明によって製造された透明体
は、細管内で結晶化されるため、製造時において既に細
管に封入されており、従って、この細管を水分や酸素な
どの有害成分を通過させない緻密質かつ透明なものを用
いることにより耐久性や強度の優れた透明体を得ること
ができる。
The rare earth-containing halide transparent material has a relatively low strength, and is easily broken when stress is applied, and causes a decrease in transmittance even when no enough stress is applied to destroy the halide. Furthermore, there is a problem that it is easily decomposed by moisture and oxygen in the atmosphere. However, since the transparent body produced by the present invention is crystallized in the thin tube, it is already sealed in the thin tube at the time of production, and therefore, the dense body is not dense and does not allow harmful components such as moisture and oxygen to pass through the thin tube. By using a transparent material, a transparent body having excellent durability and strength can be obtained.

【0017】[0017]

【実施例】以下、本発明の実施例を示す。なお、本実施
例は例示であり発明の範囲を限定するものではない。
Embodiments of the present invention will be described below. This embodiment is an exemplification and does not limit the scope of the invention.

【0018】実施例1 無水塩化エルビウム(ErCl3 )40g と無水塩化バリウム
(BaCl2 )60g をガラス状炭素製のるつぼに充填し、石
英ガラス製の容器内で真空−アルゴン置換を行なったの
ちにアルゴン雰囲気で 800℃まで加熱し溶融した。この
融体に塩素ガスを石英管を用いて毎分約 100mlで1時間
吹き込み精製した。約30分静置したのちに内径 2.5mmの
石英管でこの融体を吸い上げると、約 300mmの試料が石
英管内に吸い上げられ凝固した。この管を一回り径の大
きい石英管内に真空封入した後に、加熱炉に設置入し、
加熱部分を毎時 7mmの速度で下端から上昇させて透明体
を育成した。なお、炉内は炉の中心部約10mmで 700℃、
中心から 1mm離れるごとに約 5℃温度が低下する温度分
布であった。また、試料の最下端は完全に封止せず、細
管の下端から約40mm上の部分から再溶融を開始した。こ
のようにして得られた試料は試料全長約 300mmのうち中
心付近の 120mmが透明体であった。石英管を長さ12mmに
渡って切り出し、切断面を研磨し、これをさらに透明樹
脂に組み込んで軸方向の透過率を測定したところ、測定
波長 700nmで実測値75%を示した。端面による散乱や樹
脂による吸収などの影響を差し引けば透明結晶自体の透
過率は90%を超えていると推定される。また、この透明
体に波長 810nm,出力 5mWの赤外レーザ光を照射したと
ころ内部で強い緑色発光が起こることが観察された。さ
らに、透明体を取り出して粉砕し粉末X線回折により測
定したところ、図1最下段に示すように、ErCl3 および
BaCl2 の回折ピークは、見当たらず、従ってこの結晶は
これらの混合物ではなくErBa2 Cl7 の組成を有する単一
化合物であることが確認された。
Example 1 A crucible made of glassy carbon was filled with 40 g of anhydrous erbium chloride (ErCl 3 ) and 60 g of anhydrous barium chloride (BaCl 2 ), and was subjected to vacuum-argon substitution in a quartz glass container. The mixture was heated to 800 ° C. and melted in an argon atmosphere. The melt was purified by blowing chlorine gas at about 100 ml / min for 1 hour using a quartz tube. After standing for about 30 minutes, the melt was sucked up by a quartz tube with an inner diameter of 2.5 mm, and a sample of about 300 mm was sucked into the quartz tube and solidified. After vacuum-encapsulating this tube in a quartz tube with a large diameter, it was placed in a heating furnace,
The heated part was raised from the lower end at a speed of 7 mm per hour to grow a transparent body. The inside of the furnace is 700 ° C at about 10mm in the center of the furnace,
The temperature distribution decreased by about 5 ° C every 1 mm from the center. In addition, the lowermost end of the sample was not completely sealed, and remelting was started from a portion about 40 mm above the lower end of the thin tube. In the sample thus obtained, 120 mm near the center of the total sample length of about 300 mm was transparent. A quartz tube was cut out over a length of 12 mm, the cut surface was polished, and this was further incorporated into a transparent resin, and the transmittance in the axial direction was measured. The measured value was 75% at a measurement wavelength of 700 nm. It is estimated that the transmittance of the transparent crystal itself exceeds 90% if the influence of scattering by the end face and absorption by the resin are subtracted. When this transparent body was irradiated with infrared laser light having a wavelength of 810 nm and an output of 5 mW, it was observed that strong green light emission occurred inside. Furthermore, was measured by pulverized is taken out transparent powder X-ray diffraction, as shown in the bottom FIG 1, ErCl 3 and
No diffraction peaks were found for BaCl 2 , thus confirming that the crystals were a single compound having a composition of ErBa 2 Cl 7 rather than a mixture of these.

【0019】実施例2 酸化ツリウム(Tm2 O 3 ) 28gとグラファイト粉末3gを
混合し、ペレット化したものと無水塩化バリウム(BaCl
2 )60g とをガラス質炭素製るつぼに充填し、石英ガラ
ス製の容器内で真空−アルゴン置換したのち、1000℃ま
で昇温した。これに塩素ガスを毎分 300mlで 3時間吹き
込んで、塩化ツリウム−塩化バリウム混合物約100gを得
た。これには表面に未反応グラファイトが残っていたの
で冷却後これを削り落とし、再びガラス質の炭素製るつ
ぼに入れ、石英ガラス製容器で 800℃まで加熱して融体
とし、精製のために塩素ガスを毎分 100mlで1時間吹き
込んだ後、30分静置してから内径 2.5mmの透明石英管で
吸い上げた。この石英管には、実施例1と同様に、約 3
00mmの試料が吸い上げられており、実施例1と同様な処
理を行なったところ、実施例1と同様に約 120mmの透明
体が得られた。軸方向透過率は実施例1と同様であっ
た。また、この透明体に波長780nm ,出力 5mWの赤外レ
ーザ光を照射したところ内部で青緑色の発光が起こるこ
とが観察された。さらに、透明体を取り出して粉砕し粉
末X線回折により測定したところ、図2最下段に示すよ
うに、TmCl3 およびBaCl2 の回折ピークは見当たらず、
この結晶はこれらの混合物ではなくTmBa2 Cl7 の組成を
有する単一化合物であることが確認された。
EXAMPLE 2 28 g of thulium oxide (Tm 2 O 3 ) and 3 g of graphite powder were mixed and pelletized, and anhydrous barium chloride (BaCl
2 ) 60 g was filled in a glassy carbon crucible, and vacuum-argon substitution was performed in a quartz glass container, and then the temperature was raised to 1000 ° C. Chlorine gas was blown into the mixture at 300 ml / min for 3 hours to obtain about 100 g of a thulium chloride-barium chloride mixture. Since unreacted graphite remained on the surface, it was scraped off after cooling, put again in a vitreous carbon crucible, heated to 800 ° C in a quartz glass container to form a melt, and chlorine was purified for purification. The gas was blown at 100 ml / min for 1 hour, allowed to stand for 30 minutes, and then sucked up with a 2.5 mm inner diameter transparent quartz tube. In this quartz tube, about 3
A sample of 00 mm was sucked up, and the same treatment as in Example 1 was performed. As a result, a transparent body of about 120 mm was obtained in the same manner as in Example 1. The axial transmittance was the same as in Example 1. When this transparent body was irradiated with an infrared laser beam having a wavelength of 780 nm and an output of 5 mW, it was observed that blue-green light was emitted inside. Further, the transparent body was taken out, pulverized, and measured by powder X-ray diffraction. As shown in the lower part of FIG. 2, no diffraction peaks of TmCl 3 and BaCl 2 were found.
It was confirmed that the crystals were not a mixture of these but a single compound having a composition of TmBa 2 Cl 7 .

【0020】実施例3〜6 実施例1、2と同様にして表1に示す組成の透明結晶を
製造し、これらの結晶について表1に示す波長の光を入
射し、その発光状態を観察した。結果を表1に纏めて示
す。なお、表中、試料番号1、2として実施例1、2の
結果を併せて示した。
Examples 3 to 6 Transparent crystals having the compositions shown in Table 1 were produced in the same manner as in Examples 1 and 2, and light of the wavelengths shown in Table 1 was incident on these crystals, and the light emission state was observed. . The results are summarized in Table 1. In the table, the results of Examples 1 and 2 are also shown as sample numbers 1 and 2.

【0021】[0021]

【表1】試料 組成 透過率(%) 励起波長 発光色 発光強度 1 ErBa2 Cl7 90以上 810nm 緑 最強 2 TmBa2 Cl7 90以上 780nm 青緑 やや弱 3 HoBa2 Cl7 90以上 650nm 緑 強 4 Tm0.2 Gd0.8 Ba2 Cl7 85以上 780nm 青緑 普通 5 Tm0.1 Yb0.9 Ba2 Cl7 85以上 980nm 青緑 普通6 Tm0.8 Er0.2 Ba2 Cl7 85以上 780nm 緑 強 TABLE 1 Sample Composition transmittance (%) excitation wavelength emission color luminous intensity 1 ErBa 2 Cl 7 90 or more 810nm green strongest 2 TmBa 2 Cl 7 90 or more 780nm blue-green somewhat weak 3 HoBa 2 Cl 7 90 or more 650nm green strength 4 Tm 0.2 Gd 0.8 Ba 2 Cl 7 85 or more 780 nm Blue green Normal 5 Tm 0.1 Yb 0.9 Ba 2 Cl 7 85 or more 980 nm Blue green Normal 6 Tm 0.8 Er 0.2 Ba 2 Cl 7 85 or more 780 nm Green Strong

【0022】[0022]

【発明の効果】本発明によれば、アップコンバージョン
の発光効率の高い希土類含有ハロゲン化物の透明体を安
定して製造することができる。特に、本発明の製造法に
よれば透明管に封入された形態で透明結晶が得られるの
で、そのまま適当な長さに切り出して使用することが可
能であり、赤外レーザ光の発振素子として必要な大きさ
の透明体を容易に得ることができ、実用性の高い半導体
可視光レーザの発振素子母材を提供できる。さらに本発
明の製造法によって得た透明体は透明管に覆われている
ので製造後の取扱いも容易である。
According to the present invention, it is possible to stably produce a rare earth-containing halide transparent material having high luminous efficiency in up-conversion. In particular, according to the production method of the present invention, a transparent crystal can be obtained in a form sealed in a transparent tube, so that it can be cut out to an appropriate length as it is and used as an infrared laser light oscillation element. It is possible to easily obtain a transparent body having an appropriate size, and to provide an oscillation element base material of a semiconductor visible light laser having high practicality. Further, since the transparent body obtained by the production method of the present invention is covered with a transparent tube, handling after production is easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ErCl3 およびBaCl2 のX線回折グラフと対照
して示した実施例1の化合物の粉末X線回折グラフ。
FIG. 1 is a powder X-ray diffraction graph of the compound of Example 1 shown in contrast to the X-ray diffraction graphs of ErCl 3 and BaCl 2 .

【図2】 TmCl3 およびBaCl2 のX線回折グラフと対照
して示した実施例2の化合物の粉末X線回折グラフ。
FIG. 2 is a powder X-ray diffraction graph of the compound of Example 2 shown in contrast to the X-ray diffraction graphs of TmCl 3 and BaCl 2 .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 花上 康宏 埼玉県大宮市北袋町1丁目297番地 三 菱マテリアル株式会社中央研究所内 (56)参考文献 特開 平4−338167(JP,A) (58)調査した分野(Int.Cl.7,DB名) C09K 11/77 - 11/89 C09K 11/08 H01S 3/16 - 3/19 C01F 17/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuhiro Hanagami 1-297 Kitabukuro-cho, Omiya City, Saitama Prefecture Mitsubishi Materials Corporation Central Research Laboratory (56) References JP-A-4-338167 (JP, A) ( 58) Field surveyed (Int.Cl. 7 , DB name) C09K 11/77-11/89 C09K 11/08 H01S 3/16-3/19 C01F 17/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】希土類を含むハロゲン化物の製造におい
て、原料を溶融し、該融体をこれに対して不活性な物質
からなる細管に充填した後、帯溶融法により再溶融して
透明化することを特徴とする希土類含有ハロゲン化物透
明体の製造法。
1. In the production of a halide containing a rare earth element, a raw material is melted, and the melt is filled in a thin tube made of a substance which is inactive against the raw material. A method for producing a rare-earth-containing transparent halide material, characterized in that:
【請求項2】原料を溶融した後に、該融体にハロゲンガ
スを導入して不純物を除去し、引き続き該融体を石英ガ
ラスの細管に吸引して充填し、帯溶融法により再溶融し
て透明化する請求項1の製造方法。
2. After the raw material is melted, a halogen gas is introduced into the melt to remove impurities. Subsequently, the melt is sucked and filled into a narrow tube of quartz glass, and remelted by a band melting method. 2. The method according to claim 1, wherein the method is transparent.
【請求項3】得られる透明体の組成式が、R1x R2(1-x)
Baz Cl3+2z (R1 とR2 は同一または異種の希土類元素、0.01<x
≦1、 1<z<4)で表わされる請求項1の製造方
法。
3. The composition formula of the obtained transparent body is R1 × R2 (1-x).
Ba z Cl 3 + 2z (R1 and R2 are the same or different rare earth elements, 0.01 <x
≦ 1, 1 <z <4).
【請求項4】得られる透明体の組成式がErBaz Cl3+2z
たはTmBaz Cl3+2z(zは上記定義と同じ)である請求項
3の製造方法。
4. The method according to claim 3, wherein the composition formula of the obtained transparent body is ErBa z Cl 3 + 2z or TmBa z Cl 3 + 2z (z is the same as defined above).
JP05256556A 1993-09-20 1993-09-20 Production method of transparent halide containing rare earth Expired - Fee Related JP3106806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05256556A JP3106806B2 (en) 1993-09-20 1993-09-20 Production method of transparent halide containing rare earth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05256556A JP3106806B2 (en) 1993-09-20 1993-09-20 Production method of transparent halide containing rare earth

Publications (2)

Publication Number Publication Date
JPH0790268A JPH0790268A (en) 1995-04-04
JP3106806B2 true JP3106806B2 (en) 2000-11-06

Family

ID=17294286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05256556A Expired - Fee Related JP3106806B2 (en) 1993-09-20 1993-09-20 Production method of transparent halide containing rare earth

Country Status (1)

Country Link
JP (1) JP3106806B2 (en)

Also Published As

Publication number Publication date
JPH0790268A (en) 1995-04-04

Similar Documents

Publication Publication Date Title
RU2324021C2 (en) Method for treatment of rare-earth metal chloride, bromide or iodode in carbonaceous crucible
Fedorov et al. 11 Crystal Growth of Fluorides
US6015765A (en) Rare earth soluble telluride glasses
US4277303A (en) Getter for melt-grown scintillator ingot and method for growing the ingot
JP2007153626A (en) Fluorescent glass
Hu et al. Enhanced 2.7 μm emission from diode-pumped Er3+/Pr3+ co-doped LiYF4 single crystal grown by Bridgman method
JP3106806B2 (en) Production method of transparent halide containing rare earth
EP0637861A1 (en) Infrared light-excited light-emitting substance
JP4037362B2 (en) Method for producing tungstate single crystal
US4449780A (en) Light pipe, laser window and charge stock therefor
JP5170502B2 (en) Fluoride bulk single crystal material for upconversion
US20030158028A1 (en) Solarization resistant materials having reduced ultraviolet absorption for use in fabrication of optical elements
JPH09208947A (en) Up-conversion phosphor and its production
Hehlen Design and fabrication of rare-earth-doped laser cooling materials
JPH085753B2 (en) Terbium aluminate and its manufacturing method
JPH07149599A (en) Al oxide single crystal containing tb
JP5219949B2 (en) Metal fluoride crystal and vacuum ultraviolet light emitting device
JP2010073936A (en) Vacuum ultraviolet light-emitting element
JPH05319859A (en) Wavelength variable fluoride laser glass doped with tm ion
JPH0986958A (en) Glass material for converting wavelength
JPH05319858A (en) 0.8mum luminant tm ion-doped fluoride laser glass
CN1330799C (en) Fluorine-doped tungstate laser crystal and growth method thereof
RU2600359C1 (en) OPTICAL MEDIUM BASED ON CADMIUM-CAESIUM HALIDE CRYSTAL CsCdBr3, CONTAINING IMPURITY OF UNIVALENT BISMUTH IONS CAPABLE OF BROADBAND PHOTOLUMINESCENCE IN NEAR INFRARED RANGE, AND PRODUCTION METHOD THEREOF (VERSIONS)
JPH1041577A (en) Upconversion laser
JP4427217B2 (en) Barium fluoride single crystal for optical member for vacuum ultraviolet and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000808

LAPS Cancellation because of no payment of annual fees