JP3209292B2 - Magnetic material and its manufacturing method - Google Patents

Magnetic material and its manufacturing method

Info

Publication number
JP3209292B2
JP3209292B2 JP32088292A JP32088292A JP3209292B2 JP 3209292 B2 JP3209292 B2 JP 3209292B2 JP 32088292 A JP32088292 A JP 32088292A JP 32088292 A JP32088292 A JP 32088292A JP 3209292 B2 JP3209292 B2 JP 3209292B2
Authority
JP
Japan
Prior art keywords
component
magnetic material
magnetic
alloy
main phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32088292A
Other languages
Japanese (ja)
Other versions
JPH06168808A (en
Inventor
伸嘉 今岡
淑男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP32088292A priority Critical patent/JP3209292B2/en
Publication of JPH06168808A publication Critical patent/JPH06168808A/en
Application granted granted Critical
Publication of JP3209292B2 publication Critical patent/JP3209292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、特に、小型モーター、
アクチュエーターなどの用途に最適な、高磁気特性を有
するとともに耐酸化性にも優れた希土類系磁性材料に関
するものである。
BACKGROUND OF THE INVENTION The present invention relates, in particular, to small motors,
The present invention relates to a rare-earth magnetic material having high magnetic properties and excellent oxidation resistance, which is optimal for applications such as actuators.

【0002】[0002]

【従来の技術】磁性材料は、家庭電化製品、音響製品、
自動車部品やコンピューターの周辺端末機まで、幅広い
分野で使用されており、エレクトロニクス材料としての
重要性は年々増大しつつある。特に最近、各種電気・電
子機器の小型化、高効率化が要求されてきたため、より
高性能の磁性材料が求められている。
2. Description of the Related Art Magnetic materials are used in home appliances, audio products,
It is used in a wide range of fields, from automobile parts to computer peripheral terminals, and its importance as an electronic material is increasing year by year. In particular, recently, there has been a demand for miniaturization and high efficiency of various electric and electronic devices, so that a magnetic material with higher performance is required.

【0003】この時代の要請に応え、Sm−Co系、N
d−Fe−B系などの希土類系磁性材料の需要が急激に
増大している。しかし、Sm−Co系磁性材料は原料供
給が不安定で原料コストが高く、Nd−Fe−B系磁性
材料には、耐熱性や耐食性に劣るという問題点がある。
一方、新しい希土類系磁性材料として、希土類−Fe−
N磁性材料が提案されている(例えば、特開平2−57
663号公報参照)。この材料は、磁化、異方性磁界、
キュリー点が高く、前述のSm−Co系やNd−Fe−
B系磁性材料の欠点を補う磁性材料として期待されてい
る。
[0003] In response to the demands of this era, Sm-Co based, N
Demand for rare earth magnetic materials such as d-Fe-B materials is rapidly increasing. However, the Sm-Co based magnetic material has a problem that the raw material supply is unstable and the raw material cost is high, and the Nd-Fe-B based magnetic material has poor heat resistance and corrosion resistance.
On the other hand, as a new rare earth magnetic material, rare earth -Fe-
N-magnetic materials have been proposed (for example, see JP-A-2-57).
No. 663). This material has magnetization, anisotropic magnetic field,
The Curie point is high, and the Sm-Co-based and Nd-Fe-
It is expected as a magnetic material that compensates for the disadvantages of B-based magnetic materials.

【0004】しかしながら、この希土類−Fe−N系材
料を細かく粉砕して使用する場合には、表面が酸化され
て保磁力が低下し、この材料が本来有している高磁気特
性を充分発揮することができないという問題があった。
この対策として、希土類−Fe−N系材料にCu、In
等の金属成分Mを含ませることにより、保磁力を向上さ
せる方法が考えられ、この希土類−Fe−M−N系材料
については、特開昭62−269303号公報、特開昭
62−136551号公報等に開示されている。
However, when the rare-earth-Fe-N-based material is used after being finely pulverized, its surface is oxidized and its coercive force is reduced, so that the material exhibits its original high magnetic properties. There was a problem that it was not possible.
As a countermeasure, Cu, In is added to the rare earth-Fe-N based material.
A method of improving the coercive force by including a metal component M such as, for example, a rare earth-Fe-MN-based material, is disclosed in JP-A-62-269303 and JP-A-62-136551. It is disclosed in gazettes and the like.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述の
各公報に開示された希土類−Fe−M−N系磁性材料で
は、各成分元素の含有量を特定しているだけであって、
その結晶構造や微構造は特定されていない。また、前記
公報の開示によれば、これらの磁性材料は、各成分元素
とこれらの窒化物とを溶融,焼結することにより製造さ
れるため、実際には窒化鉄、α−鉄、窒化希土類、M、
及びMの窒化物を多く含有するものが得られる。従っ
て、保磁力を初めとする磁気特性は、期待されるほど改
善されずにむしろ劣化することが多かった。
However, in the rare earth-Fe-MN-based magnetic materials disclosed in the above publications, only the content of each component element is specified.
Its crystal structure and microstructure are not specified. Further, according to the disclosure of the above publication, since these magnetic materials are produced by melting and sintering each component element and their nitride, actually, iron nitride, α-iron, rare earth nitride are used. , M,
And a high content of nitrides of M are obtained. Therefore, the magnetic properties such as the coercive force often deteriorate rather than improve as expected.

【0006】本発明は、磁性材料を構成する各成分元素
の含有量を特定するだけでなく、結晶構造と微構造とを
特定することにより、高い磁気特性と優れた耐酸化性を
併せ持つ希土類−Fe−M−N系磁性材料とその製造方
法とを提供することを目的とする。
The present invention provides a rare earth element having both high magnetic properties and excellent oxidation resistance by specifying not only the content of each component element constituting the magnetic material but also the crystal structure and the microstructure. An object of the present invention is to provide an Fe-M-N-based magnetic material and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の磁性材料は、一般式Rw Fex y z
で表される物質からなり、(但し、RはYを含む希土類
元素から選ばれた少なくとも一種の元素、MはCuおよ
びInから選ばれた少なくとも一種の元素であり、w、
x、y、zは各成分元素の原子百分率を示し、下記
(1)〜(4)式を同時に満たす。) 3≦w≦20 ……(1) 25≦x≦93.95……(2) 0.05≦y≦50 ……(3) 3≦z≦30 ……(4) 主相の結晶構造が、前記R、Fe、及びNを主成分とす
る菱面体晶又は六方晶であるとともに、この主相内に前
記M成分を主体とする介在物が分散している微構造をな
し、前記介在物間の平均距離が0.01〜0.5μmで
あることを特徴とするものである。
To achieve the above object, according to the Invention The magnetic material of claim 1 of the general formula R w Fe x M y N z
Wherein R is at least one element selected from rare earth elements including Y, M is at least one element selected from Cu and In, and w,
x, y, and z indicate the atomic percentage of each component element, and simultaneously satisfy the following expressions (1) to (4). 3 ≦ w ≦ 20 (1) 25 ≦ x ≦ 93.95 (2) 0.05 ≦ y ≦ 50 (3) 3 ≦ z ≦ 30 (4) Crystal Structure of Main Phase Is a rhombohedral or hexagonal crystal containing R, Fe, and N as main components, and has a microstructure in which inclusions mainly containing the M component are dispersed in the main phase. The average distance between objects is 0.01 to 0.5 μm.

【0008】請求項2の磁性材料は、前記Fe成分の
0.01〜50原子%をCoで置換したことを有するこ
とを特徴とするものである。また、請求項3は、このよ
うな磁性材料の製造方法を提供するものであり、一般式
w/ (100-z)Fex/(100-z) y/(100-z) で表され、
(但し、RはYを含む希土類元素から選ばれた少なくと
も一種の元素、MはCuおよびInから選ばれた少なく
とも一種の元素であり、w、x、yは各成分元素の原子
百分率を示し、zは後から添加されるNの含有量〔原子
百分率〕を示し、w、x、y、zは下記(1)〜(4)
式を同時に満たす。) 3≦w≦20 ……(1) 25≦x≦93.95……(2) 0.05≦y≦50 ……(3) 3≦z≦30 ……(4) 主相の結晶構造がRおよびFeを主成分とする菱面体晶
又は六方晶であり、この主原料相にM成分が分散された
微構造をなすR−Fe−M系合金を、窒素ガス、アンモ
ニアガスのうち少なくとも一種を含む雰囲気下で、20
0〜650℃の温度条件により窒化処理することを特徴
とする。
A magnetic material according to a second aspect is characterized in that 0.01 to 50 atomic% of the Fe component is replaced with Co. Claim 3 provides a method for producing such a magnetic material, and is represented by a general formula Rw / (100-z) Fex / (100-z) My / (100-z) . And
(However, R is at least one element selected from rare earth elements including Y, M is at least one element selected from Cu and In, w, x, and y represent the atomic percentage of each component element, z represents the content (atomic percentage) of N added later, and w, x, y, and z represent the following (1) to (4)
Satisfy the formula at the same time. 3 ≦ w ≦ 20 (1) 25 ≦ x ≦ 93.95 (2) 0.05 ≦ y ≦ 50 (3) 3 ≦ z ≦ 30 (4) Crystal Structure of Main Phase Is a rhombohedral or hexagonal crystal containing R and Fe as main components, and an R-Fe-M-based alloy having a microstructure in which the M component is dispersed in the main raw material phase is at least one of nitrogen gas and ammonia gas. In an atmosphere containing one kind, 20
It is characterized by performing a nitriding treatment under a temperature condition of 0 to 650 ° C.

【0009】請求項1および2における磁性材料の成分
元素である希土類元素(R)としては、Y、La、C
e、Pr、Nd、Pm、Sm、Eu、Gd、Tb、D
y、Ho、Er、Tm、Yb、およびLuが挙げられ
る。この磁性材料には、これらのうち少なくとも一種の
元素が含まれている必要がある。したがって、ミッシュ
メタルやジジム等のように、二種以上の希土類元素を含
有する物を用いても良い。好ましい希土類元素は、Y、
Ce、Pr、Nd、Sm、Gd、Dy、およびErであ
る。さらに好ましいものとしては、Y、Ce、Pr、N
d、およびSmが挙げられる。
The rare earth element (R) which is a component element of the magnetic material according to claims 1 and 2 is Y, La, C
e, Pr, Nd, Pm, Sm, Eu, Gd, Tb, D
y, Ho, Er, Tm, Yb, and Lu. This magnetic material needs to contain at least one of these elements. Therefore, a material containing two or more rare earth elements, such as misch metal or dymium, may be used. Preferred rare earth elements are Y,
Ce, Pr, Nd, Sm, Gd, Dy, and Er. More preferred are Y, Ce, Pr, N
d, and Sm.

【0010】ここで用いる希土類元素(R)は、工業的
生産により入手可能な純度のものであればよく、製造上
混入が避けられない不純物、例えば、O、H、C、A
l、Si、F、Na、Mg、Ca、Liなどが存在して
いるものであっても差し支えない。前記磁性材料の成分
元素である鉄(Fe)は、この磁性材料において強磁性
を担う基本成分であり、25原子%以上含有する必要が
ある。また、鉄成分のうちの0.01〜50原子%をC
oで置換することができ、このCoの導入により、キュ
リー点と磁化とが上昇するとともに、耐酸化性も向上で
きる。以下においては、鉄成分と表記した場合、Feの
0.01〜50原子%をCoで置換したものを含むもの
とする。
The rare earth element (R) used here may be of a purity that can be obtained by industrial production, and impurities that cannot be avoided in production, for example, O, H, C, A
1, Si, F, Na, Mg, Ca, Li and the like may be present. Iron (Fe), which is a component element of the magnetic material, is a basic component responsible for ferromagnetism in this magnetic material, and must be contained at 25 atomic% or more. Also, 0.01 to 50 atomic% of the iron component is C
can be replaced by o. By introducing Co, the Curie point and the magnetization can be increased, and the oxidation resistance can be improved. In the following, when the term “iron component” is used, it is assumed that the composition includes Fe in which 0.01 to 50 atomic% of Fe is substituted with Co.

【0011】前記磁性材料の成分元素である金属(M)
は、CuおよびInから選ばれた少なくとも一種の元素
であるが、M’成分として、Ga、Al、Zn、Sn、
Mn、Cr、Ni、Li、Na、K、Mg、Ca、S
r、Ba、Ti、Zr、Hf、V、Nb、Ta、Mo、
W、Pd、Ag、B、C、Si、Ge、Pb、およびB
iの元素のうち一種または二種以上の元素を、Cuおよ
び/またはInとともに含有させても良い。この場合、
これらの含有量はCu、Inの合計量を超えない量であ
って、しかもCuおよび/またはInとの合計量が0.
05〜50原子%の範囲となるようにしなければならな
い。
Metal (M) which is a component element of the magnetic material
Is at least one element selected from Cu and In, but Ga, Al, Zn, Sn,
Mn, Cr, Ni, Li, Na, K, Mg, Ca, S
r, Ba, Ti, Zr, Hf, V, Nb, Ta, Mo,
W, Pd, Ag, B, C, Si, Ge, Pb, and B
One or more of the elements of i may be contained together with Cu and / or In. in this case,
These contents are amounts not exceeding the total amount of Cu and In, and the total amount of Cu and / or In is not more than 0.1.
It must be in the range of 0.5 to 50 atomic%.

【0012】前記磁性材料における希土類元素、鉄成
分、M、および窒素の各組成は、希土類元素成分が3〜
20原子%、鉄成分が25〜93.95原子%、M成分
が0.05〜50原子%、窒素成分が3〜30原子%と
し、これらを同時に満たすものである。希土類元素成分
が3原子%未満のとき、鉄成分を多く含む軟磁性相が分
離し、窒化物の保磁力が低下して実用的な永久磁石とな
らない。また希土類元素成分が20原子%を超えると、
残留磁束密度が低下して好ましくない。
Each composition of the rare earth element, iron component, M and nitrogen in the magnetic material is such that the rare earth element component is 3 to
20 atomic%, the iron component is 25 to 93.95 atomic%, the M component is 0.05 to 50 atomic%, and the nitrogen component is 3 to 30 atomic%. When the rare earth element content is less than 3 atomic%, a soft magnetic phase containing a large amount of iron component is separated, and the coercive force of the nitride is reduced, so that a practical permanent magnet cannot be obtained. When the content of the rare earth element exceeds 20 atomic%,
The residual magnetic flux density is undesirably reduced.

【0013】R−Fe−N系磁性材料に対するM成分の
添加効果は、主に耐酸化性の向上である。M成分が0.
05原子%未満の場合は、前述のようなMの添加効果が
発揮されないため好ましくない。50原子%を超える
と、飽和磁化が低下するため好ましくなく、M成分量の
好ましい範囲は、0.1〜30原子%である。なお、M
成分の添加により、母合金の調製方法や条件によって
は、粒表面、粒界近傍、あるいはRFe3 相等のRリッ
チの窒化物相などの軟磁性を示す副相にM成分が凝縮さ
れて、前記副相が非磁性相化されることにより、窒化物
の角形比や保磁力を向上させることもある。
The effect of adding the M component to the R-Fe-N-based magnetic material is mainly to improve the oxidation resistance. M component is 0.
When the content is less than 05 atomic%, the effect of adding M as described above is not exhibited, which is not preferable. If it exceeds 50 atomic%, it is not preferable because the saturation magnetization decreases, and the preferable range of the amount of the M component is 0.1 to 30 atomic%. Note that M
Depending on the preparation method and conditions of the master alloy, the M component is condensed into a subphase exhibiting soft magnetism such as a grain surface, near a grain boundary, or an R-rich nitride phase such as an RFe 3 phase by the addition of the component. By making the subphase non-magnetic, the squareness ratio and coercive force of the nitride may be improved.

【0014】後述のように、R−Fe−M合金へ窒素を
導入することにより、R−Fe−M合金の結晶格子に膨
張が生じて、耐酸化性や磁気特性を向上できる。窒素成
分が3原子%未満では、このような作用を十分に発揮さ
せることができないため好ましくない。30原子%を超
えると磁化が低くなり、磁石材料用途としては実用性が
小さいものとなるため好ましくない。窒素成分の含有量
としてより好ましい範囲は、5〜25原子%であり、特
に好ましい範囲は10〜23原子%である。
As will be described later, by introducing nitrogen into the R-Fe-M alloy, the crystal lattice of the R-Fe-M alloy expands, so that oxidation resistance and magnetic properties can be improved. If the nitrogen component is less than 3 atomic%, such an effect cannot be sufficiently exerted, which is not preferable. If it exceeds 30 atomic%, the magnetization is low, and the practicability is low for use as a magnet material. A more preferred range for the content of the nitrogen component is 5 to 25 at%, and a particularly preferred range is 10 to 23 at%.

【0015】窒素成分の最適な含有量は、目的とするR
−Fe−M−N系磁性材料のR−Fe−M組成比や、主
相の存在比、および結晶構造などによって異なり、例え
ば菱面体構造を有するPr12.2Fe79.0In8.8 を原料
合金として選ぶ場合には、窒素成分の最適な含有量は1
4〜15原子%付近となる。ここでいう最適な窒素量と
は、目的に応じて異なるが、得られる磁性材料における
耐酸化性や多数の磁気特性の内いくつかが最適となる窒
素量であり、磁気特性が最適というのは、保磁力の温度
変化率、熱減磁率の絶対値、および磁気異方性比につい
ては極小となり、その他の磁気特性については、極大と
なることである。
The optimum content of the nitrogen component depends on the desired R
-When the R-Fe-M composition ratio of the Fe-M-N-based magnetic material, the abundance ratio of the main phase, the crystal structure, and the like are selected, for example, Pr 12.2 Fe 79.0 In 8.8 having a rhombohedral structure is selected as a material alloy. The optimal content of nitrogen component is 1
It is around 4 to 15 atomic%. The optimum amount of nitrogen here depends on the purpose, but it is the amount of nitrogen that optimizes some of the oxidation resistance and many magnetic characteristics of the obtained magnetic material. In addition, the temperature change rate of the coercive force, the absolute value of the thermal demagnetization rate, and the magnetic anisotropy ratio are minimized, and the other magnetic characteristics are maximized.

【0016】一方、請求項1および2の磁性材料におい
ては、主相の結晶構造を、前記R、Fe、及びNを主成
分とする菱面体晶又は六方晶に特定している。このよう
な結晶構造の主相は、菱面体晶又は六方晶とほぼ同じ対
称性を有する結晶構造のR−Fe−M合金(母合金)に
窒素を導入することにより、すなわち窒素を前記結晶の
格子間に侵入させるか、いずれかの成分元素(主にM)
と置換させることにより得られる。
On the other hand, in the magnetic material according to the first and second aspects, the crystal structure of the main phase is specified to be rhombohedral or hexagonal containing R, Fe and N as main components. The main phase having such a crystal structure is formed by introducing nitrogen into an R-Fe-M alloy (master alloy) having a crystal structure having substantially the same symmetry as a rhombohedral crystal or a hexagonal crystal, that is, by introducing nitrogen into the crystal. Intrusion between lattices or any component element (mainly M)
And is obtained by substituting

【0017】このような母合金への窒素の導入により、
結晶格子が多くの場合膨張する。そして、この結晶格子
の膨張によって、耐酸化性や以下に示す各磁気特性のう
ち少なくとも一つが向上する。磁気特性としては、材料
の飽和磁化(4πIs)、残留磁束密度(Br)、磁気
異方性磁界(Ha)、磁気異方性エネルギー(Ea)、
磁気異方性比、キュリー点(Tc)、固有保磁力(iH
c)、角形比(Br/4πIs)、最大エネルギー積
[(BH)max]、熱減磁率(α)、保磁力の温度変
化率(β)が挙げられる。ここで、磁気異方性比とは、
外部磁場を15kOe印加した時の困難磁化方向の磁化
(a)と容易磁化方向の磁化(b)との比(a/b)で
あり、磁気異方性比が小さいもの程、磁気異方性エネル
ギーが高いと評価される。
By introducing nitrogen into such a master alloy,
Crystal lattices often expand. The expansion of the crystal lattice improves oxidation resistance and at least one of the following magnetic characteristics. The magnetic properties include the saturation magnetization (4πIs), residual magnetic flux density (Br), magnetic anisotropic magnetic field (Ha), magnetic anisotropic energy (Ea),
Magnetic anisotropy ratio, Curie point (Tc), intrinsic coercive force (iH
c), squareness ratio (Br / 4πIs), maximum energy product [(BH) max], thermal demagnetization rate (α), and temperature change rate of coercive force (β). Here, the magnetic anisotropy ratio is
The ratio (a / b) between the magnetization (a) in the hard magnetization direction and the magnetization (b) in the easy magnetization direction when an external magnetic field of 15 kOe is applied. It is evaluated as having high energy.

【0018】例えば、母合金として、菱面体構造を有す
るSm17.1Fe74.6Cu8.3 を選んだ場合、窒素を導入
することによって、結晶磁気異方性が、面内異方性から
硬磁性材料として好適な一軸異方性に変化し、磁気異方
性エネルギーを初めとする磁気特性と耐酸化性とが向上
する。請求項1および2の磁性材料には、前述のような
結晶構造の主相を50体積%以上含有する必要があり、
これ以外に副相として、別の結晶構造を有するR、F
e、及びNを主成分とした相、または別の組成からなる
相を含有してもよい。
For example, when Sm 17.1 Fe 74.6 Cu 8.3 having a rhombohedral structure is selected as the mother alloy, the introduction of nitrogen makes the crystal magnetic anisotropy suitable for a hard magnetic material due to the in-plane anisotropy. The magnetic properties such as magnetic anisotropy energy and oxidation resistance are improved. The magnetic material according to claims 1 and 2 needs to contain 50% by volume or more of the main phase having the above crystal structure.
In addition, R, F having another crystal structure as a subphase
A phase containing e and N as main components or a phase having another composition may be contained.

【0019】例えば、RFe12-yM’y z 相のよう
な、正方晶を取る磁性の高い窒化物相を含んでいても良
いが、前記主相による作用を充分に発揮させるために
は、その含有量を主相の含有量より低く抑える必要があ
り、主相の含有量が75体積%を超えることが、実用上
極めて好ましい。また、母合金の製造条件を選ぶことに
よって、この主相内にM成分を含む介在物を分散させる
ことができる。特定の製造条件により前記主相内にM成
分を主体とする介在物が分散された母合金を製造し、こ
の母合金に窒素を導入して得られた合金は、ピンニング
型のR−鉄−M−窒素系磁性材料となる。ピンニング型
の磁性材料は、若干の酸化によって粒表面に軟磁性成分
が生じても、保磁力の低下を小さくすることができるも
のであるため耐酸化性が極めて高い材料となる。
[0019] For example, as RFe 12-y M 'y N z phase may contain a high nitride phase magnetism take tetragonal, but in order to sufficiently exhibit the effect of the main phase It is necessary to keep the content of the main phase lower than the content of the main phase, and it is extremely practically preferable that the content of the main phase exceeds 75% by volume. In addition, by selecting the manufacturing conditions of the master alloy, inclusions containing the M component can be dispersed in the main phase. Under a specific production condition, a master alloy in which inclusions mainly containing the M component are dispersed in the main phase is manufactured, and an alloy obtained by introducing nitrogen into the master alloy is a pinning type R-iron- It becomes an M-nitrogen magnetic material. The pinning-type magnetic material is a material having extremely high oxidation resistance because a decrease in coercive force can be reduced even if a soft magnetic component is generated on the grain surface due to slight oxidation.

【0020】そして、請求項1および2の磁性材料にお
いては、前記介在物間の平均距離を0.01〜0.5μ
mとする。この平均距離が0.5μmを超えると、ピン
ニング型となることによる保磁力低下を防ぐ効果がほと
んど見られず、また0.01μm未満であると、保磁力
および磁化の絶対値が小さくなるため好ましくない。さ
らに好ましい介在物間平均距離は0.03〜0.1μm
である。
In the magnetic material of the first and second aspects, the average distance between the inclusions is 0.01 to 0.5 μm.
m. When the average distance exceeds 0.5 μm, the effect of preventing a decrease in coercive force due to the pinning type is hardly observed, and when the average distance is less than 0.01 μm, the coercive force and the absolute value of magnetization decrease, which is preferable. Absent. The more preferable average distance between inclusions is 0.03 to 0.1 μm.
It is.

【0021】なお、介在物間の平均距離は、一つの介在
物とそれに最も近い介在物との中央同士を結んだ距離を
n個の介在物について計測し、算術平均を求めた値であ
る。nの値は、材料の均質性の度合によって適宜定めら
れるが、同一のM成分分散度を有すると予測される領域
をいくつかにグループ分けし、それぞれからその領域を
代表する部分を選び出して、各n>5で介在物間平均距
離を算出する。
The average distance between inclusions is a value obtained by measuring the distance connecting the centers of one inclusion and the nearest inclusion to n inclusions and calculating the arithmetic average. The value of n is appropriately determined depending on the degree of homogeneity of the material, but the regions predicted to have the same degree of M component dispersion are grouped into several groups, and a portion representative of the region is selected from each group. The average distance between inclusions is calculated for each n> 5.

【0022】この介在物による前記作用を十分に発揮さ
せるためには、主相のうち、介在物間の平均距離が0.
01〜0.5μmである相が50体積%以上を占めるこ
とが好ましい。より好ましくは、前記割合を75体積%
以上とする。このようなR−Fe−M−N系磁性材料
に、水素(H)を0.01〜15原子%の範囲で含むこ
とが好ましく、さらには、酸素(O)も0.01〜15
原子%の範囲で含むことが好ましい。より好ましい水素
含有量及び酸素含有量は、共に0.1〜10原子%の範
囲である。
In order to sufficiently exhibit the above-mentioned action of the inclusions, the average distance between the inclusions in the main phase is set to be not more than 0.1 mm.
It is preferred that the phase having a size of from 0.01 to 0.5 μm accounts for 50% by volume or more. More preferably, the ratio is 75% by volume.
Above. Such an R-Fe-M-N-based magnetic material preferably contains hydrogen (H) in a range of 0.01 to 15 atomic%, and further contains 0.01 to 15 atomic% of oxygen (O).
It is preferred that the content be in the range of atomic%. A more preferred hydrogen content and oxygen content are both in the range of 0.1 to 10 atomic%.

【0023】したがって、請求項1および2におけるR
−Fe−M−N系磁性材料の特に好ましい組成は、Rw
Fex y z u v で表わしたとき、各成分元素の
原子百分率を示すw、x、y、z、u、vが下記(5)
〜(10)を同時に満たすものである。 3≦w≦20 ……(5) 25≦x≦92 ……(6) 0.1≦y≦30 ……(7) 10≦z≦23 ……(8) 0.1≦u≦10 ……(9) 0.1≦v≦10 ……(10) 請求項3の製造方法では、主原料相の結晶構造がRおよ
びFeを主成分とする菱面体晶又は六方晶であり、この
主原料相にM成分が分散された微構造をなすR−Fe−
M系合金を、窒素ガス、アンモニアガスのうち少なくと
も一種を含む雰囲気下で、200〜650℃の温度条件
により窒化処理するが、より具体的な方法を、項目毎に
分けながら以下に述べる。 <母合金の調製>R−Fe−M合金の製造法としては、
イ)全成分金属を高周波により溶解し、鋳型などに鋳込
む高周波溶解法、ロ)銅などからなるボートに全成分金
属を仕込み、アーク放電により溶かし込むアーク溶解
法、ハ)高周波溶解した溶湯を回転させた銅ロール上に
落とすことにより、リボン状の合金を得る超急冷法、
ニ)高周波溶解した溶湯をガスで噴霧して合金粉体を得
るガスアトマイズ法、ホ)Fe成分および/またはM成
分の粉体、もしくはFe−M合金粉体と、Rおよび/ま
たはMの酸化物粉体と、還元剤とを高温下で反応させ、
RもしくはR及びMを還元しながら、RもしくはR及び
Mを、Feおよび/またはFe−M合金粉末中に拡散さ
せるR/D法、ヘ)各成分金属の単体および/または合
金を、ボールミルなどで微粉砕しながら反応させるメカ
ニカルアロイング法、ト)上記何れかの方法で得た合金
を水素雰囲気下で加熱し、一旦Rおよび/またはMの水
素化物と、Feおよび/またはMもしくはFe−M合金
とに分解し、この後高温下で低圧にして水素を追い出し
ながら再結合させ合金化するHDDR法のいずれを用い
てもよい。
Therefore, R in claims 1 and 2
-Fe-M-N based magnetic material has a particularly preferable composition of Rw
When expressed in Fe x M y N z H u O v, w representing the atomic percentage of each component element, x, y, z, u , v are the following (5)
To (10) are simultaneously satisfied. 3 ≦ w ≦ 20 (5) 25 ≦ x ≦ 92 (6) 0.1 ≦ y ≦ 30 (7) 10 ≦ z ≦ 23 (8) 0.1 ≦ u ≦ 10 (9) 0.1 ≦ v ≦ 10 (10) In the production method of claim 3, the crystal structure of the main raw material phase is a rhombohedral or hexagonal crystal containing R and Fe as main components. R-Fe- having a microstructure in which the M component is dispersed in the raw material phase
The M-based alloy is nitrided under an atmosphere containing at least one of nitrogen gas and ammonia gas under a temperature condition of 200 to 650 ° C. A more specific method will be described below while dividing it into items. <Preparation of master alloy> As a method for producing an R-Fe-M alloy,
A) High frequency melting method in which all component metals are melted by high frequency and cast into a mold, etc. b) Arc melting method in which all component metals are charged into a boat made of copper and the like and melted by arc discharge, c) molten metal melted by high frequency melting A super-quenching method that obtains a ribbon-shaped alloy by dropping it on a rotated copper roll,
D) a gas atomization method of spraying a molten metal melted by high frequency wave with a gas to obtain an alloy powder; e) a powder of Fe component and / or M component, or an Fe-M alloy powder, and an oxide of R and / or M The powder and the reducing agent are reacted under high temperature,
R / D method in which R or R and M are diffused into Fe and / or Fe-M alloy powder while reducing R or R and M; f) a simple substance and / or alloy of each component metal is ball milled; Mechanical alloying method in which the reaction is carried out while finely pulverizing with an alloy. G) The alloy obtained by any of the above methods is heated under a hydrogen atmosphere, and once hydrides of R and / or M and Fe and / or M or Fe— Any of the HDDR methods of decomposing into M alloy and then recombining and alloying while purging hydrogen under low pressure at high temperature may be used.

【0024】高周波溶解法やアーク溶解法を用いた場合
には、溶融状態から合金が凝固する際に、Fe主体の軟
磁性成分が析出しやすい。この軟磁性成分は、特に窒化
工程を経た後も保磁力の低下を引き起こすものである。
したがって、溶融条件や、鋳型の材質とその空隙部の厚
みなどを適宜調節して、冷却速度が充分速くなる方法を
講じることが望ましい。
When the high-frequency melting method or the arc melting method is used, when the alloy solidifies from the molten state, a soft magnetic component mainly composed of Fe tends to precipitate. This soft magnetic component causes the coercive force to decrease even after the nitriding step.
Therefore, it is desirable to appropriately adjust the melting conditions, the material of the mold and the thickness of the voids, and take a method of sufficiently increasing the cooling rate.

【0025】さらに、アルゴン、ヘリウムなどの不活性
ガス中もしくは真空中、600℃〜1300℃の温度範
囲で焼鈍を行えば、この軟磁性成分を消失させたり、得
られる合金の微構造を制御することができる。この方法
で作製した合金は、超急冷法などで作製した場合と比べ
て結晶性が良好であり、高い残留磁束密度を有してい
る。
Further, if annealing is carried out in an inert gas such as argon or helium or in a vacuum in a temperature range of 600 ° C. to 1300 ° C., the soft magnetic component is eliminated or the microstructure of the obtained alloy is controlled. be able to. The alloy produced by this method has better crystallinity and a higher residual magnetic flux density than those produced by an ultra-quenching method or the like.

【0026】超急冷法を用いた場合には、微細な結晶粒
が得られ、条件によってはサブミクロンの粒子も調製で
きる。但し、冷却速度が大きい場合には、合金の非晶質
化が起こり、窒化後においても磁化などの磁気特性が低
下する。この場合にも、前述のような合金調製後の焼鈍
が有効である。ガスアトマイズ法により得られた合金
は、結晶粒が球状の形態を取ることが多いため、ガスの
流量や溶湯の温度条件等によりその粒径を微粉体から粗
粉体まで広範囲に調製することが可能である。この場合
も、条件によっては前述のような焼鈍を行い、結晶性を
良好にすることが必要となる。
When the ultra-quenching method is used, fine crystal grains are obtained, and submicron particles can be prepared depending on the conditions. However, when the cooling rate is high, the alloy becomes amorphous, and magnetic properties such as magnetization are reduced even after nitriding. Also in this case, annealing after alloy preparation as described above is effective. Since alloys obtained by the gas atomization method often have spherical morphologies, the particle size can be adjusted over a wide range from fine powder to coarse powder depending on the gas flow rate and the temperature conditions of the molten metal. It is. Also in this case, depending on the conditions, it is necessary to perform annealing as described above to improve the crystallinity.

【0027】R/D法、メカニカルアロイング法、およ
びHDDR法により調製した合金は、結晶粒を0.01
〜3μmの微細な大きさに調整したり、M成分主体相の
組成や分布状態を任意に調節したりすることが可能であ
るため、主相にM成分を主体とする介在物を分散させや
すい。母合金を焼鈍する条件は、母合金の組成や目的と
する磁性材料の特性に応じ、前述の範囲内において選定
される。例えば、Sm2 Fe17X 主相中に、大きさが
0.5μm以下である細かいM成分主体相を分散させ
て、保磁力が酸化により劣化することを抑えたい場合に
は、不活性ガス雰囲気下600〜1000℃の温度範囲
で熱処理することが望ましい。 <粗粉砕及び分級>上記の方法で作製した合金インゴッ
トを直接窒化,熱処理することも可能であるが、結晶粒
径が500μmより大きいと窒化処理時間が長くなるた
め、粗粉砕を行ってから窒化する方が効率的である。
The alloy prepared by the R / D method, the mechanical alloying method, and the HDDR method has a crystal grain of 0.01%.
Since it is possible to adjust the size to a fine size of up to 3 μm and to arbitrarily adjust the composition and distribution of the M component main phase, it is easy to disperse inclusions mainly containing the M component in the main phase. . The conditions for annealing the master alloy are selected within the above-described range according to the composition of the master alloy and the characteristics of the target magnetic material. For example, when it is desired to disperse a fine M component main phase having a size of 0.5 μm or less in the Sm 2 Fe 17 N X main phase to suppress the coercive force from being deteriorated by oxidation, an inert gas is used. It is desirable to perform a heat treatment in a temperature range of 600 to 1000 ° C. in an atmosphere. <Coarse pulverization and classification> The alloy ingot produced by the above method can be directly nitrided and heat-treated. However, if the crystal grain size is larger than 500 μm, the nitriding treatment time becomes longer. It is more efficient to do so.

【0028】粗粉砕は、ジョ−クラッシャー、ハンマ
ー、スタンプミル、ローターミル、ピンミル、コーヒー
ミルなどを用いて行う。また、ボールミルやジェットミ
ルなどのような粉砕機を用いても、条件次第では、窒化
処理に適当な大きさの合金粉末を調製することができ
る。また、粗粉砕を行った後に、ふるいや、振動式ある
いは音波式の分級機、サイクロンなどにより粒度調整を
行うと、窒化処理がより均質に行われる。
The coarse pulverization is performed using a jaw crusher, hammer, stamp mill, rotor mill, pin mill, coffee mill, or the like. Further, even if a pulverizer such as a ball mill or a jet mill is used, an alloy powder having a size suitable for nitriding can be prepared depending on conditions. Further, if the particle size is adjusted by a sieve, a vibrating or sonic classifier, a cyclone, or the like after the coarse pulverization, the nitriding treatment is performed more uniformly.

【0029】なお、粗粉砕,分級して得られた磁性粉に
対して、不活性ガスや水素中で焼鈍を行うと、構造の欠
陥を除去することができる場合がある。 <窒化・焼鈍>上記の方法により得られたR−Fe−M
合金の粉体またはインゴットに、アンモニアガス、窒素
ガスなどの窒素源を含むガスを接触させて、結晶構造内
に窒素を導入する。
If the magnetic powder obtained by coarse pulverization and classification is annealed in an inert gas or hydrogen, structural defects may be removed in some cases. <Nitriding and annealing> R-Fe-M obtained by the above method
A gas containing a nitrogen source such as ammonia gas or nitrogen gas is brought into contact with the alloy powder or ingot to introduce nitrogen into the crystal structure.

【0030】このとき、窒化雰囲気ガス中に水素を共存
させると、窒化効率が高いうえに、結晶構造が安定なま
まで窒化できるため好ましい。また、窒化反応を制御す
るために、アルゴン、ヘリウム、ネオンなどの不活性ガ
スを共存させてもよい。窒化反応は、ガス組成、加熱温
度、加熱処理時間、および加圧力などの条件を変えるこ
とにより制御することができる。
At this time, it is preferable to coexist hydrogen in the nitriding atmosphere gas because nitriding efficiency is high and nitriding can be performed with a stable crystal structure. Further, in order to control the nitriding reaction, an inert gas such as argon, helium, or neon may coexist. The nitriding reaction can be controlled by changing conditions such as gas composition, heating temperature, heat treatment time, and pressure.

【0031】加熱温度は、母合金組成や窒化雰囲気によ
って異なるが、200〜650℃の範囲とする。好まし
い温度範囲は250〜600℃である。また、窒化を行
った後、不活性ガスおよび/または水素ガス中で焼鈍す
ると、磁気特性をさらに向上できる。窒化・焼鈍装置と
しては、横型または縦型の管状炉、回転式反応炉、密閉
式反応炉などが挙げられる。特に、窒素組成分布の揃っ
た粉体を得るためには回転式反応炉を用いるのが好まし
い。
The heating temperature varies depending on the mother alloy composition and the nitriding atmosphere, but is in the range of 200 to 650 ° C. The preferred temperature range is 250-600 ° C. After nitriding, annealing in an inert gas and / or hydrogen gas can further improve magnetic properties. Examples of the nitriding / annealing apparatus include a horizontal or vertical tubular furnace, a rotary reactor, and a closed reactor. In particular, in order to obtain a powder having a uniform nitrogen composition distribution, it is preferable to use a rotary reactor.

【0032】反応に用いるガスの供給方法としては、ガ
ス組成を一定に保ちながら1気圧以上の気流を反応炉の
送り込む気流方式、容器内に0.01〜70気圧でガス
を封入する封入方式、或いはそれらを組合せた方法があ
る。このような窒化処理における最適な処理条件は、母
合金がインゴットであるか粉体であるかにより、粉体で
ある場合には、表面状態、結晶粒径、粉砕粒径、および
微構造等により、インゴットである場合には表面状態や
微構造等により異なる。
As a method of supplying the gas used in the reaction, a gas flow method in which a gas stream of 1 atm or more is sent into the reaction furnace while maintaining a constant gas composition, a sealing method in which the gas is sealed in a vessel at 0.01 to 70 atm, Alternatively, there is a method combining them. The optimal treatment conditions in such nitriding treatment depend on whether the master alloy is an ingot or a powder, and if it is a powder, the surface condition, crystal grain size, crushed grain size, and microstructure, etc. In the case of an ingot, it depends on the surface condition, microstructure, and the like.

【0033】特に、実用的な硬磁性材料とするために
は、上記の処理の後に、以下に示すような微粉砕、磁場
成形、および着磁を行う場合がある。 <微粉砕>微粉砕方法は、磁性材料に含有される水素や
酸素の量、及び目標とする粉砕粒径に応じて選定され
る。使用される粉砕装置としては、回転ボールミル、振
動ボールミル、遊星ボールミル、ウエットミル、ジェッ
トミル、カッターミル、ピンミル、および自動乳鉢が挙
げられる。これらを組合せて二段階以上に分けて粉砕し
てもよい。
In particular, in order to obtain a practical hard magnetic material, after the above-described treatment, fine grinding, magnetic field shaping, and magnetization may be performed as described below. <Pulverization> The method of pulverization is selected according to the amounts of hydrogen and oxygen contained in the magnetic material and the target pulverized particle size. Grinding equipment used includes rotating ball mills, vibrating ball mills, planetary ball mills, wet mills, jet mills, cutter mills, pin mills, and automatic mortars. These may be combined and pulverized in two or more stages.

【0034】なお、この工程でM成分をさらに添加し、
次の<磁場成形>工程の前あるいは後に熱処理を行って
各種磁石材料とすれば、角形比や保磁力の絶対値が向上
できる。 <磁場成形>このようにして得られた磁性粉体を異方性
ボンド磁石に応用する場合には、熱硬化性樹脂や金属バ
インダーと混合した後、磁場中で圧縮成形したり、熱可
塑性樹脂と共に混練してから磁場中で射出成形を行った
りすることにより磁場成形を行う。このような磁場成形
は、充分な磁場配向を得るために、好ましくは10kO
e以上、さらに好ましくは15kOe以上の磁場中で行
う。
In this step, the M component is further added,
By performing a heat treatment before or after the next <magnetic field forming> step to form various magnet materials, the squareness ratio and the absolute value of the coercive force can be improved. <Magnetic field molding> When the magnetic powder thus obtained is applied to an anisotropic bonded magnet, it is mixed with a thermosetting resin or a metal binder and then compression-molded in a magnetic field, or a thermoplastic resin. And then kneading and then performing injection molding in a magnetic field to perform magnetic field molding. Such a magnetic field shaping is preferably performed at 10 kO to obtain a sufficient magnetic field orientation.
This is performed in a magnetic field of e or more, more preferably 15 kOe or more.

【0035】また、異方性ボンド磁石を作製する場合に
は、M成分を金属バインダーや表面処理剤としても使用
する。 <着磁>焼結磁石材料や、上記のようにして得られた異
方性ボンド磁石材料は、通常、着磁を行って、その磁石
性能を高める。
When producing an anisotropic bonded magnet, the M component is also used as a metal binder and a surface treating agent. <Magnetization> The sintered magnet material and the anisotropic bonded magnet material obtained as described above are usually magnetized to enhance the magnet performance.

【0036】この着磁は、例えば、静磁場を発生する電
磁石、パルス磁場を発生するコンデンサー着磁器などを
用いて行う。充分な着磁を行うためには、磁場強度を、
好ましくは15kOe以上、さらに好ましくは30kO
e以上とする。
This magnetization is performed using, for example, an electromagnet that generates a static magnetic field, a condenser magnetizer that generates a pulsed magnetic field, or the like. In order to perform sufficient magnetization, the magnetic field strength
Preferably 15 kOe or more, more preferably 30 kOe
e or more.

【0037】[0037]

【作用】請求項1によれば、R−Fe−M−N系磁性材
料における各成分元素の組成を、(1)〜(4)の式に
より特定することと、前記合金の主相をなす結晶構造を
R、Fe、及びNを主成分とする菱面体晶又は六方晶に
特定することとにより、R−Fe−M−N系磁性材料に
高い磁気特性を付与することができる。
According to the first aspect, the composition of each component element in the R-Fe-MN-based magnetic material is specified by the equations (1) to (4), and the main phase of the alloy is specified. By specifying the crystal structure as a rhombohedral or hexagonal crystal containing R, Fe, and N as main components, high magnetic properties can be imparted to the R—Fe—M—N magnetic material.

【0038】また、この磁性材料の微構造を、前記主相
内にM成分を含む介在物が分散しているものとし、前記
介在物間の平均距離を0.01〜0.5μmに特定する
ことにより、この磁性材料をピンニング型とすることが
できるため、細かく粉砕して使用する場合に若干の酸化
によって粒子表面に軟磁性成分が生じても、保磁力の低
下を小さくすることができる。
The microstructure of the magnetic material is such that inclusions containing the M component are dispersed in the main phase, and the average distance between the inclusions is specified to be 0.01 to 0.5 μm. This makes it possible to make the magnetic material into a pinning type. Therefore, when finely pulverized and used, even if a soft magnetic component is generated on the particle surface due to slight oxidation, a decrease in coercive force can be reduced.

【0039】請求項2によれば、Coの導入により、キ
ュリー点と磁化とが上昇するとともに、耐酸化性も向上
できる。請求項3によれば、主相の結晶構造が、Rおよ
びFeを主成分とする菱面体晶又は六方晶であり、この
主相にM成分が分散された微構造をなすR−Fe−M系
合金を、窒素ガス、アンモニアガスのうち少なくとも一
種を含む雰囲気下、200〜650℃の温度条件で窒化
処理することにより、窒素がR−Feからなる主相の結
晶格子間に侵入するか、M成分をなす元素と置換して、
主相の結晶構造が、前記R、Fe、及びNを主成分とす
る菱面体晶又は六方晶であるとともに、この主相内に前
記M成分を主体とする介在物が分散している微構造のR
−Fe−M−N系磁性材料を得ることができる。
According to the second aspect, by introducing Co, the Curie point and the magnetization can be increased, and the oxidation resistance can be improved. According to claim 3, the crystal structure of the main phase is a rhombohedral crystal or a hexagonal crystal mainly composed of R and Fe, and R-Fe-M having a microstructure in which the M component is dispersed in the main phase. By subjecting the system alloy to nitriding under an atmosphere containing at least one of nitrogen gas and ammonia gas at a temperature of 200 to 650 ° C., nitrogen enters between the crystal lattices of the main phase composed of R—Fe, By substituting the element that constitutes the M component,
The crystal structure of the main phase is a rhombohedral or hexagonal crystal containing R, Fe, and N as main components, and a microstructure in which inclusions mainly containing the M component are dispersed in the main phase. R
-Fe-M-N magnetic material can be obtained.

【0040】[0040]

【実施例】以下に、本発明の実施例を示す。各特性の測
定方法および評価方法は、以下のとおりである。 《磁気特性》固有保磁力により評価した。
Examples of the present invention will be described below. The measuring method and evaluation method of each characteristic are as follows. << Magnetic Properties >> The magnetic properties were evaluated based on the intrinsic coercive force.

【0041】すなわち、平均粒径約7μmのR−Fe−
M−N系磁性粉体を、外部磁場15kOe中、12to
n/cm2 で5mm×10mm×2mm程度に成形し、
この成形体を室温の下、60kOeの磁場でパルス着磁
した後、振動試料型磁力計(VSM)により固有保磁力
(iHc/kOe)を測定した。 《窒素量、酸素量、及び水素量》窒素量及び酸素量は、
Si3 4 (SiO2 を定量含む)を標準試料として、
不活性ガス融解法により定量した。水素量は、高純度水
素ガス(99.999%)を標準ガスとして、不活性ガ
ス融解法により定量した。 《平均粒径》リー・ナース比表面積計を用いて測定し
た。 《耐酸化性能−1》110℃で200時間保持した前後
における固有保磁力の保持率(%)により評価した。
That is, R-Fe- having an average particle size of about 7 μm
The MN-based magnetic powder was subjected to 12 tons in an external magnetic field of 15 kOe.
formed into approximately 5 mm × 10 mm × 2 mm in n / cm 2,
After pulse-magnetizing this compact at room temperature with a magnetic field of 60 kOe, the intrinsic coercive force (iHc / kOe) was measured with a vibrating sample magnetometer (VSM). << nitrogen amount, oxygen amount and hydrogen amount >> nitrogen amount and oxygen amount
Using Si 3 N 4 (including SiO 2 quantitatively) as a standard sample,
It was determined by the inert gas melting method. The amount of hydrogen was determined by an inert gas melting method using high-purity hydrogen gas (99.999%) as a standard gas. << Average particle size >> The average particle size was measured using a Lee Nurse specific surface area meter. << Oxidation Resistance-1 >> Evaluation was made based on the retention (%) of the intrinsic coercive force before and after holding at 110 ° C. for 200 hours.

【0042】すなわち、前述のようにして固有保磁力
(A)を評価した成形品を、110℃の恒温槽に入れて
200時間保持した後に、前記と同様にして固有保磁力
(B)を測定し、B/Aを算出した。保持率の高いもの
ほど、耐酸化性能が高い。特に、本試験では各種バイン
ダーを添加せずに評価しているため、保持率70%を越
えるものは、例えばボンド磁石とした時の実用物性とし
て充分使用可能な材料と判定できる。 《耐酸化性能−2》平均粒径15μmに調整した粗粉体
試料10mgを熱天秤に入れ、50ml/minの空気
気流中、10℃/minの速度で50℃から250℃ま
で昇温させた時の重量変化率(重量%)を測定した。重
量変化率の小さいものほど酸化されにくい。 <実施例1>純度99.9%のSm、純度99.9%の
Fe、及び純度99.9%のCuを用いてアルゴンガス
雰囲気下、高周波溶解炉で溶解混合し、さらにアルゴン
雰囲気中で、920℃で50時間、続いて800℃で7
5時間焼鈍することにより、Sm13.2Fe78.1Cu8.7
組成の合金を調製した。
That is, the molded article whose intrinsic coercive force (A) was evaluated as described above was placed in a thermostat at 110 ° C. and kept for 200 hours, and then the intrinsic coercive force (B) was measured in the same manner as described above. Then, B / A was calculated. The higher the retention, the higher the oxidation resistance. In particular, in the present test, evaluation was performed without adding various binders, so that a material having a retention of more than 70% can be determined to be a material that can be sufficiently used as, for example, practical physical properties when used as a bonded magnet. << Oxidation resistance performance-2 >> 10 mg of a coarse powder sample adjusted to an average particle size of 15 μm was put into a thermobalance and heated from 50 ° C. to 250 ° C. at a rate of 10 ° C./min in an air stream of 50 ml / min. The rate of change in weight (% by weight) was measured. The smaller the rate of weight change, the more difficult it is to oxidize. <Example 1> Using Sm having a purity of 99.9%, Fe having a purity of 99.9%, and Cu having a purity of 99.9%, melting and mixing were performed in a high-frequency melting furnace under an argon gas atmosphere, and further under an argon atmosphere. At 920 ° C. for 50 hours, followed by 7 hours at 800 ° C.
After annealing for 5 hours, Sm 13.2 Fe 78.1 Cu 8.7
An alloy of the composition was prepared.

【0043】この合金をジョークラッシャーにより粉砕
し、次いで窒素雰囲気中ローターミルでさらに粉砕した
後、ふるいで粒度を調整して、平均粒径約50μmの粉
体を得た。このSm−Fe−Cu合金粉体を横型管状炉
に仕込み、450℃において、アンモニア分圧0.32
atm、水素ガス0.68atmの混合気流中で加熱処
理し、続いてアルゴン気流中で焼鈍したのち、平均粒径
約15μmに調整した。次いで、この粗粉体をジェット
ミルにより平均粒径約7μmに粉砕した。
This alloy was pulverized with a jaw crusher and then further pulverized with a rotor mill in a nitrogen atmosphere, and the particle size was adjusted with a sieve to obtain a powder having an average particle diameter of about 50 μm. This Sm-Fe-Cu alloy powder was charged into a horizontal tubular furnace, and at 450 ° C, an ammonia partial pressure of 0.32.
Heat treatment was performed in a mixed gas flow of atm and hydrogen gas of 0.68 atm, and then annealing was performed in an argon gas flow, and then adjusted to an average particle size of about 15 μm. Next, this coarse powder was pulverized by a jet mill to an average particle size of about 7 μm.

【0044】このとき、粉砕ガスとしては、窒素を主体
とし、一部酸素及び水蒸気を混入させたガスを用いた。
得られたSm−Fe−Cu−N系粉体の組成と、耐酸化
性能の評価結果とを表1に併せて示す。また、7μmに
粉砕したSm−Fe−Cu−N系粉体の成形体の固有保
磁力は9.8kOe、残留磁束密度は7.6kGであっ
た。なお、X線回折法により解析した結果、この材料の
結晶構造は主として菱面体晶であった。また、SEM及
びTEM写真による解析の結果、菱面体晶相内にCuを
主体とする介在物の分散が認められ、介在物間平均距離
は0.10μmであることが判った。 <実施例2>純度99.9%のSm、純度99.9%の
Fe、および純度99.9%のInを用いてアルゴンガ
ス雰囲気下、高周波溶解炉で溶解混合し、さらにアルゴ
ン雰囲気中で、880℃で10時間、続いて850℃で
20時間、さらに630℃で120時間焼鈍することに
より、Sm12.7Fe81.2In6.1 組成の合金を調製し
た。
At this time, as the pulverizing gas, a gas mainly composed of nitrogen and partially mixed with oxygen and water vapor was used.
Table 1 also shows the composition of the obtained Sm-Fe-Cu-N-based powder and the evaluation results of the oxidation resistance. The Sm—Fe—Cu—N powder compact compacted to 7 μm had a specific coercive force of 9.8 kOe and a residual magnetic flux density of 7.6 kG. As a result of analysis by X-ray diffraction, the crystal structure of this material was mainly rhombohedral. Further, as a result of analysis by SEM and TEM photographs, it was found that inclusions mainly composed of Cu were dispersed in the rhombohedral crystal phase, and the average distance between the inclusions was 0.10 μm. <Example 2> Sm having a purity of 99.9%, Fe having a purity of 99.9%, and In having a purity of 99.9% were melt-mixed in a high frequency melting furnace under an argon gas atmosphere, and further in an argon atmosphere. An alloy having a composition of Sm 12.7 Fe 81.2 In 6.1 was prepared by annealing at 880 ° C. for 10 hours, subsequently at 850 ° C. for 20 hours, and further at 630 ° C. for 120 hours.

【0045】以下、実施例1と同様にして平均粒径15
μmの粗粒子を得、表1に示す組成の平均粒径7μmの
Sm−Fe−In−N系粉体を得た。7μmの粉体から
なる成形体の固有保磁力は6.9kOe、残留磁束密度
は7.1kGであった。なお、X線回折法により解析し
た結果、この材料の結晶構造は主として菱面体晶であっ
た。また、SEM及びTEM写真による解析の結果、菱
面体晶相内にInを主体とする介在物の分散が認めら
れ、介在物間平均距離は0.30μmであることが判っ
た。 <実施例3>純度99.9%のSm、純度99.9%の
Fe、純度99.9%のCo、及び純度99.9%のI
nを用いてアルゴンガス雰囲気下、高周波溶解炉で溶解
混合し、さらにアルゴン雰囲気中で、900℃で70時
間、続いて850℃で100時間焼鈍することにより、
Sm12.8Fe60.8Co20.3In6.1 組成の合金を調製し
た。
Thereafter, an average particle size of 15 was obtained in the same manner as in Example 1.
μm coarse particles were obtained, and an Sm—Fe—In—N-based powder having a composition shown in Table 1 and an average particle size of 7 μm was obtained. The molded product made of a 7 μm powder had an intrinsic coercive force of 6.9 kOe and a residual magnetic flux density of 7.1 kG. As a result of analysis by X-ray diffraction, the crystal structure of this material was mainly rhombohedral. Further, as a result of analysis by SEM and TEM photographs, dispersion of inclusions mainly containing In was recognized in the rhombohedral phase, and it was found that the average distance between the inclusions was 0.30 μm. <Example 3> Sm having a purity of 99.9%, Fe having a purity of 99.9%, Co having a purity of 99.9%, and I having a purity of 99.9%.
n is mixed and melted in a high-frequency melting furnace under an argon gas atmosphere, and further annealed in an argon atmosphere at 900 ° C. for 70 hours and subsequently at 850 ° C. for 100 hours.
An alloy having a composition of Sm 12.8 Fe 60.8 Co 20.3 In 6.1 was prepared.

【0046】以下、実施例1と同様にして平均粒径15
μmの粗粒子を得、表1に示す組成の平均粒径7μmの
Sm−Fe−Co−In−N系粉体を得た。7μmの粉
体からなる成形体の固有保磁力は9.4kOe、残留磁
束密度は8.8kGであった。なお、X線回折法により
解析した結果、この材料の結晶構造は主として菱面体晶
であった。また、SEM及びTEM写真による解析の結
果、菱面体晶相内にInを主体とする介在物の分散が認
められ、介在物間平均距離は0.08μmであることが
判った。 <実施例4>純度99.9%のSm、純度99.9%の
Fe、及び純度99.9%のCuを実施例1と同様な方
法で溶解混合して、Sm−Fe−Cu合金を得た。
Thereafter, an average particle size of 15 was obtained in the same manner as in Example 1.
μm coarse particles were obtained, and an Sm—Fe—Co—In—N powder having an average particle diameter of 7 μm having the composition shown in Table 1 was obtained. The specific coercive force of the compact made of 7 μm powder was 9.4 kOe, and the residual magnetic flux density was 8.8 kG. As a result of analysis by X-ray diffraction, the crystal structure of this material was mainly rhombohedral. Further, as a result of analysis by SEM and TEM photographs, it was found that inclusions mainly composed of In were dispersed in the rhombohedral phase, and the average distance between the inclusions was 0.08 μm. <Example 4> 99.9% purity of Sm, 99.9% purity of Fe, and 99.9% purity of Cu were dissolved and mixed in the same manner as in Example 1 to obtain an Sm-Fe-Cu alloy. Obtained.

【0047】この合金を石英ノズルに仕込み、アルゴン
ガス雰囲気下で高周波溶解した後、その溶湯を、回転速
度1000rpmで回転させてある直径25cm、幅2
cmの銅製ロール上に落とすことにより、薄片状の試料
を調整した。さらに、この試料を、アルゴン雰囲気中8
70℃で15分間、続いて700℃で4時間焼鈍するこ
とにより、Sm13.3Fe78.7Cu8.0 組成の合金を調製
した。
This alloy was charged into a quartz nozzle and melted at a high frequency under an argon gas atmosphere. Then, the molten metal was rotated at a rotation speed of 1000 rpm and had a diameter of 25 cm and a width of 2 cm.
A flaky sample was prepared by dropping it on a copper roll of cm. Further, this sample was placed in an argon atmosphere for 8 hours.
An alloy having a composition of Sm 13.3 Fe 78.7 Cu 8.0 was prepared by annealing at 70 ° C. for 15 minutes and subsequently at 700 ° C. for 4 hours.

【0048】この薄片状の試料を、実施例1と同様の方
法で窒化,焼鈍,粉砕することにより、平均粒径約15
μmの粗粉体と平均粒径約7μmの粉体とを得た。得ら
れた7μmSm−Fe−Cu−N系粉体の組成と、耐酸
化性能の評価結果とを表1に併せて示す。また、7μm
に粉砕したSm−Fe−Cu−N系粉体の成形体の固有
保磁力は10.7kOe、残留磁束密度は7.5kGで
あった。なお、X線回折法により解析した結果、この材
料の結晶構造は主として菱面体晶であった。また、SE
M及びTEM写真による解析の結果、菱面体晶相内にC
uを主体とする介在物の分散が認められ、介在物間平均
距離は0.05μmであることが判った。 <比較例1>Cuを加えない以外は実施例1と同様にす
ることにより、表1に示した組成のSm−Fe−N系粉
体を得た。得られた粉体の耐酸化性能の評価結果も、表
1に併せて示す。
The flaky sample was nitrided, annealed and pulverized in the same manner as in Example 1 to obtain an average particle size of about 15%.
A coarse powder of μm and a powder having an average particle size of about 7 μm were obtained. Table 1 also shows the composition of the obtained 7 µm Sm-Fe-Cu-N-based powder and the evaluation results of the oxidation resistance. Also, 7 μm
The molded product of the Sm-Fe-Cu-N-based powder pulverized into a powder had an intrinsic coercive force of 10.7 kOe and a residual magnetic flux density of 7.5 kG. As a result of analysis by X-ray diffraction, the crystal structure of this material was mainly rhombohedral. Also, SE
As a result of analysis by M and TEM photographs, C was found in the rhombohedral phase.
Dispersion of inclusions mainly composed of u was recognized, and it was found that the average distance between inclusions was 0.05 μm. <Comparative Example 1> An Sm-Fe-N powder having the composition shown in Table 1 was obtained in the same manner as in Example 1 except that Cu was not added. The evaluation results of the oxidation resistance performance of the obtained powder are also shown in Table 1.

【0049】また、7μmに粉砕したSm−Fe−N系
粉体の成形体の固有保磁力は2.7kOe、残留磁束密
度は8.2kGであった。以上の結果を、以下の表1に
併せて示す。
The molded product of the Sm—Fe—N powder crushed to 7 μm had an intrinsic coercive force of 2.7 kOe and a residual magnetic flux density of 8.2 kG. The above results are shown in Table 1 below.

【0050】[0050]

【表1】 [Table 1]

【0051】表1の結果より、実施例1〜4では固有保
磁力の保持率が90%以上と高く、重量変化率は0.0
4〜0.07重量%と小さかった。これに比べて比較例
1では、固有保磁力の保持率が64%と低く、重量変化
率は0.26重量%と大きかった。 <比較例2>比較例1で得た平均粒径7μmのSm−F
e−N系粉体をさらに2μmまで粉砕した。得られた微
粉体についての固有保磁力の保持率(耐酸化性能−1)
は53%であり、成形体とした時の固有保磁力は9.5
kOe、残留磁束密度は7.6kGであった。 <比較例3>実施例2で得られた、粒径約7μmのSm
10.6Fe67.6In5.1 14.60.51.6 組成の粉体
を、2ton/cm2 、15kOeの条件で磁場成形し
た後、アルゴン雰囲気下、1100℃、1時間の条件で
熱処理を行った。これを急冷した後の成形体の固有保磁
力は0.1kOe以下であった。この成形体を再び約7
μmに粉砕した粉体の固有保磁力は0.1kOe以下で
あった。
From the results shown in Table 1, in Examples 1 to 4, the retention of the intrinsic coercive force was as high as 90% or more, and the weight change was 0.0%.
It was as small as 4 to 0.07% by weight. On the other hand, in Comparative Example 1, the retention of the intrinsic coercive force was as low as 64%, and the weight change was as large as 0.26% by weight. Comparative Example 2 Sm-F having an average particle size of 7 μm obtained in Comparative Example 1
The eN-based powder was further ground to 2 μm. Retention of intrinsic coercive force of the obtained fine powder (oxidation resistance performance-1)
Is 53%, and the intrinsic coercive force of the molded body is 9.5.
kOe and the residual magnetic flux density were 7.6 kG. <Comparative Example 3> Sm having a particle size of about 7 μm obtained in Example 2.
A powder having a composition of 10.6 Fe 67.6 In 5.1 N 14.6 H 0.5 O 1.6 was magnetically molded under the conditions of 2 ton / cm 2 and 15 kOe, and then heat-treated at 1100 ° C. for 1 hour in an argon atmosphere. The intrinsic coercive force of the compact after quenching it was 0.1 kOe or less. This molded body is again
The intrinsic coercive force of the powder crushed to μm was 0.1 kOe or less.

【0052】なお、この材料の結晶構造をX線回折によ
り解析した結果、α−鉄、窒化鉄に対応する回折線が主
に検出された。
As a result of analyzing the crystal structure of this material by X-ray diffraction, diffraction lines corresponding to α-iron and iron nitride were mainly detected.

【0053】[0053]

【発明の効果】以上説明したように、請求項1によれば
R−Fe−M−N系磁性材料における各成分元素の組成
を特定することと、前記合金の主相をなす結晶構造を
R、Fe、及びNを主成分とする菱面体晶又は六方晶に
特定することとにより、R−Fe−M−N系合金に高い
磁気特性を付与することができる。
As described above, according to the first aspect, the composition of each component element in the R-Fe-MN-based magnetic material is specified, and the crystal structure forming the main phase of the alloy is determined by R By specifying a rhombohedral crystal or a hexagonal crystal whose main components are Fe, N, and N, high magnetic properties can be imparted to the R—Fe—M—N alloy.

【0054】また、この磁性材料の微構造を、前記主相
内にM成分を含む介在物が分散しているものとし、前記
介在物間の平均距離を0.01〜0.5μmに特定する
ことにより、この磁性材料をピンニング型とすることが
できるため、細かく粉砕して使用する場合に若干の酸化
によって粒子表面に軟磁性成分が生じても、保磁力の低
下を小さくすることができる。
The microstructure of the magnetic material is such that inclusions containing the M component are dispersed in the main phase, and the average distance between the inclusions is specified to be 0.01 to 0.5 μm. This makes it possible to make the magnetic material into a pinning type. Therefore, when finely pulverized and used, even if a soft magnetic component is generated on the particle surface due to slight oxidation, a decrease in coercive force can be reduced.

【0055】その結果、高い磁気特性と優れた耐酸化性
を併せ持つ希土類−Fe−M−N系磁性材料を提供する
ことができる。請求項2によれば、キュリー点と磁化と
が上昇され、耐酸化性もより改善された磁性材料が得ら
れる。請求項3によれば、主相の結晶構造がRおよびF
eを主成分とする菱面体晶又は六方晶であり、この主相
にM成分が分散された微構造をなすR−Fe−M系合金
を、窒素ガス、アンモニアガスのうち少なくとも一種を
含む雰囲気下、200〜650℃の温度条件で窒化処理
することにより、高い磁気特性と優れた耐酸化性を併せ
持つ希土類−Fe−M−N系磁性材料が得られる。
As a result, a rare earth-Fe-MN magnetic material having both high magnetic properties and excellent oxidation resistance can be provided. According to the second aspect, a magnetic material whose Curie point and magnetization are raised and whose oxidation resistance is further improved can be obtained. According to claim 3, the crystal structure of the main phase is R and F
An atmosphere containing at least one of a nitrogen gas and an ammonia gas, which is a rhombohedral crystal or a hexagonal crystal whose main component is e and has a microstructure in which the M component is dispersed in the main phase. By performing nitriding at a temperature of 200 to 650 ° C., a rare earth-Fe—M—N magnetic material having both high magnetic properties and excellent oxidation resistance can be obtained.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 1/032 - 1/08 C22C 38/00 303 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01F 1/032-1/08 C22C 38/00 303

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式Rw Fex y z で表される物
質からなり、(但し、RはYを含む希土類元素から選ば
れた少なくとも一種の元素、MはCuおよびInから選
ばれた少なくとも一種の元素であり、w、x、y、zは
各成分元素の原子百分率を示し、下記(1)〜(4)式
を同時に満たす。) 3≦w≦20 ……(1) 25≦x≦93.95……(2) 0.05≦y≦50 ……(3) 3≦z≦30 ……(4) 主相の結晶構造が、前記R、Fe、及びNを主成分とす
る菱面体晶又は六方晶であるとともに、この主相内に前
記M成分を主体とする介在物が分散している微構造をな
し、前記介在物間の平均距離が0.01〜0.5μmで
あることを特徴とする磁性材料。
1. A consists formula R w Fe x M y N z substance represented by, (wherein, R represents at least one element selected from rare earth elements including Y, M is selected from Cu and In And w, x, y, and z represent the atomic percentage of each component element and satisfy the following expressions (1) to (4) at the same time.) 3 ≦ w ≦ 20 (1) 25 ≦ x ≦ 93.95 (2) 0.05 ≦ y ≦ 50 (3) 3 ≦ z ≦ 30 (4) The crystal structure of the main phase is mainly composed of R, Fe and N. And a microstructure in which inclusions mainly composed of the M component are dispersed in the main phase, and the average distance between the inclusions is 0.01 to 0.1 mm. A magnetic material having a thickness of 5 μm.
【請求項2】前記Fe成分の0.01〜50原子%をC
oで置換したことを有することを特徴とする請求項1記
載の磁性材料。
2. The method according to claim 1, wherein 0.01 to 50 atomic% of the Fe component is C.
2. The magnetic material according to claim 1, wherein the magnetic material is substituted with o.
【請求項3】一般式Rw/ (100-z)Fex/(100-z)
y/(100-z) で表され、(但し、RはYを含む希土類元素
から選ばれた少なくとも一種の元素、MはCuおよびI
nから選ばれた少なくとも一種の元素であり、w、x、
yは各成分元素の原子百分率を示し、zは後から添加さ
れるNの含有量〔原子百分率〕を示し、w、x、y、z
は下記(1)〜(4)式を同時に満たす。) 3≦w≦20 ……(1) 25≦x≦93.95……(2) 0.05≦y≦50 ……(3) 3≦z≦30 ……(4) 主相の結晶構造がRおよびFeを主成分とする菱面体晶
又は六方晶であり、この主相にM成分が分散された微構
造をなすR−Fe−M系合金を、窒素ガス、アンモニア
ガスのうち少なくとも一種を含む雰囲気下で、200〜
650℃の温度条件により窒化処理することを特徴とす
る磁性材料の製造方法。
3. The general formula R w / (100-z) Fex / (100-z) M
y / (100-z) , where R is at least one element selected from rare earth elements including Y, M is Cu and I
n, at least one element selected from n, w, x,
y indicates the atomic percentage of each component element, z indicates the content of N added later (atomic percentage), w, x, y, z
Satisfies the following equations (1) to (4) simultaneously. 3 ≦ w ≦ 20 (1) 25 ≦ x ≦ 93.95 (2) 0.05 ≦ y ≦ 50 (3) 3 ≦ z ≦ 30 (4) Crystal Structure of Main Phase Is a rhombohedral or hexagonal crystal containing R and Fe as main components, and an R-Fe-M-based alloy having a microstructure in which an M component is dispersed in the main phase is at least one of nitrogen gas and ammonia gas. In an atmosphere containing
A method for producing a magnetic material, comprising performing a nitriding treatment at a temperature of 650 ° C.
JP32088292A 1992-11-30 1992-11-30 Magnetic material and its manufacturing method Expired - Lifetime JP3209292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32088292A JP3209292B2 (en) 1992-11-30 1992-11-30 Magnetic material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32088292A JP3209292B2 (en) 1992-11-30 1992-11-30 Magnetic material and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH06168808A JPH06168808A (en) 1994-06-14
JP3209292B2 true JP3209292B2 (en) 2001-09-17

Family

ID=18126323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32088292A Expired - Lifetime JP3209292B2 (en) 1992-11-30 1992-11-30 Magnetic material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3209292B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339644B2 (en) * 2012-02-17 2013-11-13 旭化成ケミカルズ株式会社 Manufacturing method of solid material for magnet

Also Published As

Publication number Publication date
JPH06168808A (en) 1994-06-14

Similar Documents

Publication Publication Date Title
EP0101552B2 (en) Magnetic materials, permanent magnets and methods of making those
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
JP3549382B2 (en) Rare earth element / iron / boron permanent magnet and method for producing the same
JP2005527989A (en) Nanocrystalline rare earth permanent magnet materials, nanocomposite rare earth permanent magnet materials, and methods for producing these magnet materials
US5474623A (en) Magnetically anisotropic spherical powder and method of making same
JP3724513B2 (en) Method for manufacturing permanent magnet
JP2004253697A (en) Permanent magnet and material thereof
JPH1041116A (en) R-t-m-n permanent magnetic powder and manufacture of anisotropic bond magnet
JPH09190909A (en) Manufacture of r-t-n permanent magnet powder and of anisotropic bond magnet
JP3560387B2 (en) Magnetic material and its manufacturing method
Liu et al. Compositional optimization and new processes for nanocrystalline NdFeB-based permanent magnets
US4601754A (en) Rare earth-containing magnets
JPH0685369B2 (en) Permanent magnet manufacturing method
JP3367726B2 (en) Manufacturing method of permanent magnet
US4776902A (en) Method for making rare earth-containing magnets
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP3209291B2 (en) Magnetic material and its manufacturing method
JP3209292B2 (en) Magnetic material and its manufacturing method
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP3784085B2 (en) Magnetic material having stable coercive force and method for producing the same
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JPH06112019A (en) Nitride magnetic material
JP3294645B2 (en) Nitride magnetic powder and its production method
JPH045739B2 (en)
JP3200201B2 (en) Nitride magnetic powder and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12