JPH1040738A - Conductive paste - Google Patents

Conductive paste

Info

Publication number
JPH1040738A
JPH1040738A JP18956596A JP18956596A JPH1040738A JP H1040738 A JPH1040738 A JP H1040738A JP 18956596 A JP18956596 A JP 18956596A JP 18956596 A JP18956596 A JP 18956596A JP H1040738 A JPH1040738 A JP H1040738A
Authority
JP
Japan
Prior art keywords
conductive paste
powder
conductive
resin
conductive filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18956596A
Other languages
Japanese (ja)
Inventor
Akira Otani
章 大谷
Hideki Matsuda
英樹 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP18956596A priority Critical patent/JPH1040738A/en
Publication of JPH1040738A publication Critical patent/JPH1040738A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Paints Or Removers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide excellent adhesion to a metal by adding prescribed weight parts of an oxime compound to a prescribed weight part of a conductive filler having a prescribed chemical formula. SOLUTION: This conductive paste comprises a conductive filler of a copper alloy powder having a chemical formula AgxCuy (0.001<=x<=0.4; 0.6<=y<=0.999 (atomic ratio) and higher silver concentration in the particle surface than the average silver concentration and a thermally curable phenol resin as a binder resin. In this case, 0.01-5 pts.wt. of an oxime compound is added to 100 pts.wt. of the conductive filler. Preferably, the shape of the conductive filler is spherical, scale like shape, or their mixture.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は対金属接着性に優れ
た導電性ペーストに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive paste having excellent adhesion to metal.

【0002】[0002]

【従来の技術】エレクトロニクスの飛躍的進歩に伴い種
々の導電性ペーストが提案され各種の電子機器・電子部
品・電子回路に電磁波シールド用途、ジャンパー線用
途、スルーホール用途等として使用されている。中でも
金属を導電性フィラーとする導電性ペーストは金属固有
の導電性の良さから、高導電性、高信頼性が要求される
産業用途や各種通信用途をはじめ広く民生機器にまで使
用されている。
2. Description of the Related Art With the rapid progress of electronics, various conductive pastes have been proposed and used for various kinds of electronic equipment, electronic components, and electronic circuits as electromagnetic wave shielding applications, jumper wires, through-hole applications, and the like. Among them, a conductive paste containing a metal as a conductive filler is widely used in consumer devices, including industrial applications and various communication applications requiring high conductivity and high reliability because of the excellent conductivity inherent in metals.

【0003】導電性ペーストで電磁波シールド、回路等
を形成する場合、銅箔等で形成されたエッチング回路部
分、グランド部分との接着力が低いという問題点があっ
た。そのため、あらかじめ被接着面の金属表面を酸化処
理する必要があった。
When an electromagnetic wave shield, a circuit, and the like are formed by using a conductive paste, there is a problem that an adhesive strength to an etched circuit portion formed of a copper foil or the like and a ground portion is low. Therefore, it was necessary to previously oxidize the metal surface of the surface to be bonded.

【0004】[0004]

【発明が解決しようとする課題】本発明は、対金属接着
性に優れた導電性ペーストを提供するものである。即
ち、従来の導電性ペーストの欠点であった対金属接着性
の大幅な改善を図ったものである。
SUMMARY OF THE INVENTION The present invention provides a conductive paste having excellent adhesion to metal. In other words, it is intended to greatly improve the adhesion to metal, which is a disadvantage of the conventional conductive paste.

【0005】[0005]

【課題を解決するための手段】本発明は、これらの点に
鑑み対金属接着性に優れる導電性ペーストを得るべく種
々検討を加えた結果、特定の金属粉末フィラーと特定の
条件を満たす樹脂バインダー類、特定の条件を満たすオ
キシム化合物を組み合わせることにより作製した導電性
ペーストが、上記した問題点を解決し得ることを見いだ
し本発明に到達したものである。すなわち、本発明は以
下の通りである。
SUMMARY OF THE INVENTION In view of these points, the present invention has made various studies to obtain a conductive paste having excellent adhesion to metal. As a result, a specific metal powder filler and a resin binder satisfying specific conditions have been obtained. Kind Code: A1 A conductive paste prepared by combining oxime compounds satisfying specific conditions has been found to be able to solve the above-mentioned problems, and has arrived at the present invention. That is, the present invention is as follows.

【0006】1.一般式AgxCuy(0.001≦x≦
0.4,0.6≦y≦0.999(原子比))で表さ
れ、且つ粒子表面の銀濃度が粒子の平均の銀濃度より高
い銅合金粉末を導電性フィラーとし、熱硬化型フェノー
ル樹脂をバインダー樹脂とする導電性ペーストにおい
て、該導電性フィラー100重量部に対してオキシム化
合物を0.01〜5重量部含むことを特徴とする導電性
ペースト。
[0006] 1. General formula Ag x Cu y (0.001 ≦ x ≦
A copper alloy powder represented by 0.4, 0.6 ≦ y ≦ 0.999 (atomic ratio) and having a silver concentration on the surface of the particles higher than the average silver concentration of the particles is used as a conductive filler; A conductive paste containing a resin as a binder resin, wherein the conductive paste contains 0.01 to 5 parts by weight of an oxime compound with respect to 100 parts by weight of the conductive filler.

【0007】2.導電性フィラーの形状が球状、鱗片
状、あるいは、それらの混合物であることを特徴とする
上記の導電性ペースト。 本発明で用いられる導電性フィラーは、一般式Agx
y(0.001≦x≦0.4,0.6≦y≦0.99
9(原子比))で表されるが、xが0.001以上では
十分な耐酸化性が得られ、0.4を越えない場合には耐
エレクトロマイグレーション性が良好である。しかも
0.001≦x≦0.4の範囲で不活性ガスアトマイズ
法によって作製された銅合金粉末は粉末表面の銀濃度が
平均の銀濃度より高いものである。この粉末表面及び表
面近傍の銀濃度はX線光電子分光分析装置で表面からの
深さ50A程度の表面濃度として求めることができる。
平均の銀濃度の測定は試料を濃硝酸中で溶解し、ICP
(高周波誘導結合型プラズマ発光分析計)を用いること
ができる。本発明の銅合金粉末は粉末表面の銀濃度が平
均の銀濃度より高いものであるが、好ましくは粉末表面
の銀濃度が平均の銀濃度の1.4倍以上であり、さらに
好ましくは2.5倍以上である。
[0007] 2. The conductive paste as described above, wherein the shape of the conductive filler is spherical, scale-like, or a mixture thereof. The conductive filler used in the present invention has a general formula of Ag x C
u y (0.001 ≦ x ≦ 0.4, 0.6 ≦ y ≦ 0.99
9 (atomic ratio)), when x is 0.001 or more, sufficient oxidation resistance is obtained, and when x does not exceed 0.4, electromigration resistance is good. Moreover, the copper alloy powder produced by the inert gas atomization method in the range of 0.001 ≦ x ≦ 0.4 has a silver concentration on the surface of the powder higher than the average silver concentration. The silver concentration at and near the surface of the powder can be determined by an X-ray photoelectron spectrometer as a surface concentration at a depth of about 50 A from the surface.
The average silver concentration was determined by dissolving the sample in concentrated nitric acid
(High-frequency inductively coupled plasma emission spectrometer) can be used. The copper alloy powder of the present invention has a silver concentration on the powder surface higher than the average silver concentration, but preferably has a silver concentration on the powder surface of at least 1.4 times the average silver concentration, more preferably 2. 5 times or more.

【0008】本発明に用いる導電性フィラーの粒径は1
00μm以下であることが好ましいが、60μ以下であ
る場合、解像度がよくなりより好ましい。粒度分布はそ
れぞれの金属微粉末の性質に応じて最適化を図るべきで
あるが、本発明においては粒子径100μm以下の範囲
になるように種々のサイズに分布した金属粉から構成さ
れていることが好ましい。また粒子サイズの異なる粉末
は微粉と粗粉ができるだけ良く混合された状態で存在し
ていることが好ましいため、予め作製された微粉と粗粉
とを後で混合するより、粉末の製造過程で直接微粉と粗
粉とが同時に製造されることが最も好ましい。微粉が別
の工程で製造されたものを後で別の粉末と混合するのは
微粉同士の凝集を解してやる必要があり多大の労力が分
散工程で要求され、それでもなお微粉の一次粒子にまで
分散できないことが多い。
The particle size of the conductive filler used in the present invention is 1
The thickness is preferably not more than 00 μm, but when it is not more than 60 μm, the resolution is improved and more preferable. The particle size distribution should be optimized according to the properties of each metal fine powder, but in the present invention, the metal powder is composed of metal powders distributed in various sizes so as to have a particle diameter of 100 μm or less. Is preferred. In addition, since powders having different particle sizes are preferably present in a state in which the fine powder and the coarse powder are mixed as much as possible, rather than mixing the previously prepared fine powder and coarse powder later, the powder is directly produced in the process of producing the powder. Most preferably, fine powder and coarse powder are produced simultaneously. Mixing the fine powder produced in another process with another powder later requires deagglomeration of the fine powder and requires a great deal of labor in the dispersion process, and still disperses to the primary particles of the fine powder Often cannot.

【0009】このため本発明の金属粉末は不活性ガスア
トマイズ法で作製されたものが好ましい。不活性ガスア
トマイズ法により作製された粉末は、微粒子が適当量存
在し、かつ微粒子同士がくっついたり微粒子がやや大き
い粒子にくっついているいわゆるサテライト構造粉が極
めて少ないため導電性ペーストを作製するための分散が
容易でありかつ粒子の充填密度を高めることができるこ
とが分かった。
Therefore, the metal powder of the present invention is preferably prepared by an inert gas atomizing method. In the powder produced by the inert gas atomization method, the fine particles are present in an appropriate amount, and there is very little so-called satellite structure powder in which the particles adhere to each other or the particles adhere to slightly larger particles. Is easy and the packing density of the particles can be increased.

【0010】本発明の銅合金粉末の平均粒子径の測定
は、レーザー回折型粒度分布計で測定することができる
が、特にサブミクロンの粒子分布は分散不良や測定機器
等により誤差を生じやすいので、電子顕微鏡での画像解
析から求めることができる。本発明に用いられる銅合金
粉末は、アトマイズ法で作製するのが好ましいが、好ま
しくは窒素ガス、アルゴンガス、水素ガスなどによる不
活性ガスアトマイズ法、特に最も好ましいのはヘリウム
ガスを含有した不活性ガスによるガスアトマイズ法であ
る。この不活性ガスアトマイズ法は次のような方法がそ
の一例である。まず金属あるいは合金を不活性ガス中あ
るいは真空中で高周波誘導加熱を用いてるつぼ中で融解
する。融解後、るつぼ先端より融液を不活性ガス雰囲気
中へ噴出する。噴出と同時に圧縮された不活性ガスを断
熱膨張させて発生した高速気流を融液向かって噴出し金
属粉末を作製することができる。特に好ましいヘリウム
ガスアトマイズでは酸素ガスなどの活性ガスが0.1%
以下さらに好ましくは0.01%以下になっていること
が望ましい。ヘリウムガスは高純度であれば良いがこの
一部が窒素ガスで置換された混合ガスも好適なガス組成
である。またヘリウムガスの混合比率が10〜99体積
%のヘリウム−窒素混合ガスは特に好適な粒度分布を持
つ金属粉末を作製することができ、充填密度の高い導電
回路を形成することができる。製造コスト、粒度分布、
ペースト特性を勘案し好適な比率のヘリウム−窒素混合
ガスを使用することが工業的に極めて有用な手段であ
る。
The average particle size of the copper alloy powder of the present invention can be measured by a laser diffraction type particle size distribution analyzer. In particular, the submicron particle distribution is liable to cause errors due to poor dispersion or measuring equipment. Can be determined from image analysis with an electron microscope. The copper alloy powder used in the present invention is preferably produced by an atomizing method, but is preferably an inert gas atomizing method using nitrogen gas, argon gas, hydrogen gas, etc., and most preferably an inert gas containing helium gas. Gas atomization method. The following method is an example of the inert gas atomizing method. First, a metal or alloy is melted in a crucible using high-frequency induction heating in an inert gas or in a vacuum. After melting, the melt is spouted from the crucible tip into an inert gas atmosphere. A high-speed airflow generated by adiabatically expanding the compressed inert gas at the same time as the jetting is jetted toward the melt to produce a metal powder. In a particularly preferable helium gas atomization, an active gas such as oxygen gas is 0.1%.
It is more preferable that the content be 0.01% or less. The helium gas may have a high purity, but a mixed gas in which a part of the helium gas is replaced with a nitrogen gas has a preferable gas composition. A helium-nitrogen mixed gas having a helium gas mixture ratio of 10 to 99% by volume can produce a metal powder having a particularly suitable particle size distribution, and can form a conductive circuit with a high packing density. Manufacturing cost, particle size distribution,
It is extremely useful industrially to use a helium-nitrogen mixed gas in a suitable ratio in consideration of the paste characteristics.

【0011】粒子形状はアトマイズ法で得られる球状が
一般的であるが、完全な球状でなく、一部変形を加えて
も差し支えない。発明で用いられる銅合金粉末は、特性
を損なわない程度であれば、特に限定されないが、例え
ば溶融時にAl,Zn,Sn,Pb,Si,Mn,N
i,Fe,Bi,Mo,Cr,Ir,Nb,Sb,B,
P,Mg,Li,C,Na,Ba,Ti,In,Au,
Pd,Pt,Rh,Ru,Zr,Hf,Y,Laなどの
金属、半金属及びそれらの化合物を添加しても構わない
し、また、本発明で用いる粉末と同時に、Al,Zn,
Sn,Pb,Si,Mn,Ni,Fe,Bi,Mo,C
r,Ir,Nb,Sb,B,P,Mg,Li,C,N
a,Ba,Ti,In,Au,Pd,Pt,Rh,R
u,Zr,Hf,Y,Laなどの金属、半金属およびそ
れらの化合物からなる粉末を混合しても構わない。ま
た、特性を損なわない範囲で、本発明の銅合金粉末の一
部を銅金属粉末や銀金属粉末で置き換えることも可能で
ある。このとき用いられる銅金属粉末はアトマイズ粉末
である必要はなく、例えば電解銅粉、化学還元銅粉であ
ってもよい。
Although the particle shape is generally a spherical shape obtained by an atomizing method, it is not a perfect spherical shape, and partial deformation may be added. The copper alloy powder used in the present invention is not particularly limited as long as the properties are not impaired. For example, Al, Zn, Sn, Pb, Si, Mn, N
i, Fe, Bi, Mo, Cr, Ir, Nb, Sb, B,
P, Mg, Li, C, Na, Ba, Ti, In, Au,
Metals such as Pd, Pt, Rh, Ru, Zr, Hf, Y, and La, metalloids, and compounds thereof may be added, and Al, Zn,
Sn, Pb, Si, Mn, Ni, Fe, Bi, Mo, C
r, Ir, Nb, Sb, B, P, Mg, Li, C, N
a, Ba, Ti, In, Au, Pd, Pt, Rh, R
Powders composed of metals such as u, Zr, Hf, Y and La, metalloids and compounds thereof may be mixed. Moreover, it is also possible to replace a part of the copper alloy powder of the present invention with a copper metal powder or a silver metal powder as long as the characteristics are not impaired. The copper metal powder used at this time does not need to be an atomized powder, and may be, for example, an electrolytic copper powder or a chemically reduced copper powder.

【0012】本発明の銅合金粉末は前述のようにアトマ
イズ法によって球状の微粒子を得ることができるが、さ
らに金属粉末の粒径分布を調整する手段として気流分級
機等の適当な分級プロセスを併用するとさらに導電性ペ
ースト材料としての特性が大きく向上する。本発明で用
いるバインダー樹脂は導電性微粉末100重量部に対し
て5〜40重量部であるが、より好ましくは10〜30
重量部である。5重量部以上の場合膜中の導電性微粉末
を結合させておくのに充分な樹脂量が得られ、40重量
部以下の場合は導電性と機械的強度のバランスの良い導
電性ペーストが得られる。
As described above, the copper alloy powder of the present invention can obtain spherical fine particles by the atomizing method. Further, as a means for adjusting the particle size distribution of the metal powder, an appropriate classification process such as an airflow classifier is used in combination. Then, the characteristics as a conductive paste material are further improved. The binder resin used in the present invention is 5 to 40 parts by weight based on 100 parts by weight of the conductive fine powder, and more preferably 10 to 30 parts by weight.
Parts by weight. When the amount is more than 5 parts by weight, a sufficient amount of resin for bonding the conductive fine powder in the film is obtained, and when the amount is less than 40 parts by weight, a conductive paste having a good balance between conductivity and mechanical strength is obtained. Can be

【0013】本発明に用いる熱硬化性型フェノール樹脂
は、熱硬化型であればいかなる構造のものでも差し支え
ないが、ホルムアルデヒド/フェノールのモル比が1〜
2の範囲であることが好ましい。該熱硬化型フェノール
樹脂の重量平均分子量は300〜5000であることが
好ましく、より好ましくは1000〜4000である。
300未満の場合、加熱硬化時に発生する水蒸気が多く
膜中にボイドができ易く、充分な膜強度が得られ難い。
5000より大の場合は、可溶性が不充分であり、ペー
スト化が困難となる。本発明に用いる熱硬化型フェノー
ル成分の一部を他のフェノール性水酸基を持つ化合物に
置き換えても差し支えない。フェノール性水酸基を持つ
樹脂としては、p−クレゾールやo−クレゾールとの混
合物あるいはm−クレゾールあるいは3,5−ジメチル
フェノールを用いるアルキルフェノールレゾール型樹
脂、キシレン樹脂変性レゾール型樹脂、ロジン変性フェ
ノール型樹脂などが挙げられる。重量平均分子量の測定
は、ゲルパーミエーションクロマトグラフィー(GP
C)測定した値をスチレン換算して算出するものとす
る。
The thermosetting phenolic resin used in the present invention may have any structure as long as it is a thermosetting type, but the formaldehyde / phenol molar ratio is from 1 to 1.
It is preferably in the range of 2. The weight-average molecular weight of the thermosetting phenolic resin is preferably from 300 to 5,000, more preferably from 1,000 to 4,000.
When it is less than 300, a large amount of water vapor is generated at the time of heat curing, so that voids are easily formed in the film, and it is difficult to obtain sufficient film strength.
When it is larger than 5000, the solubility is insufficient, and it becomes difficult to form a paste. Part of the thermosetting phenol component used in the present invention may be replaced with another compound having a phenolic hydroxyl group. Examples of the resin having a phenolic hydroxyl group include a mixture with p-cresol or o-cresol or an alkylphenol resole resin using m-cresol or 3,5-dimethylphenol, a xylene resin-modified resole resin, a rosin-modified phenol resin, and the like. Is mentioned. The weight average molecular weight is measured by gel permeation chromatography (GP
C) The measured value shall be calculated in terms of styrene.

【0014】本発明に用いるバインダー樹脂は熱硬化型
フェノール樹脂であるが、特性を損なわない程度であれ
ば熱硬化型フェノール樹脂以外の樹脂を加えても構わな
い。熱硬化型フェノール樹脂以外の樹脂としては、エポ
キシ樹脂、エチルセルロース樹脂、ポリエチレン樹脂、
ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、
アクリル樹脂、ウレタン樹脂、ポリビニルブチラール樹
脂を1種類または、2種類以上組み合わせて用いること
ができる。
Although the binder resin used in the present invention is a thermosetting phenol resin, a resin other than the thermosetting phenol resin may be added as long as the properties are not impaired. As resins other than thermosetting phenolic resins, epoxy resins, ethyl cellulose resins, polyethylene resins,
Polyester resin, polyamide resin, polyimide resin,
Acrylic resin, urethane resin, and polyvinyl butyral resin can be used alone or in combination of two or more.

【0015】本発明で用いるオキシム化合物は、オキシ
ム骨格を有し、融点が0℃〜300℃の範囲であり、導
電性ペースト中に分散可能であればいかなる構造でも差
し支えないが、融点が50℃〜250℃の範囲にあるこ
とが特に好ましい。オキシム化合物のオキシム基は、1
個以上あれば構わないが、隣り合って2個以上あること
が好ましい。オキシム骨格にアルキル基、アリール基等
の置換基を有しても構わない。置換基を有する場合は、
含窒素あるいは含酸素の芳香族置換基であることが好ま
しい。また、置換基に対してシン体とアンチ体の混合物
であっても差し支えないが、シン体であることが特に好
ましい。例えば、ピリジルアルドキシム、フェニル−2
−ピリジルケトキシム、2、2’ージピリジルケトキシ
ム、フェニルー2ーキノリルケトキシム、フェニルー2
ーフラニルケトキシム、フェニルー2ーピラニルケトキ
シム、ジメチルグリオキシム、αージフェニルグリオキ
シムを用いることができる。
The oxime compound used in the present invention has an oxime skeleton, has a melting point in the range of 0 ° C. to 300 ° C., and may have any structure as long as it can be dispersed in the conductive paste. It is particularly preferred that the temperature be in the range of -250 ° C. The oxime group of the oxime compound is 1
Any number may be used, but preferably two or more are adjacent. The oxime skeleton may have a substituent such as an alkyl group or an aryl group. When having a substituent,
It is preferably a nitrogen-containing or oxygen-containing aromatic substituent. Further, a mixture of a syn form and an anti form with respect to the substituent may be used, but a syn form is particularly preferable. For example, pyridylaldoxime, phenyl-2
-Pyridyl ketoxime, 2,2'-dipyridyl ketoxime, phenyl-2-quinolyl ketoxime, phenyl-2
-Furanylketoxime, phenyl-2-pyranylketoxime, dimethylglyoxime and α-diphenylglyoxime can be used.

【0016】本発明に使用できる溶剤は単独でも混合溶
媒でも差し支えないが、沸点が110℃以上のものを1
種以上含むことが好ましい。沸点が110℃以上の溶剤
を含む場合はスクリーン印刷中に溶剤が蒸発し、導電性
ペーストの粘度が変化する現象が起こらず好ましい。溶
剤の使用量は導電性ペーストがスクリーン印刷に適当な
粘度になるよう適宜選べば良い。例えば、トルエン、キ
シレンなどの芳香族類、メチルエチルケトン、メチルイ
ソブチルケトンなどのケトン類、酢酸ブチル、酢酸エチ
ルなどのエステル類、エチレングリコールモノメチルエ
ーテル、エチレングリコールモノエチルエーテル、エチ
レングリコールモノブチルエーテル、エチレングリコー
ルジメチルエーテル、エチレングリコール−n−ヘキシ
ルエーテル及びそれらのアセテート、ジエチレングリコ
ールモノメチルエーテル、ジエチレングリコールモノエ
チルエーテル、ジエチレングリコールモノイソブチルエ
ーテル、ジエチレングリコールモノヘキシルエーテル及
びそれらのアセテート、トリエチレングリコールモノア
ルキル類及びそのアセテートや、プロピレングリコール
モノエチルエーテル、プロピレングリコールモノブチル
エーテル、ジプロピレングリコールモノメチルエーテ
ル、ジプロピレングリコールモノブチルエーテルおよび
そのアセテート類、α−テルペノール、β−テルペノー
ル、ブタノール、ベンジルアルコールなどのアルコール
類、フェノール類、より選ばれた1種以上を含むものが
好ましい。
The solvent which can be used in the present invention may be a single solvent or a mixed solvent.
It is preferred to include more than one species. When a solvent having a boiling point of 110 ° C. or higher is contained, the solvent evaporates during screen printing, and the viscosity of the conductive paste does not change. The amount of the solvent used may be appropriately selected so that the conductive paste has a viscosity suitable for screen printing. For example, aromatics such as toluene and xylene, ketones such as methyl ethyl ketone and methyl isobutyl ketone, esters such as butyl acetate and ethyl acetate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether and ethylene glycol dimethyl ether , Ethylene glycol-n-hexyl ether and their acetates, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monoisobutyl ether, diethylene glycol monohexyl ether and their acetates, triethylene glycol monoalkyls and their acetates, and propylene glycol monoester Ethyl ether, propylene glycol monobu Preferred are those containing at least one selected from the group consisting of alcohols such as toluene ether, dipropylene glycol monomethyl ether, dipropylene glycol monobutyl ether and acetates thereof, alcohols such as α-terpenol, β-terpenol, butanol and benzyl alcohol, and phenols. .

【0017】本発明の導電性ペースト中の導電性微粉末
の分散性を向上させるために、該導電性微粉末表面の金
属酸化物を除去あるいは還元するなどのため、添加剤を
加えても良い。添加剤としては、例えば、飽和脂肪酸、
不飽和脂肪酸、それらの金属塩、有機チタネート化合
物、有機シリコン化合物、有機ジルコニウム化合物、有
機リン化合物、ヒドロキノン及びその誘導体、フェノー
ル化合物、アントラセン及びその誘導体、より選ばれた
1種以上である。添加剤の添加量は、導電性微粉末粉末
100重量部に対して、前記添加剤の1種以上を0.1
〜5重量部添加するのがよい。前記添加剤量が0.1重
量部以下では、添加剤の効果、例えば、分散性、消泡、
酸化物の還元等の効果が充分に作用せず、5重量部を越
える場合は、塗膜としての特性、例えば耐熱性、硬化
性、接着性等が低下する。好ましくは、0.1〜3重量
部である。本発明の導電性ペーストには、公知の粘度調
整剤、希釈剤、沈降防止剤、レベリング剤、カップリン
グ剤を適宜配合しても良いことは言うまでもない。
In order to improve the dispersibility of the conductive fine powder in the conductive paste of the present invention, an additive may be added to remove or reduce the metal oxide on the surface of the conductive fine powder. . As additives, for example, saturated fatty acids,
At least one selected from unsaturated fatty acids, metal salts thereof, organic titanate compounds, organic silicon compounds, organic zirconium compounds, organic phosphorus compounds, hydroquinone and its derivatives, phenol compounds, anthracene and its derivatives. The amount of the additive is 0.1% or more of the additive to 100 parts by weight of the conductive fine powder.
It is preferable to add up to 5 parts by weight. When the amount of the additive is 0.1 parts by weight or less, the effect of the additive, for example, dispersibility, defoaming,
When the effect such as reduction of the oxide does not sufficiently act and exceeds 5 parts by weight, the properties as a coating film, for example, heat resistance, curability, adhesiveness, etc. are deteriorated. Preferably, it is 0.1 to 3 parts by weight. It goes without saying that the conductive paste of the present invention may appropriately contain known viscosity modifiers, diluents, anti-settling agents, leveling agents, and coupling agents.

【0018】本発明の導電性ペースト中の導電性微粉末
の分散性を良くするために回分ニーダー等の高粘性用混
練機、スパイラルミキサー、プラネタリーミキサー、ポ
ニーミキサー、バタフライミキサー等の縦軸混練機、ロ
ールミル、テーパーロール等のロール型混練機を用いる
事ができる。本発明の効果を充分に発揮させるために
は、導電性ペースト中の導電性微粉末とバインダー樹脂
が均一に分散している事が好ましい。
In order to improve the dispersibility of the conductive fine powder in the conductive paste of the present invention, kneading machine for high viscosity such as batch kneader, vertical mixer such as spiral mixer, planetary mixer, pony mixer and butterfly mixer. A roll-type kneader such as a mill, a roll mill, and a taper roll can be used. In order to sufficiently exhibit the effects of the present invention, it is preferable that the conductive fine powder and the binder resin in the conductive paste are uniformly dispersed.

【0019】本発明に用いられる基板は、特に限定され
ないが、通常、アルミナ基板、窒化アルミ基板、低温焼
成用ガラス基板などのセラミックス基板や、アルミ、ス
テンレスなどのメタル基板などの無機基板やガラスエポ
キシ樹脂基板、紙フェノール樹脂基板、ポリイミド基
板、ポリエステル樹脂基板、BTレジン基板、ポリサル
フォン樹脂基板、ポリエーテルサルフォン樹脂基板、ポ
リエーテルイミド樹脂基板、ポリブタジエン樹脂基板、
ガラスポリイミド樹脂基板やフレキシブル基板などの有
機基板を使用することができる。。
The substrate used in the present invention is not particularly limited, but is usually a ceramic substrate such as an alumina substrate, an aluminum nitride substrate, a glass substrate for low-temperature firing, an inorganic substrate such as a metal substrate such as aluminum or stainless steel, or a glass epoxy substrate. Resin substrate, paper phenolic resin substrate, polyimide substrate, polyester resin substrate, BT resin substrate, polysulfone resin substrate, polyethersulfone resin substrate, polyetherimide resin substrate, polybutadiene resin substrate,
An organic substrate such as a glass polyimide resin substrate or a flexible substrate can be used. .

【0020】[0020]

【発明の実施の形態】以下、実施例と比較例によって本
発明を具体的に説明する。なお実施例記載の各種試験は
次のように行った。 (1)接着性試験 JIC C 6485に準拠する紙フェノール基板(F
CLーPP335/0A16ー11)の銅箔表面にスク
リーン印刷にて、膜厚20μm、1辺が10mmの正方
形の塗膜を形成する。該塗膜を空気中で170℃、20
分加熱し硬化させ被試験試料とする。被試験試料を共晶
半田浴(230℃)に10秒間浸せきした後、25℃ま
で放冷する。その後、被試験試料をナイフによって基板
面に達する1mm角の碁盤状の目を100個つくり、J
IS Z 1552に規定された幅12mmのセロハン
粘着テープを指圧によって圧着し、約10秒後に基板面
に平行方向に素早く引きはがし、目視によって剥離した
碁盤状の目の個数を測定する。(JIS C 5016
に準拠する。)剥離した個数が10個以下のものを接着
性良好とする。 (2)導電性測定 銅張りCEM−3基板(銅箔厚み35μm)を用い、向
かい合った2カ所の電極(30mm×30mm、電極間
隔50mm)をエッチングにより形成する。電極間に幅
30mmで紫外線硬化型のレジストを塗布、硬化して導
電性試験基板とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to examples and comparative examples. Various tests described in the examples were performed as follows. (1) Adhesion test Paper phenol substrate (F) conforming to JIC C 6485
A square coating film having a thickness of 20 μm and a side of 10 mm is formed on the copper foil surface of CL-PP335 / 0A16-11) by screen printing. The coating film is heated at 170 ° C. in air for 20 minutes.
Heat for a minute and cure to obtain a test sample. After the test sample is immersed in a eutectic solder bath (230 ° C.) for 10 seconds, it is allowed to cool to 25 ° C. Thereafter, 100 samples of a 1 mm square checkerboard reaching the substrate surface were formed on the sample under test with a knife.
A cellophane adhesive tape having a width of 12 mm specified in IS Z 1552 is pressure-bonded by finger pressure. After approximately 10 seconds, the cellophane adhesive tape is quickly peeled off in a direction parallel to the substrate surface, and the number of stripped grids is visually observed. (JIS C 5016
Compliant. ) Those having a peeled number of 10 or less have good adhesiveness. (2) Conductivity Measurement Using a copper-clad CEM-3 substrate (copper foil thickness 35 μm), two opposing electrodes (30 mm × 30 mm, electrode spacing 50 mm) are formed by etching. An ultraviolet-curable resist having a width of 30 mm is applied between the electrodes and cured to form a conductive test substrate.

【0021】該導電性試験基板上に幅500μm、長さ
70mのラインパターンのステンレススクリーン(18
5メッシュ)を用いて導電性ペーストをスクリーン印刷
し、導電性測定パターンを形成する。スクリーン印刷
後、該導電性試験基板を、循環式加熱炉を用いて、17
0℃、20分加熱硬化する。25℃まで放冷後、電極間
の導電性を4端子法を用いて測定する。同様の導電性測
定を10組の導電性試験基板について測定し、平均値を
導電性とする。
A stainless screen having a line pattern of 500 μm width and 70 m length (18
The conductive paste is screen-printed using 5 mesh) to form a conductive measurement pattern. After screen printing, the conductive test substrate was subjected to a circulating heating furnace for 17 hours.
Heat and cure at 0 ° C for 20 minutes. After cooling to 25 ° C., the conductivity between the electrodes is measured using a four-terminal method. The same conductivity measurement is performed on 10 sets of conductivity test substrates, and the average value is defined as the conductivity.

【0022】実施例および比較例に用いる銅合金微粉末
の作製方法を以下に示す。 (1)銅合金粉末の作製 銅粒子316gと銀粒子15gを用い、実施例1と全く
同一条件で銅銀合金粉末を作製した。得られた銅銀合金
粉の表面銀濃度をX線光電子分光分析装置で測定した。
銀濃度の測定には測定光電子エネルギーが近いピーク同
士で比較するため、Ag3d5/2 (AlのKα線)とC
u3p(MgのKα線)を選び表面からの深さ50A程
度の表面濃度として求め、この値とICPで求めた平均
銀濃度の比を銀濃度比とした。銀濃度比は、4.5で平
均粒径は9.6μm、最大粒径は60μmであった。粒
度分布はSEM写真画像から粒子サイズを測定して求め
た。得られた銅合金粉末のうち粒径が30μm以下の粉
末を銅合金微粉末と呼ぶ。
The method for producing the fine copper alloy powder used in the examples and comparative examples is described below. (1) Preparation of Copper Alloy Powder A copper-silver alloy powder was prepared using exactly 316 g of copper particles and 15 g of silver particles under the same conditions as in Example 1. The surface silver concentration of the obtained copper-silver alloy powder was measured with an X-ray photoelectron spectrometer.
In measuring silver concentration, Ag3d5 / 2 (Kα line of Al) and C
u3p (Kα line of Mg) was selected and determined as the surface concentration at a depth of about 50 A from the surface, and the ratio of this value to the average silver concentration determined by ICP was defined as the silver concentration ratio. The silver concentration ratio was 4.5, the average particle size was 9.6 μm, and the maximum particle size was 60 μm. The particle size distribution was determined by measuring the particle size from the SEM photograph image. Of the obtained copper alloy powder, a powder having a particle size of 30 μm or less is referred to as a copper alloy fine powder.

【0023】[0023]

【実施例1】該銅合金粉末100gとフェノール/ホル
ムアルデヒド比が1.0で重量平均分子量が1100の
フェノール樹脂10g、フェニルー2ーピリジルケトキ
シム(表1、A)0.25g、ジプロピレングリコール
メチルエーテル5gを3本ロールで混練し、導電性ペー
ストを作製した。得られた導電性ペーストを前記(1)
の如く接着性試験を行ったところ、剥離は全く起こらな
かった。(100/100)また、前記(2)の如く導
電性試験を行ったところ1.6Ωと良好な値であった。
以下同様にして実施例1〜6、及び比較例1〜5を作製
した。その際用いたオキシム化合物は、表1に示す。結
果は表2に示す通りである。表2から明らかなように、
本発明の導電性ペーストは非常に優れた対金属接着性を
示す。また、金属との接着性が良いため、導電性の劣化
が起こりにくい。
Example 1 100 g of the copper alloy powder, 10 g of a phenol resin having a phenol / formaldehyde ratio of 1.0 and a weight average molecular weight of 1100, 0.25 g of phenyl-2-pyridyl ketoxime (Table 1, A), dipropylene glycol methyl 5 g of ether was kneaded with three rolls to prepare a conductive paste. The obtained conductive paste was used in the above (1).
As a result, no peeling occurred. (100/100) In addition, when a conductivity test was performed as in the above (2), a good value of 1.6Ω was obtained.
Hereinafter, Examples 1 to 6 and Comparative Examples 1 to 5 were produced in the same manner. The oxime compounds used at that time are shown in Table 1. The results are as shown in Table 2. As is clear from Table 2,
The conductive paste of the present invention shows very good adhesion to metal. In addition, since the adhesiveness to metal is good, deterioration in conductivity is unlikely to occur.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】以上説明したように本発明は、対金属接
着性に優れた導電性ペーストを提供するものであり、高
品質な導体回路の製造を可能にしたものである。
As described above, the present invention provides a conductive paste having excellent adhesion to metal, and enables production of a high-quality conductive circuit.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 9/00 H05K 9/00 X ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location H05K 9/00 H05K 9/00 X

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式AgxCuy(0.001≦x≦
0.4,0.6≦y≦0.999(原子比))で表さ
れ、且つ粒子表面の銀濃度が粒子の平均の銀濃度より高
い銅合金粉末を導電性フィラーとし、熱硬化型フェノー
ル樹脂をバインダー樹脂とする導電性ペーストにおい
て、該導電性フィラー100重量部に対してオキシム化
合物を0.01〜5重量部含むことを特徴とする導電性
ペースト。
1. A compound of the general formula Ag x Cu y (0.001 ≦ x ≦
A copper alloy powder represented by 0.4, 0.6 ≦ y ≦ 0.999 (atomic ratio) and having a silver concentration on the surface of the particles higher than the average silver concentration of the particles is used as a conductive filler; A conductive paste containing a resin as a binder resin, wherein the conductive paste contains 0.01 to 5 parts by weight of an oxime compound with respect to 100 parts by weight of the conductive filler.
【請求項2】 導電性フィラーの形状が球状、鱗片状、
あるいは、それらの混合物であることを特徴とする請求
項1記載の導電性ペースト。
2. The shape of the conductive filler is spherical, scaly,
Alternatively, the conductive paste according to claim 1, which is a mixture thereof.
JP18956596A 1996-07-18 1996-07-18 Conductive paste Withdrawn JPH1040738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18956596A JPH1040738A (en) 1996-07-18 1996-07-18 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18956596A JPH1040738A (en) 1996-07-18 1996-07-18 Conductive paste

Publications (1)

Publication Number Publication Date
JPH1040738A true JPH1040738A (en) 1998-02-13

Family

ID=16243469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18956596A Withdrawn JPH1040738A (en) 1996-07-18 1996-07-18 Conductive paste

Country Status (1)

Country Link
JP (1) JPH1040738A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069284A (en) * 2001-08-24 2003-03-07 Komatsu Seiren Co Ltd Electromagnetic shielding wave material and manufacturing method therefor
JP2005216791A (en) * 2004-02-02 2005-08-11 Napura:Kk Electromagnetic wave absorbing and shielding material
US8668847B2 (en) 2010-08-13 2014-03-11 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
US8715535B2 (en) 2010-08-05 2014-05-06 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
US8940195B2 (en) 2011-01-13 2015-01-27 Samsung Electronics Co., Ltd. Conductive paste, and electronic device and solar cell including an electrode formed using the same
US8974703B2 (en) 2010-10-27 2015-03-10 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the same
US8987586B2 (en) 2010-08-13 2015-03-24 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
US9105370B2 (en) 2011-01-12 2015-08-11 Samsung Electronics Co., Ltd. Conductive paste, and electronic device and solar cell including an electrode formed using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069284A (en) * 2001-08-24 2003-03-07 Komatsu Seiren Co Ltd Electromagnetic shielding wave material and manufacturing method therefor
JP2005216791A (en) * 2004-02-02 2005-08-11 Napura:Kk Electromagnetic wave absorbing and shielding material
JP4553180B2 (en) * 2004-02-02 2010-09-29 有限会社ナプラ Electromagnetic wave absorption shielding material
US8715535B2 (en) 2010-08-05 2014-05-06 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
US8668847B2 (en) 2010-08-13 2014-03-11 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
US8987586B2 (en) 2010-08-13 2015-03-24 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
US8974703B2 (en) 2010-10-27 2015-03-10 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the same
US9105370B2 (en) 2011-01-12 2015-08-11 Samsung Electronics Co., Ltd. Conductive paste, and electronic device and solar cell including an electrode formed using the same
US8940195B2 (en) 2011-01-13 2015-01-27 Samsung Electronics Co., Ltd. Conductive paste, and electronic device and solar cell including an electrode formed using the same

Similar Documents

Publication Publication Date Title
CN107921533B (en) Metal paste having excellent low-temperature sinterability and method for producing same
WO1991015018A1 (en) Paste for high temperature baking
EP0470262B1 (en) Copper alloy composition
EP1864750A1 (en) Conductive filler and solder material
JP2009515023A (en) Metal ink, and electrode forming method and substrate using the same
JP2020033610A (en) Cleaning method for silver-coated metal powder, producing method for silver-coated metal powder, silver-coated copper powder, silver-coated copper alloy powder, conductive paste and production method for conductive film, electronic component, and electronic apparatus
JPH04268381A (en) Copper alloy composition
JPH10312712A (en) Solderable conductive paste
JPH1040738A (en) Conductive paste
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
JPH0594716A (en) High temperature baking composition and paste
JPH10162646A (en) Conductive resin composition
KR101616703B1 (en) Composite nanoparticle and process for producing same
JPH06203626A (en) Low-temperature bakable conductive paste
JP4248944B2 (en) Conductive paste, circuit pattern forming method, and bump electrode forming method
JPH10162647A (en) Conductive paste
JPH06136299A (en) Conductive paste enabling strong soldering
JPH07331360A (en) New copper alloy powder and its production
JPH0773730A (en) Conductive powder
JPH1021742A (en) Conductive paste
JP6303022B2 (en) Copper powder
JPH07109724B2 (en) Copper-based conductive paste that can be soldered
JPH09310006A (en) Electroconductive paste and its production
JP2007095527A (en) Conductive paste and method of manufacturing same
JPH07331125A (en) Conductive paste

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031007