JPH10289812A - Rare-earth magnet material, method of manufacturing rare-earth magnet material and rare-earth bonded magnet by the method - Google Patents

Rare-earth magnet material, method of manufacturing rare-earth magnet material and rare-earth bonded magnet by the method

Info

Publication number
JPH10289812A
JPH10289812A JP9098612A JP9861297A JPH10289812A JP H10289812 A JPH10289812 A JP H10289812A JP 9098612 A JP9098612 A JP 9098612A JP 9861297 A JP9861297 A JP 9861297A JP H10289812 A JPH10289812 A JP H10289812A
Authority
JP
Japan
Prior art keywords
rare earth
magnet material
earth magnet
gas
rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9098612A
Other languages
Japanese (ja)
Inventor
Hiroshi Okajima
弘 岡島
Masahiro Tobiyo
飛世  正博
Katsunori Iwasaki
克典 岩崎
Masaaki Tokunaga
雅亮 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP9098612A priority Critical patent/JPH10289812A/en
Publication of JPH10289812A publication Critical patent/JPH10289812A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen the temperature coefficient of the iHc of a rare-earth magnet material and to conductive to make the rare-earth magnet material superior in heat stability by a method wherein the magnet material is composed of a component composition, which is shown by a specified formula, has a monoclinic and/or hexagonal crystal structure and contains an R3 (Fe, M)29 Ny main phase of a specified mean crystal grain diameter. SOLUTION: The component composition of a rare-earth magnet material is shown by a formula of RαFe100-(α+β+γ)MβNr and the rare-earth magnet material has a monoclinic and/or hexagonal crystal structure and contains an R3 (Fe, M)29 Ny main phase of a mean crystal grain diameter of 0.05 to 1.0 μm. The R is one kind of the element or more than two kinds of the elements of some of rare-earth elements including Y and the M is one kind of the element or more than two kinds of the elements of some of Al, Ti, V, Cr, Mn, Cu, Ga, Zr, Nb, Mo, Hf, Ta and W. The (α), the (β) and the (γ) are respectively set in the ranges of 5<=α<=18, 1<= β<=50 and 4<=γ<=30 at atomic percentage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はR3(Fe,M)29
y主相を含む希土類磁石材料およびその製造方法なら
びにそれを用いた希土類ボンド磁石に関する。
The present invention relates to R 3 (Fe, M) 29
Rare earth magnet material and a manufacturing method thereof comprising N y main phase and to the rare-earth bonded magnet using the same.

【0002】[0002]

【従来の技術】従来より、等方性希土類ボンド磁石用磁
粉として超急冷したNd-Fe-B系磁粉が多用されてい
るが、キュリー温度が300℃前後と低く、固有保磁力
(以後iHcと記す)の温度係数が大きいために高温で
の使用が制限されてきた。最近、Sm2Fe17化合物が
窒素を吸蔵することによりNd2Fe14B化合物よりも
160℃も高い470℃というキュリー温度を示し、そ
の異方性磁界もNd2Fe14B化合物の異方性磁界(7
5kOe)を大きく上回る260kOeになることが報
告され、ボンド磁石用磁粉として工業化が検討されてい
る。Sm2Fe17の窒化物Sm2Fe17xは例えばガス
窒化法等で作製されるが粒径を単磁区粒子(数μm)程
度にしないと5kOe以上の高いiHcが得られないと
ともに、この粒径の磁粉は容易に酸化して磁気特性が劣
化し、かつ急激な酸化による発火の危険性を伴うので現
在のところ実用化が困難である。このようにSm2Fe
17x磁粉は粒径が数μmであるのでボンド磁石に圧縮
成形する際、成形体密度を上げることができず最大エネ
ルギー積の高い希土類ボンド磁石を得られない。また、
成形性が非常に悪く作業効率を著しく低下させるという
問題がある。また、メカニカルアロイング法などの特殊
な製造方法で高いiHcが得られることが報告されてい
るが、この方法は実験室規模の少量生産に適するもの
の、コストパーフォーマンスの点で劣るため量産に至っ
ていない。さらに、Sm2Fe17x窒化物以外にもTh
Mn12型の結晶構造を有したNd(Fe,M)12x
金(MはV、Ti、Mn、Mo等の遷移金属)や、Tb
Cu7型の結晶構造を有したSmFe7x合金等が提案
されているが、磁気特性の点で不十分であったり生産性
が悪く高コストになる等の理由で実用化されていない。
2. Description of the Related Art Conventionally, ultra-quenched Nd-Fe-B-based magnetic powders have been frequently used as magnetic powders for isotropic rare-earth bonded magnets, but the Curie temperature is as low as about 300 ° C., and the intrinsic coercive force (hereinafter iHc The use at high temperatures has been limited due to the large temperature coefficient of Recently, the Sm 2 Fe 17 compound has a Curie temperature of 470 ° C., which is 160 ° C. higher than that of the Nd 2 Fe 14 B compound, due to the storage of nitrogen, and its anisotropic magnetic field is also anisotropic of the Nd 2 Fe 14 B compound. Magnetic field (7
It is reported to be 260 kOe, which is much higher than 5 kOe), and industrialization as a magnetic powder for bonded magnets is being studied. Nitride Sm 2 Fe 17 N x of Sm 2 Fe 17 together with it is produced by, for example, a gas nitriding method or the like can not be obtained and not the 5kOe or more high iHc particle size to a degree single domain particles (a few [mu] m), this Magnetic powder having a particle size is easily oxidized to deteriorate magnetic properties and is accompanied by a risk of ignition due to rapid oxidation. Thus, Sm 2 Fe
Since 17 N x magnetic powder has a particle size of several μm, it is not possible to increase the density of the compact and to obtain a rare earth bonded magnet having a high maximum energy product when compression molded into a bonded magnet. Also,
There is a problem that the moldability is very poor and the working efficiency is significantly reduced. It has been reported that high iHc can be obtained by a special manufacturing method such as a mechanical alloying method. However, this method is suitable for small-scale production on a laboratory scale, but is inferior in cost performance, leading to mass production. Not in. In addition to Thm other than Sm 2 Fe 17 N x nitride,
Nd (Fe, M) 12 N x alloy (M is a transition metal such as V, Ti, Mn, Mo) having a Mn 12 type crystal structure, Tb
Although an SmFe 7 N x alloy having a Cu 7 type crystal structure has been proposed, it has not been put to practical use because of insufficient magnetic properties, poor productivity and high cost.

【0003】Collocottらによって最初にProc. 12th
Int.Workshop on RE Magnets and Applications,
Canbera, pp.437-444,1992 (unpublished)に報告さ
れたR3(Fe,M)29合金もその窒化物R3(Fe,
M)29yが一軸磁気異方性を示すことから永久磁石材
料として有望であることが示唆されている。この合金系
のSm3(Fe,Ti)29y合金をボールミルで平均粒
径15μmまで微粉砕することによって保磁力を高めら
れることがBo-Ping Hu et al.(J.Phys.:Condens.Mat
ter 6(1994)L197-L200)によって報告されている。しか
し、このものも平均粒径が15μmと小さいため成形体
密度の不足や成形性が悪い等の理由でボンド磁石用磁粉
として実用化することは難しい。一方、Margarian et
al.は、J.Appl.Phys.76(1994)6135-6155においてこの
3(Fe,M)29合金は非常に不安定で900〜10
00℃より低温では他の相に分解してしまうと報告して
いる。このR3(Fe,M)29合金の単相を得ることは
非常に難しく、ThMn12型やTh2Zn17型の結晶構
造を有するR-(Fe,M)合金やFe-M合金が生成し
易い。
[0003] Proc.
Int.Workshop on RE Magnets and Applications,
The R 3 (Fe, M) 29 alloy reported in Canbera, pp. 437-444, 1992 (unpublished) also has its nitride R 3 (Fe,
M) 29 N y is suggested to be a promising permanent magnet material since it shows a uniaxial magnetic anisotropy. The Sm 3 alloy systems (Fe, Ti) 29 N y alloy Bo-Ping Hu et al can be enhanced coercivity by milling to an average particle size of 15μm in a ball mill. (J.Phys.:Condens. Mat
ter 6 (1994) L197-L200). However, these powders also have a small average particle size of 15 μm, so that it is difficult to put them into practical use as magnetic powders for bonded magnets because of insufficient compact density and poor moldability. Meanwhile, Margarian et
al. is, J.Appl.Phys.76 (1994) The R 3 (Fe, M) 29 alloys in 6135-6155 are very unstable 900-10
It is reported that when the temperature is lower than 00 ° C., it is decomposed into another phase. It is very difficult to obtain a single phase of this R 3 (Fe, M) 29 alloy, and an R— (Fe, M) alloy or Fe—M alloy having a ThMn 12 type or Th 2 Zn 17 type crystal structure is formed. Easy to do.

【0004】また、特開平8-111305ではこのR3
(Fe,M)29合金に対してアンモニアガスによる窒化
処理あるいはメタンガスによる浸炭処理を行ってNまた
はCを導入することにより10〜200μmの粗粉末で
高い保磁力が得られることを開示している。しかし、R
3(Fe,M)29母合金を窒化または浸炭したものの結
晶粒径と磁気特性の相関については何ら検討されていな
い。磁石合金の結晶粒径制御を目的として、水素による
相変態を利用して高い保磁力を有した磁石合金を作製す
る方法が日本応用磁気学会誌、Vol.17、No.
1、1993、P25−31に記載のNd-Fe-B系合
金に開示されているが、iHcの温度係数は−0.53
と悪く高温減磁が大きな問題となっていた。さらにNd
-Fe-B系合金は水素吸収時に大量の熱を発生しまた再
結晶時に大量の熱を吸収する性質を有しており、量産設
備において上記水素による相変態を利用して磁気特性を
担うNd−Fe−B系磁石の主相組織を高い保磁力の得
られる結晶粒径範囲に微細化するためには精密な温度制
御を必要とするものであった。これらのことが、上記の
水素による相変態を利用した高保磁力のNd-Fe-B系
合金の工業化を妨げている最大の問題である。
In Japanese Patent Application Laid-Open No. Hei 8-111305, this R 3
It discloses that a high coercive force can be obtained with a coarse powder of 10 to 200 μm by introducing N or C by performing nitriding treatment with ammonia gas or carburizing treatment with methane gas on (Fe, M) 29 alloy. . But R
No correlation has been studied between the crystal grain size and magnetic properties of the 3 (Fe, M) 29 mother alloy nitrided or carburized. For the purpose of controlling the crystal grain size of a magnet alloy, a method of producing a magnet alloy having a high coercive force using phase transformation by hydrogen is disclosed in Journal of the Japan Society of Applied Magnetics, Vol.
1, 1993, P25-31, the temperature coefficient of iHc is -0.53.
High temperature demagnetization became a serious problem. Further Nd
-Fe-B alloys have the property of generating a large amount of heat when absorbing hydrogen and absorbing a large amount of heat during recrystallization. Precise temperature control was required in order to refine the main phase structure of the Fe-B based magnet to a crystal grain size range in which a high coercive force could be obtained. These are the biggest problems that hinder the industrialization of the high coercive force Nd-Fe-B-based alloy utilizing the above-described phase transformation by hydrogen.

【0005】また特開平8−37122にはR−T−M
−N系異方性ボンド磁石の製造方法において、Th2
17型構造またはTbCu7型構造を有する合金を異方
性化する手段として水素を用いた相変態を利用する方法
を開示している。しかし、R3(Fe,M)29化合物に
ついては全く開示がない。
Japanese Patent Application Laid-Open No. 8-37122 discloses an RTM
-N-based anisotropic bonded magnet manufacturing method, wherein Th 2 Z
A method utilizing a phase transformation using hydrogen as a means for anisotropizing an alloy having an n 17 type structure or a TbCu 7 type structure is disclosed. However, there is no disclosure of the R 3 (Fe, M) 29 compound.

【0006】[0006]

【発明が解決しようとする課題】ボンド磁石の耐熱性を
向上するためにはiHcの絶対値を高くするとともにi
Hcの温度係数を小さくする必要があるので、異方性磁
界が大きいとともにキュリー温度が高い希土類磁石粉末
が必要である。前述したようにR-Fe-N系合金は従来
のNd-Fe-B系合金よりも異方性磁界が大きくかつキ
ュリー温度が高いことからiHcの温度係数の小さい材
料として期待されているが、R-Fe-N系合金で5kO
e以上の高いiHcを得るには上記の通り数μmの微粉
状にする必要があり、この微粉末は通常工業生産で用い
られている6〜10ton/cm2程度の成形圧力では
ボンド磁石の成形体密度を十分に上げることができず最
大エネルギー積の高いものが得られないとともに、酸化
し易く不安定でさらに成形性が非常に悪いものである。
上記従来の問題を踏まえて、本発明の課題はiHcが大
きいとともに従来に比べてiHcの温度係数が小さく熱
安定性に優れたR3(Fe,M)29y主相を含む希土類
磁石材料およびその製造方法ならびにそれを用いた希土
類ボンド磁石を提供することである。
In order to improve the heat resistance of the bonded magnet, the absolute value of iHc must be increased and i
Since it is necessary to reduce the temperature coefficient of Hc, a rare-earth magnet powder having a large anisotropic magnetic field and a high Curie temperature is required. As described above, the R-Fe-N-based alloy is expected to be a material having a small temperature coefficient of iHc because of its larger anisotropic magnetic field and higher Curie temperature than the conventional Nd-Fe-B-based alloy. 5kO with R-Fe-N alloy
In order to obtain a high iHc of e or more, it is necessary to form a fine powder of several μm as described above. This fine powder can be formed into a bonded magnet at a molding pressure of about 6 to 10 ton / cm 2 which is usually used in industrial production. In addition to the fact that the body density cannot be sufficiently increased and a product having a high maximum energy product cannot be obtained, it is liable to be oxidized, is unstable, and has very poor moldability.
In light of the above conventional problems, an object of the present invention R 3 where the temperature coefficient of iHc and excellent small thermal stability than the conventional with large iHc (Fe, M) a rare earth magnet material containing 29 N y main phase And a method of manufacturing the same and a rare earth bonded magnet using the same.

【0007】[0007]

【課題を解決するための手段】本発明者らはボンド磁石
の成形工程における成形容易性およびそれに用いる希土
類磁石材料粉末の高い磁気特性を確保する目的で、平均
粒径が100μm以上の粗粉において高いiHcと飽和
磁化、および低いiHcの温度係数(η)を有したR−
Fe−N系磁石粉末を得るために種々のプロセスを鋭意
検討した結果、R−Fe−M−N系磁石材料において水
素を用いた特定の条件下で水素化、分解、脱水素、再結
合の順で相変態反応を起こさせ、その後窒化処理するこ
とにより微細結晶のR3(Fe,M)29y主相が得られ
上記課題を解決できることを見出し本発明に想到した。
すなわち、本発明は、成分組成がRαFe100-(α+β+
γ)MβNγで表され、単斜晶および/または六方晶の
結晶構造を有し平均結晶粒径が0.05〜1.0μmで
あるR3(Fe,M)29y主相を含み、前記RはYを含
めた希土類元素のいずれか1種または2種以上であり、
前記MはAl、Ti、V、Cr、Mn、Cu、Ga、Z
r、Nb、Mo、Hf、Ta、Wのいずれか1種または
2種以上であり、前記α、β、γは原子百分率で下記の
範囲にあることを特徴とする希土類磁石材料である。 5≦α≦18 1≦β≦50 4≦γ≦30 上記希土類元素RとしてはY、La、Ce、Pr、N
d、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、Yb、Luのいずれか1種または2種以上を含めば
よく、ミッシュメタルやジジム等の2種以上の希土類元
素の混合物を用いてもよい。好ましい希土類元素Rとし
てはY、Ce、Pr、Nd、Sm、Gd、Dy、Erの
いずれか1種または2種以上であり、さらに好ましくは
Y、Ce、Pr、Nd、Smのいずれか1種または2種
以上であり、特に好ましいのはSmである。R成分の5
0原子%以上さらには70原子%以上がSmである場合
に際だって高い保磁力が得られる。ここで、希土類元素
Rは工業的生産により入手可能な純度でよく、製造上混
入が避けられないO、H、C、Al、Si、Na、M
g、Ca等の不純物元素が含有されていてもよい。本発
明の希土類磁石材料はR成分を5〜18原子%含有す
る。R成分が5原子%未満になると鉄成分を多く含む軟
磁性相の析出を促進してiHcが低下し、18原子%を
越えると非磁性のRリッチ化合物が析出して飽和磁束密
度を低下させるので好ましくない。さらに好ましいR成
分範囲は6〜12原子%である。
Means for Solving the Problems In order to ensure the ease of forming in the forming step of the bonded magnet and the high magnetic properties of the rare-earth magnet material powder used for the bonding magnet, the present inventors have proposed a method for forming a coarse powder having an average particle diameter of 100 μm or more. R- with high iHc and saturation magnetization and low iHc temperature coefficient (η)
As a result of intensive studies on various processes for obtaining Fe-N-based magnet powder, hydrogenation, decomposition, dehydrogenation, and recombination of R-Fe-M-N-based magnet materials under specific conditions using hydrogen were performed. The inventors of the present invention have found out that the above-mentioned problem can be solved by causing a phase transformation reaction in order and then performing a nitriding treatment to obtain a fine crystal R 3 (Fe, M) 29 Ny main phase, thereby solving the above-mentioned problems.
That is, in the present invention, the component composition is RαFe100− (α + β +
gamma) are represented by Emubetaenuganma, include R 3 (Fe, M) 29 N y main phase an average crystal grain size has a monoclinic and / or hexagonal crystal structure is 0.05 to 1.0 [mu] m, R is one or more of rare earth elements including Y,
M is Al, Ti, V, Cr, Mn, Cu, Ga, Z
The rare earth magnet material is at least one of r, Nb, Mo, Hf, Ta, and W, wherein α, β, and γ are in the following ranges in atomic percentage. 5 ≦ α ≦ 18 1 ≦ β ≦ 504 4 ≦ γ ≦ 30 As the rare earth element R, Y, La, Ce, Pr, N
d, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
Any one or more of m, Yb, and Lu may be included, and a mixture of two or more rare earth elements such as misch metal and dymium may be used. Preferred rare earth elements R are any one or more of Y, Ce, Pr, Nd, Sm, Gd, Dy, and Er, and more preferably any one of Y, Ce, Pr, Nd, and Sm. Alternatively, two or more kinds are preferable, and Sm is particularly preferable. R component 5
A remarkably high coercive force is obtained when Sm is at least 0 atomic% and further at least 70 atomic%. Here, the rare earth element R may have a purity that can be obtained by industrial production, and O, H, C, Al, Si, Na, and M, which are unavoidable in production.
An impurity element such as g or Ca may be contained. The rare earth magnet material of the present invention contains 5 to 18 atomic% of the R component. When the R component is less than 5 atomic%, the precipitation of a soft magnetic phase containing a large amount of iron component is promoted to lower iHc. When the R component exceeds 18 atomic%, a non-magnetic R-rich compound is precipitated to lower the saturation magnetic flux density. It is not preferable. A more preferable range of the R component is 6 to 12 atomic%.

【0008】また、上記希土類磁石材料は粉体の平均粒
径を100μm以上500μm以下とすると好ましい。
100μm未満ではボンド磁石形状によってはボンド磁
石成形工程での成形性が悪い場合があり、500μmを
超えると通常の窒化条件では窒素の拡散距離が粒子径の
大きな粉末粒子に対して不十分となり易く粉末粒子内に
ほぼ均一に窒化物が形成されない不具合を生じ、いずれ
も好ましくない。より好ましい粉体の平均粒径の範囲は
150〜400μmである。
It is preferable that the rare earth magnet material has an average particle diameter of the powder of not less than 100 μm and not more than 500 μm.
If it is less than 100 μm, the formability in the bond magnet molding step may be poor depending on the shape of the bonded magnet, and if it exceeds 500 μm, under normal nitriding conditions, the diffusion distance of nitrogen tends to be insufficient for powder particles having a large particle diameter. A problem arises in that nitrides are not formed almost uniformly in the grains, which are not preferable. A more preferable range of the average particle size of the powder is 150 to 400 μm.

【0009】また、本発明ではR3(Fe,M)29y
の結晶粒内にM元素またはM化合物が析出している場合
に高いiHcと低いiHcの温度係数(η)が得られて
いる。
In the present invention, a temperature coefficient (η) of high iHc and low iHc can be obtained when M element or M compound is precipitated in the crystal grains of R 3 (Fe, M) 29 Ny phase. ing.

【0010】本発明の希土類磁石材料は単斜晶および/
または六方晶の結晶構造を有したR3(Fe,M)29y
相単相のものが理想的であるが、この主相の他に磁石特
性に寄与しない他の化合物(以後副相と呼ぶ)を含有す
ることができる。この副相としてTh2Zn17型、Tb
Cu7型、ThMn12型などの結晶構造を有するR-Fe
-M-N系磁性化合物を含んでいてもよいが、本発明では
3(Fe,M)29y主相の含有比率は50体積%以上
が好ましく、60体積%以上がより好ましい。
The rare earth magnet material of the present invention is monoclinic and / or
Or R 3 (Fe, M) 29 N y having a hexagonal crystal structure
Although a single phase is ideal, other compounds that do not contribute to the magnetic properties (hereinafter referred to as sub-phases) can be contained in addition to the main phase. As this subphase, Th 2 Zn 17 type, Tb
R-Fe having a crystal structure such as Cu 7 type and ThMn 12 type
Although it may contain a -MN based magnetic compound, in the present invention, the content ratio of the R 3 (Fe, M) 29 Ny main phase is preferably at least 50% by volume, more preferably at least 60% by volume.

【0011】本発明の希土類磁石材料は、粉末状態で2
5℃におけるiHcが6kOe以上であり、25〜10
0℃におけるiHcの温度係数(η)が−0.45以上
である良好な耐熱性を有している。
[0011] The rare earth magnet material of the present invention can be used in powder form.
IHc at 5 ° C. is 6 kOe or more, and 25 to 10
It has good heat resistance in which the temperature coefficient (η) of iHc at 0 ° C. is −0.45 or more.

【0012】上記希土類磁石材料の粉末を、高分子重合
体、純金属、合金のいずれかのバインダーで結合した希
土類ボンド磁石は高いiHcと低いiHcの温度係数
(η)を有している。前記ボンド磁石の25℃における
iHcは6kOe以上であり、25〜100℃における
iHcの温度係数(η)が−0.45以上である等方性
の希土類ボンド磁石を提供できる。
A rare earth bonded magnet in which the powder of the above rare earth magnet material is bound with a binder of a polymer, a pure metal, or an alloy has a high iHc and a low iHc temperature coefficient (η). It is possible to provide an isotropic rare earth bonded magnet in which the bond magnet has an iHc at 25 ° C. of 6 kOe or more and a temperature coefficient (η) of iHc at 25 to 100 ° C. of −0.45 or more.

【0013】Feは47原子%以上を含有することが好
ましい。Feが47原子%未満では飽和磁化が小さくな
り好ましくない。
It is preferable that Fe contains 47 atomic% or more. If Fe is less than 47 atomic%, the saturation magnetization is undesirably small.

【0014】上記M元素はR3(Fe,M)29主相の安
定性を向上させる役割を果たしている。高い磁気特性を
有するレベルにR3(Fe,M)29相を生成させるに要
するM元素の添加量はM元素の種類毎に異なる。M元素
のいずれでも50原子%を越えて添加するとThMn12
型の結晶構造を有するR(Fe,M)12相の生成率が大
きくなりiHcが顕著に低下する。M元素が1原子%未
満ではTh2Zn17型の結晶構造を有するR2(Fe,
M)17相の生成率が大きくなりR3(Fe,M)29相の
存在比率が相対的に低下する。よってM元素の好ましい
添加量は1〜50原子%である。M元素のうちでより好
ましい元素はTi、Mn、Cr、Zr、Vのいずれか1
種または2種以上である。
The M element plays a role in improving the stability of the R 3 (Fe, M) 29 main phase. The addition amount of the M element required to generate the R 3 (Fe, M) 29 phase at a level having high magnetic characteristics differs depending on the type of the M element. When any of the M elements is added in excess of 50 atomic%, ThMn 12
The generation rate of the R (Fe, M) 12 phase having the type crystal structure is increased, and iHc is remarkably reduced. M element having a crystal structure of Th 2 Zn 17 type is less than 1 atomic% R 2 (Fe,
The generation rate of the (M) 17 phase increases, and the proportion of the R 3 (Fe, M) 29 phase relatively decreases. Therefore, the preferable addition amount of the element M is 1 to 50 atomic%. Among the M elements, a more preferable element is any one of Ti, Mn, Cr, Zr, and V.
Species or two or more species.

【0015】R3(Fe,M)29相に導入される窒素N
は4〜30原子%とすることが好ましい。窒素Nが4原
子%未満では磁化が低くなるとともに、30原子%を越
えると保磁力を向上させることが困難である。より好ま
しい窒素Nの含有量は10〜20原子%である。
Nitrogen N introduced into the R 3 (Fe, M) 29 phase
Is preferably 4 to 30 atomic%. If the nitrogen N is less than 4 at%, the magnetization is low, and if it exceeds 30 at%, it is difficult to improve the coercive force. More preferably, the content of nitrogen N is 10 to 20 atomic%.

【0016】また、Feの0.01〜30原子%をCo
および/またはNiで置換することが好ましく、Coお
よび/またはNiの導入によりキュリー温度が上昇する
とともにiHcの温度係数(η)を向上する効果があ
る。しかし、30原子%を越えると飽和磁束密度および
iHcの顕著な低下を招来するとともに、0.01原子
%未満ではCoおよび/またはNiの添加効果が認めら
れない。Coおよび/またはNiによるFe置換量のよ
り好ましい範囲は1〜20原子%である。
Further, 0.01 to 30 atomic% of Fe is Co
And / or Ni is preferable, and the introduction of Co and / or Ni has an effect of increasing the Curie temperature and improving the temperature coefficient (η) of iHc. However, if it exceeds 30 atomic%, the saturation magnetic flux density and iHc are remarkably reduced, and if it is less than 0.01 atomic%, the effect of adding Co and / or Ni is not recognized. A more preferred range of the amount of Fe replaced by Co and / or Ni is 1 to 20 atomic%.

【0017】また、本発明は、成分組成がRαFe100-
(α+β+γ)MβNγで表され、単斜晶および/または六
方晶の結晶構造を有したR3(Fe,M)29y主相を含
み、前記RはYを含めた希土類元素のいずれか1種また
は2種以上、前記MはAl、Ti、V、Cr、Mn、C
u、Ga、Zr、Nb、Mo、Hf、Ta、Wのいずれ
か1種または2種以上であり、前記α、β、γが原子百
分率で下記の範囲にある希土類磁石材料の製造方法にお
いて、前記組成の合金を鋳造後、均質化処理を行い、続
いて粗粉砕したものを、0.1〜10atmのH2ガス
中またはH2ガス分圧を有した不活性ガス(N2ガスを除
く)中で700〜900℃×0.5〜8時間保持する水
素化、分解反応処理を行い、続いて好ましくは1×10
-2〜1×10-6Torrの真空中に700〜900℃×
0.5〜10時間保持する脱水素、再結合反応処理を行
った後、窒化処理を行うことを特徴とする希土類磁石材
料の製造方法である。 5≦α≦18 1≦β≦50 4≦γ≦30 また、鋳造後に、800〜1150℃×0.5〜100
時間の均質化処理を行うことが高い磁気特性を安定に得
るために好ましい。また、窒化処理後に、真空中あるい
は不活性ガス中(N2ガスを除く)で300〜600℃
×0.5〜50時間の熱処理を行うとさらに高いiHc
が得られ易いので好ましい。また、0.2〜10atm
のN2ガス、H2が1〜95モル%で残部N2からなるH2
とN2の混合ガス、NH3のモル%が1〜50%で残部H
2からなるNH3とH2の混合ガスのうちのいずれかの雰
囲気中で300〜650℃×0.1〜30時間保持する
ガス窒化処理が実用性に富む窒化処理方法である。
Further, the present invention provides a method for producing a composition according to
R 3 (Fe, M) 29 N y main phase represented by (α + β + γ) MβNγ and having a monoclinic and / or hexagonal crystal structure, wherein R is a rare earth element including Y Wherein M is Al, Ti, V, Cr, Mn, C
u, Ga, Zr, Nb, Mo, Hf, Ta, W or any one or more of the above, wherein the α, β, γ in atomic percentage in the following range, the method for producing a rare earth magnet material, after casting the alloy of the composition, carried homogenized, except followed by those roughly pulverized, inert gas (N 2 gas having a H 2 gas in or H 2 gas partial pressure of 0.1~10atm ), A hydrogenation and decomposition reaction treatment at 700 to 900 ° C. × 0.5 to 8 hours, followed by 1 × 10
700 to 900 ° C in a vacuum of -2 to 1 x 10 -6 Torr x
A method for producing a rare-earth magnet material, comprising performing a dehydrogenation and recombination reaction treatment for 0.5 to 10 hours and then performing a nitriding treatment. 5 ≦ α ≦ 18 1 ≦ β ≦ 504 4 ≦ γ ≦ 30 Also, after casting, 800-1150 ° C. × 0.5-100
It is preferable to perform a time homogenization treatment in order to stably obtain high magnetic characteristics. After the nitriding treatment, 300 to 600 ° C. in vacuum or in an inert gas (excluding N 2 gas)
× 0.5 to 50 hours heat treatment for higher iHc
Is preferred because it is easily obtained. Also, 0.2 to 10 atm
H 2 to the N 2 gas, H 2 is the balance N 2 with 1 to 95 mol%
Remainder H and a mixed gas of N 2, in mole percent of NH 3 1 to 50%
Gas nitriding of holding 300 to 650 ° C. × 0.1 to 30 hours in one atmosphere of NH 3 and a mixed gas of H 2 consisting of 2 are nitriding method rich in practicability.

【0018】本発明ではR3(Fe,M)29相を主相と
する化合物を上記加熱条件でH2と反応させる水素化、
分解反応処理により希土類元素Rの水素化物RHx、α
Fe−M相などに分解する。さらにこの状態から上記加
熱条件で水素成分を強制的に取り除く脱水素、再結合反
応処理によりR3(Fe,M)29相の微細な再結合組織
(平均結晶粒径が0.05〜1.0μmの再結晶組織で
あり、各結晶粒子はランダム方向に配向している。)が
得られる。この水素化、分解反応ではH2ガスの単独ま
たはN2ガスを除く不活性ガスとH2ガスとの混合ガス中
での加熱に際し、H2分圧が0.1atm未満では上記
分解反応が十分に起こらず、10atmを越えると処理
設備が大型化しコスト高を招来するので好ましくない。
よってH2分圧の好ましい範囲は0.1〜10atmで
あり、0.5〜2.0atmがより好ましい。また、こ
の水素化、分解反応の加熱条件は700℃×0.5時間
未満ではR−Fe−M系化合物がH2を吸収するのみで
RHx相、αFe-M相などへの分解がほとんど起こら
ず、また900℃×8時間を越えると脱水素後のR
3(Fe,M)29相の結晶粒径が粗大化してこのものを
窒化処理して得られるR3(Fe,M)29y相の結晶粒
径が粗大化しiHcが顕著に低下するので700〜90
0℃×0.5〜8時間が好ましく、上記の分解反応を十
分に行わせるためには725〜875℃×0.5〜8時
間がより好ましい。脱水素、再結合処理時のH2分圧が
1×10-2Torrよりも低いと処理に長時間を要し好
ましくなく、1×10-6Torrを越えた高真空とする
と真空排気装置のコストが増大するので実用的でない。
脱水素、再結合処理時の加熱保持条件が700℃×0.
5時間未満ではRHx相等の分解がほとんど進行せず、
また900℃×10時間を越えると得られたR3(F
e,M)29相の再結晶組織が粒成長のため粗大結晶粒化
し易く高いiHcを得ることが困難である。したがって
脱水素、再結合反応処理は700〜900℃×0.5〜
10時間が好ましく、RHx等の分解反応およびR
3(Fe,M)29相の再結晶反応を微細結晶組織を保持し
ながら十分に行わせるためには725〜875℃×0.
5〜10時間の加熱を行うことがより好ましい。上記の
通り、本発明の製造方法の特長は水素化、分解反応処理
により母合金結晶を十分に分解し、続いて行う脱水素、
再結合反応処理により再結合反応処理後のものおよび窒
化処理後の主相の結晶組織をランダム方位に微細化する
ものであり、高いiHcを安定に得られる実用性に富む
製法である。
In the present invention, hydrogenation is carried out by reacting a compound having an R 3 (Fe, M) 29 phase as a main phase with H 2 under the above heating conditions.
By the decomposition reaction treatment, the hydride RHx of the rare earth element R, α
Decomposes into Fe-M phase etc. Further, from this state, a fine recombined structure of R 3 (Fe, M) 29 phase (average crystal grain size of 0.05-1. 0 μm, and each crystal grain is oriented in a random direction.). The hydrogenation upon heating in a mixed gas of inert gas and H 2 gas except alone or N 2 gas of H 2 gas in the decomposition reaction, the decomposition reaction sufficient H 2 partial pressure is less than 0.1atm When the pressure exceeds 10 atm, the processing equipment becomes large and cost increases, which is not preferable.
Therefore, the preferable range of the H 2 partial pressure is 0.1 to 10 atm, and more preferably 0.5 to 2.0 atm. If the heating conditions for this hydrogenation and decomposition reaction are less than 700 ° C. × 0.5 hours, the R—Fe—M compound only absorbs H 2 and almost decomposes to the RHx phase, αFe—M phase, etc. If the temperature exceeds 900 ° C for 8 hours, R
Since the crystal grain size of the 3 (Fe, M) 29 phase is coarsened and the crystal grain size of the R 3 (Fe, M) 29 Ny phase obtained by nitriding is coarsened, iHc is significantly reduced. 700-90
0 ° C. × 0.5 to 8 hours are preferable, and 725 to 875 ° C. × 0.5 to 8 hours are more preferable for sufficiently performing the above decomposition reaction. If the H 2 partial pressure during the dehydrogenation and recombination treatment is lower than 1 × 10 −2 Torr, it takes a long time for the treatment, and it is not preferable. If a high vacuum exceeding 1 × 10 −6 Torr is applied, the evacuation device It is not practical because the cost increases.
The heating and holding conditions during the dehydrogenation and recombination treatment are 700 ° C. × 0.
If the time is less than 5 hours, the decomposition of the RHx phase or the like hardly proceeds,
When the temperature exceeds 900 ° C. × 10 hours, the obtained R 3 (F
e, M) The recrystallized structure of the 29 phase is apt to become coarse grains due to grain growth, and it is difficult to obtain high iHc. Therefore, the dehydrogenation and recombination reaction treatment is performed at 700 to 900 ° C x 0.5 to
10 hours is preferable, and decomposition reaction such as RHx and R
In order to allow the recrystallization reaction of the 3 (Fe, M) 29 phase to be sufficiently performed while maintaining the fine crystal structure, 725 to 875 ° C. × 0.5.
More preferably, heating is performed for 5 to 10 hours. As described above, the features of the production method of the present invention include hydrogenation, decomposition of the mother alloy crystal sufficiently by decomposition reaction treatment, and subsequent dehydrogenation.
The crystal structure of the main phase after the recombination reaction treatment and the main phase after the nitriding treatment are refined in random orientation by the recombination reaction treatment, and this is a highly practical production method capable of stably obtaining high iHc.

【0019】窒化処理後の主相の平均結晶粒径を0.0
5〜1.0μmに限定した理由は0.05μm未満の平
均結晶粒径のものを安定に量産することが困難であり、
また1.0μmを越えるとiHcが顕著に減少するから
である。より好ましい平均結晶粒径は0.1〜0.5μ
mである。本発明において窒化処理を行う前に必要に応
じて粉砕、分級を行い粉末の粒径を調整することは均一
な窒化処理を行う上から好ましい。ガス窒化法を採用す
る場合には、窒化処理時のN2圧力を0.2〜10at
mにすることが好ましい。0.2atm未満では窒化反
応が遅く、10atmを越えると高圧ガスの設備に多大
のコストを要する。より好ましいN2圧力範囲は1〜1
0atmである。ガス窒化の加熱条件は300〜650
℃×0.1〜30時間が好ましい。300℃×0.1時
間未満では窒化がほとんど進行せず、650℃×30時
間を越えるとR3(Fe,M)2 9y主相がほとんどRN
相、Fe−M相等に分解しiHcが顕著に低下するので
好ましくない。より好ましいガス窒化の加熱条件は40
0〜550℃×0.5〜30時間であり、400〜55
0℃×1〜10時間が特に好ましい。
The average crystal grain size of the main phase after the nitriding treatment is set to 0.0
The reason for limiting to 5 to 1.0 μm is that it is difficult to stably mass-produce those having an average crystal grain size of less than 0.05 μm,
Also, if it exceeds 1.0 μm, iHc is significantly reduced. A more preferred average crystal grain size is 0.1 to 0.5 μm.
m. In the present invention, it is preferable to adjust the particle size of the powder by performing pulverization and classification as necessary before performing the nitriding treatment from the viewpoint of performing a uniform nitriding treatment. When the gas nitriding method is adopted, the N 2 pressure during the nitriding treatment is set to 0.2 to 10 at.
m is preferable. If it is less than 0.2 atm, the nitridation reaction is slow, and if it exceeds 10 atm, enormous cost is required for high-pressure gas equipment. A more preferred N 2 pressure range is 1 to 1
0 atm. Heating conditions for gas nitriding are 300-650
C. x 0.1 to 30 hours are preferred. At less than 300 ° C. × 0.1 hours hardly progress nitride, exceeding 650 ° C. × 30 hours and R 3 (Fe, M) 2 9 N y main phase is almost RN
Phase, Fe-M phase and the like, and iHc is remarkably reduced, which is not preferable. More preferred gas nitriding heating conditions are 40
0 to 550 ° C. × 0.5 to 30 hours, 400 to 55
0 ° C. × 1 to 10 hours are particularly preferred.

【0020】[0020]

【発明の実施の形態】以下本発明を詳説する。R3(F
e,M)29y主相は、理想的には母合金全部または母
合金を主に構成するR3(Fe,M)29相の結晶格子間
に窒素が侵入してその結晶格子が膨張することによって
得られるが、その結晶構造はR3(Fe,M)29相とほ
ぼ同じ対称性を有する。例えば母合金粉末として原子%
表示でSm9.4FebalV4.5の組成のものを選んだ場
合、窒素を導入することによって結晶磁気異方性が面内
異方性から一軸異方性に変化し永久磁石材料として好適
なものになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. R 3 (F
e, M) 29 N y main phase, ideally mother alloy whole or R 3 mainly constituting the matrix alloy (Fe, M) the crystal lattice of nitrogen between 29 phase crystal lattice invades the expansion The crystal structure has almost the same symmetry as the R 3 (Fe, M) 29 phase. For example, atomic% as mother alloy powder
When a material having a composition of Sm9.4FebalV4.5 is selected in the display, by introducing nitrogen, the crystal magnetic anisotropy changes from in-plane anisotropy to uniaxial anisotropy, making the material suitable as a permanent magnet material. .

【0021】本発明にかかる希土類ボンド磁石は、上記
希土類磁石材料を高分子重合体、純金属、合金等のいず
れかのバインダーで固めてなるものであるが、高分子重
合体としてはエポキシ樹脂やフェノール樹脂等に代表さ
れる熱硬化樹脂またはポリアミド樹脂やEEA樹脂等の
熱可塑性樹脂または合成ゴムや天然ゴム等の公知のもの
を用い得る。また、純金属または合金としては亜鉛や錫
などの公知の低融点金属や低融点合金を用いることがで
きる。また、希土類ボンド磁石の成形方法としては圧縮
成形や射出成形などの公知の成形方法を採用できる。
The rare earth bonded magnet according to the present invention is obtained by solidifying the above rare earth magnet material with a binder such as a polymer, a pure metal or an alloy. A thermosetting resin represented by a phenol resin, a thermoplastic resin such as a polyamide resin or an EEA resin, or a known resin such as a synthetic rubber or a natural rubber can be used. In addition, as the pure metal or alloy, a known low melting point metal or alloy such as zinc or tin can be used. Further, as a molding method of the rare earth bonded magnet, a known molding method such as compression molding or injection molding can be adopted.

【0022】本発明によれば、R3(Fe,M)29y
相の平均結晶粒径を0.05〜1.0μmとした希土類
磁石材料を容易かつ安定に作製できるので、キュリー温
度が約480±20℃と高く、また粉末粒子の平均粒径
で100〜500μmの幅広い粒径にわたって略一定の
高いiHcと低いiHcの温度係数(η)を有した耐熱
性に優れた希土類磁石粉末を提供できると同時に、耐熱
性を有した高い磁気特性の等方性ボンド磁石を提供でき
る。
According to the present invention, it is possible to easily and stably produce a rare-earth magnet material having an R 3 (Fe, M) 29 N y main phase having an average crystal grain size of 0.05 to 1.0 μm. Rare earth magnet powder excellent in heat resistance, having a high iHc and a low iHc temperature coefficient (η) of approximately 480 ± 20 ° C., and a substantially constant average iHc over a wide range of particle diameters of 100 to 500 μm. At the same time, it is possible to provide an isotropic bonded magnet having high magnetic properties and heat resistance.

【0023】次に、本発明の代表的な製造工程を説明す
る。
Next, a typical manufacturing process of the present invention will be described.

【0024】(母合金の調整)R-Fe-M系母合金は例
えば高周波溶解法、アーク溶解法、超急冷法、ストリッ
プキャスト法、ガスアトマイズ法、還元拡散法、メカニ
カルアロイング法等のいずれかを用いて合金化される。
ここで、高周波溶解法またはアーク溶解法を用いた場合
には上記合金が凝固する際にαFeを主成分とする軟磁
性相が析出し易いが、この軟磁性相は窒化処理後も残留
しiHcを低下させる要因となるので好ましくない。こ
の軟磁性相の生成を抑えるには溶製した母合金を真空中
またはアルゴンガス雰囲気等で800〜1150℃×
0.5〜100時間の加熱条件で均質化処理することが
望ましい。
(Adjustment of Master Alloy) The R-Fe-M base alloy is prepared by any one of a high frequency melting method, an arc melting method, a super-quenching method, a strip casting method, a gas atomizing method, a reduction diffusion method, a mechanical alloying method, and the like. It is alloyed using.
Here, when the high frequency melting method or the arc melting method is used, when the above alloy is solidified, a soft magnetic phase containing αFe as a main component is likely to precipitate, but this soft magnetic phase remains after the nitriding treatment, and iHc It is not preferable because it causes a reduction in In order to suppress the formation of this soft magnetic phase, the melted master alloy is heated at 800 to 1150 ° C. in a vacuum or an argon gas atmosphere.
It is desirable to perform the homogenization treatment under heating conditions of 0.5 to 100 hours.

【0025】(粉砕)上記方法で溶製した母合金塊を直
接窒化することも可能であるが、窒化処理物のサイズが
大きいと窒化処理時間が長くなるので粗粉砕を行って平
均粉末粒径で100〜500μmに粗粉砕後に窒化する
ことが望ましい。粗粉砕は例えばディスクミル、バンタ
ムミル、ジョークラッシャー、ボールミルなどの粉砕機
を用いて行うことができる。また母合金に水素を吸蔵さ
せた後に上記粉砕機で粗粉砕する方法や、水素の吸蔵と
放出とを繰り返して粗粉砕する方法を用いてもよい。さ
らに粗粉砕の後、篩で分級し窒化すると母合金中に均質
な窒化物の主相を形成できるので好ましく、例えば、窒
化処理前に100μm〜200μm未満、200μm〜
300μm未満、300μm〜400μm未満、400
μm〜500μm未満というように篩分すると窒化処理
後の磁石粉末がこれらの篩分粒径になっており、上記の
均質な窒化物形成効果とともにボンド磁石形状に応じて
要求される成形性の難易に合わせて適宜粒径分布の希土
類磁石粉末を採用できるので実用性に富むものである。
さらに、粗粉砕後、アルゴンガス雰囲気または真空中で
500〜1000℃×0.5〜100時間熱処理すると
磁気特性がより向上するが、この効果は粗粉砕により導
入された歪みが緩和されるためと考えられる。
(Pulverization) Although it is possible to directly nitride the ingot of the mother alloy melted by the above method, if the size of the nitrided product is large, the nitridation treatment time becomes longer. It is desirable to nitride after coarse pulverization to 100 to 500 μm. Coarse pulverization can be performed using a pulverizer such as a disc mill, a bantam mill, a jaw crusher, and a ball mill. Further, a method in which hydrogen is occluded in the master alloy and then coarsely pulverized by the above pulverizer or a method in which hydrogen is occluded and released repeatedly to coarsely pulverize may be used. Further, after coarse pulverization, classification and nitriding with a sieve are preferable because a homogeneous main phase of the nitride can be formed in the mother alloy. For example, before the nitriding treatment, 100 μm to less than 200 μm, 200 μm to
Less than 300 μm, 300 μm to less than 400 μm, 400
When sieving to a size of from μm to less than 500 μm, the magnet powder after nitriding has a sieving particle size, and the above-mentioned uniform nitride forming effect and the formability required according to the bond magnet shape are difficult. Therefore, it is possible to employ a rare earth magnet powder having a particle size distribution as appropriate in accordance with the requirements of the present invention, so that the present invention is highly practical.
Further, after the coarse pulverization, a heat treatment in an argon gas atmosphere or vacuum at 500 to 1000 ° C. for 0.5 to 100 hours further improves the magnetic properties. This effect is because the strain introduced by the coarse pulverization is reduced. Conceivable.

【0026】(窒化)本発明では公知の窒化処理方法
(例えば、ガス窒化法、イオン窒化法等。)を採用でき
る。一例として、ガス窒化法について説明する。ガス窒
化法は窒素ガス、アンモニアガス、窒素ガスと水素ガス
の混合ガス、アンモニアガスと水素ガスの混合ガス等の
いずれかを上記母合金塊または上記母合金の粗粉砕粉に
接触させて結晶格子内に窒素を導入する工程である。窒
化反応は上記のようなガス種を選ぶこと、加熱温度、加
熱時間、ガス圧力により制御できる。このうち加熱温度
は母合金組成によって異なるが300〜650℃が好ま
しい。母合金の種類によらず300℃未満であると窒化
がほとんど進行せず、また650℃を超えると一旦生成
した窒化物が分解してαFeなどの軟磁性相が生成する
ので好ましくない。窒化後にさらに窒素ガスを除くアル
ゴン等の不活性ガス中あるいは真空中あるいは水素ガス
中で300〜600℃×0.5〜50時間熱処理すると
保磁力、iHc、飽和磁化等が向上する場合がある。こ
れは熱処理により窒素が母合金の結晶粒子内にさらに拡
散して主相の窒化物相の割合が増加することや粉末粒子
内に均一に窒化物が形成されて行くためと思われる。
(Nitriding) In the present invention, a known nitriding treatment method (for example, a gas nitriding method, an ion nitriding method, etc.) can be adopted. As an example, a gas nitriding method will be described. In the gas nitriding method, any one of nitrogen gas, ammonia gas, a mixed gas of nitrogen gas and hydrogen gas, a mixed gas of ammonia gas and hydrogen gas, or the like is brought into contact with the above-mentioned mother alloy mass or the coarsely pulverized powder of the above-mentioned mother alloy to form a crystal lattice. This is a step of introducing nitrogen into the inside. The nitriding reaction can be controlled by selecting the above gas species, heating temperature, heating time, and gas pressure. Among these, the heating temperature varies depending on the mother alloy composition, but is preferably 300 to 650 ° C. Irrespective of the type of the mother alloy, if the temperature is lower than 300 ° C., nitriding hardly proceeds, and if the temperature is higher than 650 ° C., the nitride once formed is decomposed to generate a soft magnetic phase such as αFe, which is not preferable. After the nitriding, heat treatment in an inert gas such as argon other than nitrogen gas, in a vacuum, or in a hydrogen gas at 300 to 600 ° C. for 0.5 to 50 hours may improve coercive force, iHc, saturation magnetization, and the like. This is presumably because nitrogen is further diffused into the crystal grains of the mother alloy by the heat treatment to increase the ratio of the main phase nitride phase, and the nitride is formed uniformly in the powder particles.

【0027】(磁場成形)上記のようにして作成した本
発明の希土類磁石材料粉末を用いて等方性ボンド磁石を
作製するには、その磁石粉末と熱硬化性樹脂または低融
点金属(低融点合金)のバインダーとを適正比率で混合
した後、磁場無しで成形体を形成し、その後加熱硬化処
理を行えばよい。
(Magnetic Field Molding) To produce an isotropic bonded magnet using the rare earth magnet material powder of the present invention prepared as described above, the magnet powder and a thermosetting resin or a low melting point metal (low melting point metal) are used. Alloy) and a binder in an appropriate ratio, a compact is formed without a magnetic field, and then a heat-curing treatment may be performed.

【0028】(着磁)上記のボンド磁石に十分な磁力を
付与するための着磁作業は室温で好ましくは15kOe
以上、より好ましくは20kOe以上の着磁磁場で行う
ことが一般的である。
(Magnetization) The magnetizing operation for imparting a sufficient magnetic force to the above-mentioned bonded magnet is performed at room temperature, preferably at 15 kOe.
As described above, more preferably, the magnetization is performed with a magnetizing magnetic field of 20 kOe or more.

【0029】次に評価方法について具体的に説明する。 (磁気特性の測定)上記磁石材料の25℃におけるiH
cと飽和磁化(σ)、および25〜100℃におけるi
Hcの温度係数(η)はその磁石粉末の所定量を樹脂に
混ぜて銅容器に詰め込み、振動試料型磁力計(東英工業
(株)製のVSM-3型)を用いて測定した。25℃に
おけるボンド磁石のiHcと残留磁束密度(Br)、お
よび25〜100℃におけるiHcの温度係数(η)は
自記磁束計(東英工業(株)製TRF-5H)を用いて
測定した。 (窒素量の分析)不活性ガス融解法によって上記希土類
磁石粉末に含有した窒素量を分析した。分析には堀場製
作所(株)製のガス分析装置:EMGA1300型を用
いた。 (R3(Fe,M)29y主相の平均結晶粒径の測定)作
成した主相の平均結晶粒径測定用試料の任意断面を顕微
鏡観察して、R3(Fe,M)29y主相を構成する40
個の結晶粒を任意に選択し各結晶粒における最大径を測
定し、得られた40個の測定値を加算平均して平均結晶
粒径とした。
Next, the evaluation method will be specifically described. (Measurement of magnetic properties) iH of the above magnet material at 25 ° C
c and saturation magnetization (σ), and i at 25 to 100 ° C.
The temperature coefficient (η) of Hc was measured by mixing a predetermined amount of the magnet powder in a resin, filling the mixture in a copper container, and using a vibrating sample magnetometer (VSM-3 manufactured by Toei Kogyo Co., Ltd.). The iHc and residual magnetic flux density (Br) of the bonded magnet at 25 ° C and the temperature coefficient (η) of iHc at 25 to 100 ° C were measured using a self-recording magnetometer (TRF-5H manufactured by Toei Kogyo Co., Ltd.). (Analysis of nitrogen amount) The amount of nitrogen contained in the rare earth magnet powder was analyzed by an inert gas melting method. For the analysis, a gas analyzer manufactured by Horiba Ltd .: EMGA1300 was used. (Measurement of Average Crystal Grain Size of R 3 (Fe, M) 29 Ny Main Phase) An arbitrary cross section of the prepared sample for measuring the average crystal grain size of the main phase was observed under a microscope to obtain R 3 (Fe, M) 29 40 constituting the N y main phase
Each crystal grain was arbitrarily selected, the maximum diameter of each crystal grain was measured, and the obtained 40 measured values were averaged to obtain an average crystal grain size.

【0030】次に、本発明を実施例により説明するが、
下記実施例により本発明が限定されるものではない。
Next, the present invention will be described with reference to examples.
The present invention is not limited by the following examples.

【0031】(実施例1〜6)表1に示される希土類磁
石粉末を作製し評価した。まず、純度99.9%のS
m、Fe、Crを用いて表1の実施例1〜6の窒化物磁
石粉末に対応した母合金組成になるように各々配合し、
アルゴンガス雰囲気の高周波溶解炉で溶解した。その
後、アルゴンガス雰囲気中で1050℃、10時間の均
質化処理を行い、続いてジョークラッシャーとディスク
ミルを用いて平均粉末粒径dpで100μm以上に粉砕
した。これらの母合金粉体のX線回折をCu-Kα線を
用いて行ったところ回折線のほとんどがSm3(Fe,
Cr)29相として指数付けできることを確認した。この
Sm-Fe-Cr系磁性粉を1atmの水素ガス中、82
5℃で1時間加熱保持し、さらに水素分圧5×10-2
orrにて825℃×1時間保持し脱水素処理を行っ
た。次に前記粉体を1atmの窒素ガス中で475℃×
5時間保持した後冷却した。続いてArガス気流中で4
50℃で1時間熱処理した。こうして得られた実施例1
〜6の窒化物磁石粉末の組成、Sm3(Fe,Cr)29
y主相の平均結晶粒径dc、dp、25℃における飽
和磁化の強さ(σ)およびiHc、25〜100℃にお
けるiHcの温度係数(η)の測定結果を表1に示し
た。また、各実施例の磁石粉末を電子顕微鏡で観察した
ところSm3(Fe,Cr)29y主相内に数十nmの大
きさのCrリッチなセル構造が認められた。
Examples 1 to 6 Rare earth magnet powders shown in Table 1 were prepared and evaluated. First, S of 99.9% purity
m, Fe, and Cr were blended so as to have a mother alloy composition corresponding to the nitride magnet powders of Examples 1 to 6 in Table 1, respectively.
Melting was performed in a high-frequency melting furnace in an argon gas atmosphere. After that, homogenization treatment was performed at 1050 ° C. for 10 hours in an argon gas atmosphere, and then pulverized to 100 μm or more with an average powder particle diameter dp using a jaw crusher and a disc mill. When X-ray diffraction of these mother alloy powders was performed using Cu-Kα radiation, most of the diffraction lines were Sm 3 (Fe,
It was confirmed that it could be indexed as (Cr) 29 phase. This Sm-Fe-Cr-based magnetic powder was mixed with 1 atm of hydrogen gas in 82 atm.
Heat and hold at 5 ° C for 1 hour, and further add a hydrogen partial pressure of 5 × 10 -2 T
At 825 ° C. for 1 hour at orr, dehydrogenation treatment was performed. Next, the powder was placed in a nitrogen gas of 1 atm at 475 ° C. ×
After holding for 5 hours, it was cooled. Then, in Ar gas stream, 4
Heat treatment was performed at 50 ° C. for 1 hour. Example 1 thus obtained
-6, Sm 3 (Fe, Cr) 29
The average crystal grain size dc of the N y main phase, the intensity of the saturation magnetization in dp, 25 ℃ (σ) and iHc, the measurement result of the temperature coefficient of iHc at 25 to 100 ° C. (eta) are shown in Table 1. In addition, when the magnet powder of each example was observed with an electron microscope, a Cr-rich cell structure having a size of several tens nm was observed in the Sm 3 (Fe, Cr) 29 N y main phase.

【0032】(比較例1〜6)水素による相変態処理を
行わなかった以外は実施例1と同様にして表1に示した
磁石合金粉末を作製し評価した結果を表1に示した。
(Comparative Examples 1 to 6) The magnet alloy powders shown in Table 1 were prepared and evaluated in the same manner as in Example 1 except that the phase transformation treatment with hydrogen was not performed.

【0033】[0033]

【表1】 [Table 1]

【0034】表1より水素を用いた相変態処理の効果が
明らかである。すなわち、dc=0.60μmである実
施例1〜6ではdpで100〜500μmにわたって9
〜9.6kOeの範囲のiHcが得られ、iHcの温度
係数(η)も−0.38以上で良好な耐熱性を有してい
ることがわかる。これに対して、水素による相変態処理
を行わなかった比較例1〜6ではiHcが2〜3kOe
であり、iHcの温度係数(η)も−0.46〜−0.
48で実施例1〜6に比べて耐熱性が劣っている。
Table 1 clearly shows the effect of the phase transformation treatment using hydrogen. That is, in Examples 1 to 6 in which dc = 0.60 μm, 9 in dp over 100 to 500 μm.
It can be seen that iHc in the range of 得 9.6 kOe was obtained, and the temperature coefficient (η) of iHc was -0.38 or more, indicating that it had good heat resistance. In contrast, in Comparative Examples 1 to 6 in which the phase transformation treatment with hydrogen was not performed, iHc was 2 to 3 kOe.
And the temperature coefficient (η) of iHc is also −0.46 to −0.4.
48, the heat resistance is inferior to Examples 1 to 6.

【0035】(実施例7〜11)M元素であるCr含有
量とdcとdpとを変えた以外は実施例1と同様にして
表2に示す磁石粉末を作製し評価した。また、各磁石粉
末を電子顕微鏡で観察したところSm3(Fe,Cr)
29y主相内に数十nmの大きさのCrリッチなセル構
造の組織が認められた。
(Examples 7 to 11) Magnet powders shown in Table 2 were prepared and evaluated in the same manner as in Example 1 except that the content of Cr, which is an M element, and dc and dp were changed. When each magnet powder was observed with an electron microscope, it was found that Sm 3 (Fe, Cr)
A Cr-rich cell structure having a size of several tens nm was observed in the 29 Ny main phase.

【0036】(比較例7、8)水素を用いた相変態処理
を行わずに表2に示す磁石粉末とした以外は実施例7と
同様にして窒化物磁石粉末を作製し評価した。これらの
合金の生成相はCr量が少ない比較例7の場合はTh2
Zn17型のSm2(Fe,Cr)17相およびαFe相であ
り、Cr含有量過多の比較例8の場合はTh2Zn17
のSm2(Fe,Cr)17相、αFe相およびFe-Cr
相であった。
(Comparative Examples 7 and 8) Nitride magnet powders were prepared and evaluated in the same manner as in Example 7 except that the magnet powders shown in Table 2 were used without performing the phase transformation treatment using hydrogen. The formed phase of these alloys was Th 2 in Comparative Example 7 where the Cr content was small.
A Zn 17 type Sm 2 (Fe, Cr) 17 phase and an αFe phase, and in the case of Comparative Example 8 having an excessive Cr content, a Th 2 Zn 17 type Sm 2 (Fe, Cr) 17 phase, an αFe phase and an Fe phase -Cr
It was a phase.

【0037】[0037]

【表2】 [Table 2]

【0038】表2より水素を用いた相変態処理の効果が
明らかである。すなわち実施例7〜11のようにdc=
0.05〜1.00μmの範囲にあるとともにCrを1
〜50原子%の範囲で含有した場合には8kOeを越え
た高いiHcが得られているとともにiHcの温度係数
(η)も−0.39以上で良好な耐熱性を有しているこ
とがわかる。これに対し、dcが1μmを越えており、
Crが少ない比較例7およびCr過多の比較例8ではい
ずれもiHcが3kOe未満でかつiHcの温度係数
(η)も−0.47以下であり上記実施例対比で耐熱性
に劣ることがわかる。
Table 2 clearly shows the effect of the phase transformation treatment using hydrogen. That is, as in Examples 7 to 11, dc =
Cr in the range of 0.05 to 1.00 μm and 1
When it is contained in the range of 5050 atomic%, a high iHc exceeding 8 kOe is obtained and the temperature coefficient (η) of iHc is −0.39 or more, indicating that it has good heat resistance. . On the other hand, dc exceeds 1 μm,
In each of Comparative Example 7 with a small amount of Cr and Comparative Example 8 with a large amount of Cr, iHc was less than 3 kOe, and the temperature coefficient (η) of iHc was −0.47 or less.

【0039】(実施例12〜29)R成分含有量および
R成分の種類を変化させた場合、窒素含有量を変化させ
た場合、Feの一部をCoおよび/またはNiで置換し
た場合、M元素の種類および含有量を変化させた場合の
磁石特性との相関を見るために、表3に示した磁石粉末
組成にするとともに平均粉末粒径200μmとした以外
は上記実施例1と同様な操作によって、表3に示した磁
石粉末を製作し、評価した。 (比較例9〜15)表4に示した磁石粉末とした以外は
実施例1と同様にして比較例9、10、13、14、1
5の磁石粉末を製作し、評価した。また、比較例11、
12のものは水素を用いた相変態処理を行わずに表4の
磁石粉末組成とした以外は実施例12と同様にして評価
した。
(Examples 12 to 29) When the content of the R component and the type of the R component were changed, when the nitrogen content was changed, when a part of Fe was replaced with Co and / or Ni, M The same operation as in Example 1 except that the magnet powder composition shown in Table 3 was used and the average powder particle diameter was 200 μm in order to see the correlation with the magnet properties when the type and content of the element were changed. Thus, the magnet powders shown in Table 3 were produced and evaluated. (Comparative Examples 9 to 15) Comparative Examples 9, 10, 13, 14, 1 were performed in the same manner as in Example 1 except that the magnet powders shown in Table 4 were used.
5 were manufactured and evaluated. Comparative Example 11,
Twelve specimens were evaluated in the same manner as in Example 12 except that the magnet powder compositions shown in Table 4 were used without performing the phase transformation treatment using hydrogen.

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】表3、表4より、dcが0.05〜1.0
0μmにあり、さらにR成分が5〜18原子%であり窒
素が4〜30原子%のときに高いiHcと低いiHcの
温度係数(η)が得られることがわかる。またFeの成
分の0.01〜30原子%をCoおよび/またはNiで
置換することによりiHcの温度係数(η)がさらに改
善されている。Cr以外の元素MとしてTi,Mn、
V、Ga,Nb等を選択した場合にも高いiHcと低い
iHcの温度係数(η)が得られている。また、実施例
25〜29の微細主相組織を電子顕微鏡で観察したとこ
ろ、数10nmのM元素が析出したセル構造の組織が観
察された。これに対し、Smが少ない比較例9、Sm過
多の比較例10、dcが1μmを越えている比較例1
1、12および窒素含有量過多の比較例13、Co置換
量過多の比較例15では上記実施例に比べて得られる磁
気特性が劣っている。また、Co置換量の少ない比較例
14ではCo添加効果が認められない。
According to Tables 3 and 4, dc is 0.05 to 1.0.
It can be seen that the temperature coefficient (η) of high iHc and low iHc can be obtained when the R component is 0 μm, the R component is 5 to 18 atomic%, and the nitrogen is 4 to 30 atomic%. Further, the temperature coefficient (η) of iHc is further improved by substituting 0.01 to 30 atomic% of the Fe component with Co and / or Ni. Ti and Mn as elements M other than Cr;
Even when V, Ga, Nb, or the like is selected, a temperature coefficient (η) of high iHc and low iHc is obtained. When the fine main phase structures of Examples 25 to 29 were observed with an electron microscope, a structure having a cell structure in which M elements of several tens of nm were precipitated was observed. On the other hand, Comparative Example 9 in which Sm is small, Comparative Example 10 in which Sm is excessive, and Comparative Example 1 in which dc exceeds 1 μm
In Comparative Examples 1 and 12 and Comparative Example 13 in which the nitrogen content is excessive, and Comparative Example 15 in which the Co substitution amount is excessive, the magnetic properties obtained are inferior to those of the above examples. In Comparative Example 14 in which the amount of Co substitution was small, the effect of Co addition was not recognized.

【0043】(実施例31〜39)純度99.9%のS
m、Fe、Crを用いて下記の窒化物粉末に対応した母
合金組成に配合後、アルゴンガス雰囲気下で高周波溶解
し鋳造合金を得た。前記鋳造塊を50mm角以下に破断
後、雰囲気熱処理炉に仕込み1atmの水素ガスを供給
するとともに500℃まで加熱し水素を吸収させた後真
空にすることにより脱水素を行う工程を繰り返し平均粉
末粒径130μmまで粗粉砕した。このSm-Fe-Cr
系磁性粉を表5に示した条件で水素化、分解反応処理し
た後、続いて脱水素、再結合反応処理を行った。水素
化、分解処理時の水素ガス圧は1atmとした。脱水
素、再結合処理時の水素分圧は5〜6×10-2Torr
とした。次に前記粉体を1atmの窒素ガス中で450
℃×5時間保持した後冷却した。このSm-Fe-Cr系
磁性粉を雰囲気熱処理炉に仕込み460℃においてアン
モニア分圧0.35atm、水素ガス0.65atmの混
合気流中で7時間加熱処理して窒化した。続いて水素ガ
ス気流中で400℃×30分間の熱処理を行い表5のd
cを有したSm9.2FebalCr6.0N12.3(原子%)の
組成の各磁石粉末を得た。 (比較例16〜23)表5の水素化、分解反応処理条件
および脱水素、再結合反応処理条件とした以外は実施例
31と同様にして磁石粉末を製作し評価した。
Examples 31 to 39 S having a purity of 99.9%
After mixing m, Fe, and Cr into a mother alloy composition corresponding to the following nitride powder, high frequency melting was performed in an argon gas atmosphere to obtain a cast alloy. After the cast ingot is broken into 50 mm square or less, the process of charging the atmosphere heat treatment furnace, supplying 1 atm of hydrogen gas, heating to 500 ° C. to absorb hydrogen, and then applying vacuum to repeat the process of dehydrogenation is repeated. It was coarsely pulverized to a diameter of 130 μm. This Sm-Fe-Cr
The system magnetic powder was subjected to hydrogenation and decomposition reaction treatments under the conditions shown in Table 5, followed by dehydrogenation and recombination reaction treatments. The hydrogen gas pressure during the hydrogenation and decomposition treatment was 1 atm. Hydrogen partial pressure during dehydrogenation and recombination treatment is 5-6 × 10 -2 Torr
And Next, the powder is placed in a nitrogen gas of 1 atm for 450 minutes.
After holding at 5 ° C. × 5 hours, the mixture was cooled. This Sm-Fe-Cr-based magnetic powder was charged into an atmosphere heat treatment furnace and heat-treated at 460 ° C. for 7 hours in a mixed gas flow of 0.35 atm of ammonia and 0.65 atm of hydrogen gas for nitriding. Subsequently, a heat treatment is performed at 400 ° C. for 30 minutes in a hydrogen gas stream to perform d in Table 5.
Each magnet powder having a composition of Sm9.2FebalCr6.0N12.3 (atomic%) having c was obtained. (Comparative Examples 16 to 23) Magnet powders were produced and evaluated in the same manner as in Example 31 except that the conditions for the hydrogenation and decomposition reaction treatments and the conditions for the dehydrogenation and recombination reaction treatments in Table 5 were used.

【0044】[0044]

【表5】 [Table 5]

【0045】表5から水素化、分解反応処理条件を70
0℃〜900℃×0.5〜8時間にし、脱水素、再結合
反応処理条件を700〜900℃×0.5〜10時間に
することにより、dc=0.05〜1.00μmである
微細主相組織が得られて高いiHcと低いiHcの温度
係数(η)が同時に得られることがわかる。
Table 5 shows that the hydrogenation and decomposition reaction conditions were
Dc = 0.05 to 1.00 μm when the temperature is set to 0 ° C. to 900 ° C. × 0.5 to 8 hours and the dehydrogenation and recombination reaction treatment conditions are set to 700 to 900 ° C. × 0.5 to 10 hours. It can be seen that a fine main phase structure is obtained, and a temperature coefficient (η) of high iHc and low iHc can be obtained at the same time.

【0046】(実施例40〜45)ボンド磁石特性を評
価するためにdc=0.05〜1.00μmの範囲にあ
る表6の磁石粉末を作製し、これらをエポキシ樹脂と混
合した後、10kOeの磁場中でプレス圧10ton/
cm2で圧縮成形し、さらに硬化のため140℃、1時
間の熱処理を施して等方性ボンド磁石を作製した。これ
らの等方性ボンド磁石の磁気特性を表6に示した。
(Examples 40 to 45) In order to evaluate the properties of the bonded magnets, magnet powders shown in Table 6 having dc = 0.05 to 1.00 μm were prepared, and these were mixed with an epoxy resin. Press pressure 10 ton /
The molded article was compression-molded at 2 cm 2 and further subjected to a heat treatment at 140 ° C. for 1 hour for curing to produce an isotropic bonded magnet. Table 6 shows the magnetic properties of these isotropic bonded magnets.

【0047】[0047]

【表6】 [Table 6]

【0048】表6から本発明の等方性ボンド磁石が良好
な磁気特性と耐熱性とを有していることがわかる。
Table 6 shows that the isotropic bonded magnet of the present invention has good magnetic properties and heat resistance.

【0049】上記各実施例の磁石粉末のキュリー温度は
いずれも480±20℃という良好な値を有していた。
The Curie temperature of each of the magnetic powders of the above examples had a good value of 480 ± 20 ° C.

【0050】[0050]

【発明の効果】平均粉末粒径で100〜500μmにわ
たって高いiHcと低いiHcの温度係数(η)とを有
した希土類磁石粉末を容易に提供できるとともに、この
磁石粉末を用いることで優れた耐熱性を有した希土類ボ
ンド磁石を提供でき、工業的に非常に有用なものであ
る。
According to the present invention, it is possible to easily provide a rare earth magnet powder having a high iHc and a low iHc temperature coefficient (η) over an average powder particle diameter of 100 to 500 μm, and to use this magnet powder to obtain excellent heat resistance. Can be provided, which is industrially very useful.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01F 1/08 H01F 1/08 A (72)発明者 徳永 雅亮 埼玉県熊谷市三ケ尻5200番地日立金属株式 会社磁性材料研究所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01F 1/08 H01F 1/08 A (72) Inventor Masaaki Tokunaga 5200 Mikajiri, Kumagaya-shi, Saitama Pref.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 成分組成がRαFe100-(α+β+γ)Mβ
Nγで表され、単斜晶および/または六方晶の結晶構造
を有し平均結晶粒径が0.05〜1.0μmであるR3
(Fe,M)29y主相を含み、前記RはYを含めた希
土類元素のいずれか1種または2種以上であり、前記M
はAl、Ti、V、Cr、Mn、Cu、Ga、Zr、N
b、Mo、Hf、Ta、Wのいずれか1種または2種以
上であり、前記α、β、γは原子百分率で下記の範囲に
あることを特徴とする希土類磁石材料。 5≦α≦18 1≦β≦50 4≦γ≦30
(1) a composition of RαFe100- (α + β + γ) Mβ;
R 3 represented by Nγ and having a monoclinic and / or hexagonal crystal structure and an average crystal grain size of 0.05 to 1.0 μm
(Fe, M) 29 Ny main phase, wherein R is any one or more of rare earth elements including Y;
Are Al, Ti, V, Cr, Mn, Cu, Ga, Zr, N
b. Mo, Hf, Ta, W or any one or more of them, wherein α, β, and γ are in the following range in atomic percentages. 5 ≦ α ≦ 18 1 ≦ β ≦ 50 4 ≦ γ ≦ 30
【請求項2】 R成分の50原子%以上がSmであるこ
とを特徴とする請求項1に記載の希土類磁石材料。
2. The rare earth magnet material according to claim 1, wherein 50% by atom or more of the R component is Sm.
【請求項3】 希土類磁石材料の粉体の平均粒径が10
0μm以上500μm以下であることを特徴とする請求
項1または2に記載の希土類磁石材料。
3. The rare earth magnet material powder having an average particle diameter of 10
The rare earth magnet material according to claim 1, wherein the rare earth magnet material has a thickness of 0 μm or more and 500 μm or less.
【請求項4】 R3(Fe,M)29y相の結晶粒内にM
元素またはM化合物が析出していることを特徴とする請
求項1乃至3のいずれかに記載の希土類磁石材料。
4. The method according to claim 1, wherein M 3 is contained in the crystal grains of the R 3 (Fe, M) 29 Ny phase
The rare earth magnet material according to any one of claims 1 to 3, wherein the element or the M compound is precipitated.
【請求項5】 希土類磁石材料におけるR3(Fe,
M)29y主相の構成比率が50体積%以上であること
を特徴とする請求項1乃至4のいずれかに記載の希土類
磁石材料。
5. R 3 (Fe,
The rare earth magnet material according to any one of claims 1 to 4, wherein the composition ratio of M) 29 Ny main phase is 50% by volume or more.
【請求項6】 請求項1乃至5のいずれかに記載の希土
類磁石材料の粉体粒子を、高分子重合体、純金属、合金
のいずれかのバインダーで結合したことを特徴とする希
土類ボンド磁石。
6. A rare earth bonded magnet, wherein the powder particles of the rare earth magnet material according to any one of claims 1 to 5 are bonded with a binder of a polymer, a pure metal, or an alloy. .
【請求項7】 成分組成がRαFe100-(α+β+γ)Mβ
Nγで表され、単斜晶および/または六方晶の結晶構造
を有したR3(Fe,M)29y主相を含み、前記RはY
を含めた希土類元素のいずれか1種または2種以上であ
り、前記MはAl、Ti、V、Cr、Mn、Cu、G
a、Zr、Nb、Mo、Hf、Ta、Wのいずれか1種
または2種以上であり、前記α、β、γが原子百分率で
下記の範囲にある希土類磁石材料の製造方法において、 前記組成の合金を鋳造後、均質化処理を行い、続いて粗
粉砕したものを、0.1〜10atmのH2ガス中また
はH2ガス分圧を有した不活性ガス(N2ガスを除く)中
で700〜900℃×0.5〜8時間保持する水素化、
分解反応処理を行い、続いて1×10-2Torr以上の
真空中に700〜900℃×0.5〜10時間保持する
脱水素、再結合反応処理を行った後、窒化処理を行うこ
とを特徴とする希土類磁石材料の製造方法。 5≦α≦18 1≦β≦50 4≦γ≦30
7. A composition comprising RαFe100- (α + β + γ) Mβ
An R 3 (Fe, M) 29 Ny main phase represented by Nγ and having a monoclinic and / or hexagonal crystal structure, wherein R is Y
And at least one of rare earth elements, including M, wherein M is Al, Ti, V, Cr, Mn, Cu, G
a, Zr, Nb, Mo, Hf, Ta, W or any one or more of the above, wherein the α, β, and γ are in atomic percentage in the following range: Is cast, homogenized, and then coarsely pulverized into 0.1 to 10 atm of H 2 gas or an inert gas having a H 2 gas partial pressure (excluding N 2 gas). Hydrogenation maintained at 700-900 ° C. × 0.5-8 hours at
After performing a decomposition reaction treatment, and subsequently performing a dehydrogenation and recombination reaction treatment at 700 to 900 ° C. for 0.5 to 10 hours in a vacuum of 1 × 10 −2 Torr or more, a nitriding treatment is performed. A method for producing a rare earth magnet material. 5 ≦ α ≦ 18 1 ≦ β ≦ 50 4 ≦ γ ≦ 30
【請求項8】 鋳造後に、800〜1150℃×0.5
〜100時間の均質化処理を行うことを特徴とする請求
項7に記載の希土類磁石材料の製造方法。
8. After casting, 800-1150 ° C. × 0.5.
The method for producing a rare earth magnet material according to claim 7, wherein the homogenization treatment is performed for 100 hours.
【請求項9】 窒化処理後に、真空中あるいは不活性ガ
ス中(N2ガスを除く)で300〜600℃×0.5〜5
0時間の熱処理を行うことを特徴とする請求項7または
8に記載の希土類磁石材料の製造方法。
9. After the nitriding treatment, in a vacuum or in an inert gas (excluding N 2 gas), 300 to 600 ° C. × 0.5 to 5 ° C.
9. The method for producing a rare earth magnet material according to claim 7, wherein a heat treatment is performed for 0 hours.
【請求項10】 0.2〜10atmのN2ガス、H2
1〜95モル%で残部N2からなるH2とN2の混合ガ
ス、NH3のモル%が1〜50%で残部H2からなるNH
3とH2の混合ガスのうちのいずれかの雰囲気中で300
〜650℃×0.1〜30時間保持する窒化処理を行う
ことを特徴とする請求項7乃至9のいずれかに記載の希
土類磁石材料の製造方法。
10. A mixed gas of H 2 and N 2 consisting of 0.2 to 10 atm of N 2 gas, H 2 of 1 to 95 mol% and the balance N 2 , and NH 3 of 1 to 50 mol% of the balance NH consisting of H 2
300 in any atmosphere of the mixed gas of 3 and H 2
The method for producing a rare-earth magnet material according to any one of claims 7 to 9, wherein a nitriding treatment is performed at a temperature of 650C for 0.1 to 30 hours.
JP9098612A 1997-04-16 1997-04-16 Rare-earth magnet material, method of manufacturing rare-earth magnet material and rare-earth bonded magnet by the method Pending JPH10289812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9098612A JPH10289812A (en) 1997-04-16 1997-04-16 Rare-earth magnet material, method of manufacturing rare-earth magnet material and rare-earth bonded magnet by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9098612A JPH10289812A (en) 1997-04-16 1997-04-16 Rare-earth magnet material, method of manufacturing rare-earth magnet material and rare-earth bonded magnet by the method

Publications (1)

Publication Number Publication Date
JPH10289812A true JPH10289812A (en) 1998-10-27

Family

ID=14224419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9098612A Pending JPH10289812A (en) 1997-04-16 1997-04-16 Rare-earth magnet material, method of manufacturing rare-earth magnet material and rare-earth bonded magnet by the method

Country Status (1)

Country Link
JP (1) JPH10289812A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078610A (en) * 2006-09-19 2008-04-03 Peking Univ Anisotropic rare earth permanent magnet material, magnetic powder and magnet including same, and their manufacturing methods
JP2009249682A (en) * 2008-04-04 2009-10-29 Nec Tokin Corp Hard magnetic alloy and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078610A (en) * 2006-09-19 2008-04-03 Peking Univ Anisotropic rare earth permanent magnet material, magnetic powder and magnet including same, and their manufacturing methods
JP2009249682A (en) * 2008-04-04 2009-10-29 Nec Tokin Corp Hard magnetic alloy and method for producing the same

Similar Documents

Publication Publication Date Title
US6413327B1 (en) Nitride type, rare earth magnet materials and bonded magnets formed therefrom
JP2001189206A (en) Permanent magnet
JP2005527989A (en) Nanocrystalline rare earth permanent magnet materials, nanocomposite rare earth permanent magnet materials, and methods for producing these magnet materials
JP3317646B2 (en) Manufacturing method of magnet
JP2000114017A (en) Permanent magnet and material thereof
JP3715573B2 (en) Magnet material and manufacturing method thereof
JPH1041116A (en) R-t-m-n permanent magnetic powder and manufacture of anisotropic bond magnet
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP3118740B2 (en) Rare earth magnet materials and rare earth bonded magnets
JP2000114016A (en) Permanent magnet and manufacture thereof
JPH08181009A (en) Permanent magnet and its manufacturing method
JP3469496B2 (en) Manufacturing method of magnet material
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP3370013B2 (en) Rare earth magnet material and rare earth bonded magnet using the same
JPH10289812A (en) Rare-earth magnet material, method of manufacturing rare-earth magnet material and rare-earth bonded magnet by the method
JPH045739B2 (en)
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JPH10241923A (en) Rare-earth magnet material, its manufacture, and rare-earth bond magnet using it
JPH10289811A (en) Rare-earth magnet material, method of manufacturing the same and rare-earth bonded magnet by the method
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JP3209291B2 (en) Magnetic material and its manufacturing method
JPH06112019A (en) Nitride magnetic material
JP3209292B2 (en) Magnetic material and its manufacturing method
JP2000114020A (en) Magnet material and bond magnet