JPH06124812A - Nitride magnet powder and its synthesizing method - Google Patents

Nitride magnet powder and its synthesizing method

Info

Publication number
JPH06124812A
JPH06124812A JP4272832A JP27283292A JPH06124812A JP H06124812 A JPH06124812 A JP H06124812A JP 4272832 A JP4272832 A JP 4272832A JP 27283292 A JP27283292 A JP 27283292A JP H06124812 A JPH06124812 A JP H06124812A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic material
rare earth
iron
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4272832A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Imaoka
伸嘉 今岡
Yoshio Suzuki
淑男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4272832A priority Critical patent/JPH06124812A/en
Publication of JPH06124812A publication Critical patent/JPH06124812A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure

Abstract

PURPOSE:To provide a rare earth-iron-nitrogen group material having excellent oxidation-resistance and high magnetic characteristic by making the rare earth- iron-nitrogen group material, having such crystal structure as of diamond or hexagonal, coexist with an metal element. CONSTITUTION:Manufactures a magnetic material represented by an equation RalphaFe(100-alpha-beta-gamma)MbetaNgamma. R is, at least, one kind of rare earth elements including Y, M is, at least, one kind of Ga, Al, Sn and Zn, and the relation among alpha, betaand gamma is, in atomic percentage, 3<=alpha20, 0.05<=beta<=50, 3<=gamma<=30. The phase, containing R, Fe, M and N, contains such crystal structure as diamond crystal or hexagonal crystal. With this, a rare earth-iron-nitrogen group material having excellent oxidation-resistance and high magnetic characteristic is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高磁気特性で耐酸化性
に優れた希土類−鉄−窒素系磁性材料で、特に小型モー
ター、アクチュエーターなどの用途に最適な磁性材料に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-iron-nitrogen based magnetic material having high magnetic properties and excellent oxidation resistance, and more particularly to a magnetic material most suitable for applications such as small motors and actuators.

【0002】[0002]

【従来の技術】磁性材料は家庭電化製品、音響製品、自
動車部品やコンピューターの周辺端末機まで、幅広い分
野で使用されており、エレクトロニクス材料としての重
要性は年々増大しつつある。特に最近、各種電気・電子
機器の小型化、高効率化が要求されてきたため、より高
性能の磁性材料が求められている。
2. Description of the Related Art Magnetic materials are used in a wide range of fields such as home electric appliances, audio products, automobile parts and peripheral terminals of computers, and their importance as electronic materials is increasing year by year. In particular, recently, there has been a demand for miniaturization and high efficiency of various electric / electronic devices, so that a magnetic material with higher performance is required.

【0003】この時代の要請に応え、Sm−Co系、N
d−Fe−B系などの希土類磁性材料の需要が急激に増
大している。しかし、Sm−Co系は原料供給が不安定
で原料コストが高く、Nd−Fe−B系は耐熱性、耐食
性に劣る問題点がある。一方、新しい希土類系磁性材料
として、希土類−鉄−窒素系磁性材料が発明されてい
る。(例えば特開平2−57663)この材料は、磁
化、異方性磁界、キュリー点が高く、Sm−Co系、N
d−Fe−B系の欠点を補う磁性材料として期待されて
いる。
In response to the demands of this era, Sm-Co type, N
The demand for rare earth magnetic materials such as d-Fe-B system is rapidly increasing. However, the Sm-Co type has a problem that the supply of the raw material is unstable and the raw material cost is high, and the Nd-Fe-B type has poor heat resistance and corrosion resistance. On the other hand, as a new rare earth magnetic material, a rare earth-iron-nitrogen magnetic material has been invented. (For example, JP-A-2-57663) This material has high magnetization, anisotropic magnetic field, and high Curie point.
It is expected as a magnetic material that supplements the drawbacks of the d-Fe-B system.

【0004】しかし、希土類−鉄−窒素系材料を細かく
粉砕して使用する場合、表面が酸化されて保磁力が低下
し、この材料が本来有している高磁気特性を充分発揮す
ることができない。この対策として、希土類−鉄−窒素
系材料に金属成分Mを含ませて磁性材料の特性を改善す
る方法が考えられる。この希土類−鉄−M−窒素組成
(M=Ga、Al)を有する材料については、特開昭6
2−177101、特開昭62−136551に開示さ
れている。
However, when a rare earth-iron-nitrogen-based material is finely pulverized and used, the surface is oxidized and the coercive force is lowered, and the high magnetic properties originally possessed by this material cannot be sufficiently exhibited. . As a countermeasure against this, a method of improving the characteristics of the magnetic material by incorporating a metal component M into the rare earth-iron-nitrogen based material can be considered. Regarding the material having this rare earth-iron-M-nitrogen composition (M = Ga, Al), Japanese Patent Laid-Open No.
2-177101, JP-A-62-136551.

【0005】特開昭62−177101、特開昭62−
136551に開示されている材料は、その製造工程及
び条件から、窒化鉄、α−鉄、窒化希土類、M及びMの
窒化物を多く含む材料となり、従って、保磁力を初めと
する磁気特性は著しく劣化して、これらの材料は高性能
な磁石材料とならない。このようなことから、磁気特性
が高い菱面体晶又は六面体晶の結晶構造を有し、しかも
耐酸化性に優れた希土類−鉄−M−窒素系材料は現在知
られておらず、その出現が強く望まれている。
JP-A-62-177101, JP-A-62-
The material disclosed in No. 136551 is a material containing a large amount of iron nitride, α-iron, rare earth nitride, and M and M nitrides due to its manufacturing process and conditions, and therefore, its magnetic properties such as coercive force are remarkably high. Deteriorating, these materials do not become high performance magnet materials. From this, a rare earth-iron-M-nitrogen-based material having a rhombohedral or hexahedral crystal structure with high magnetic properties and excellent in oxidation resistance is not currently known, and its appearance Strongly desired.

【0006】[0006]

【発明が解決しようとする課題】本発明は、菱面体晶又
は六方晶の結晶構造を有した希土類−鉄−窒素系材料に
金属元素Mを共存させて、高い磁気特性と優れた耐酸化
性を合わせ持つ希土類−鉄−M−窒素組成の磁性材料及
び上記金属元素Mを粒界部に多く存在させることにより
さらに耐酸化性能を高めた希土類−鉄−M−窒素組成の
磁性材料とその製造法を提供するものである。
DISCLOSURE OF THE INVENTION According to the present invention, a rare earth-iron-nitrogen-based material having a rhombohedral or hexagonal crystal structure is allowed to coexist with a metal element M, whereby high magnetic properties and excellent oxidation resistance are obtained. And a magnetic material having a rare earth-iron-M-nitrogen composition and a magnetic material having a rare earth-iron-M-nitrogen composition in which a large amount of the above-mentioned metal element M is present in the grain boundary portion to further improve oxidation resistance. It provides the law.

【0007】[0007]

【課題を解決するための手段】高い磁気特性と耐酸化性
を有する希土類−鉄−窒素系磁性材料を得るために、種
々の元素(M)を添加した系について鋭意検討した結
果、磁気特性が高く耐酸化性の優れた組成及び結晶構
造、さらに微構造を有する希土類(R)−鉄(Fe)−
M−窒素(N)系磁性材料を見いだし、本発明を成すに
至った。
[Means for Solving the Problems] In order to obtain a rare earth-iron-nitrogen based magnetic material having high magnetic properties and oxidation resistance, as a result of extensive studies on a system to which various elements (M) are added, the magnetic properties are Rare earth (R) -iron (Fe) -having high composition and crystal structure with high oxidation resistance and fine structure
The present invention was accomplished by finding an M-nitrogen (N) based magnetic material.

【0008】即ち、本発明は(1)一般式RαFe
(100- α- β- γ) MβNγで表される磁性材料であ
り、RはYを含む希土類元素のうち少なくとも一種、M
は、Ga、Al、Sn、Znの元素のうち少なくとも一
種、α、β、γは原子百分率で 3≦α≦20 0.05≦β≦50 3≦γ≦30 であって、かつそのR、Fe、M及びNを含んだ相が菱
面体晶又は六方晶の結晶構造を含有することを特徴とす
る磁性材料、及び、(2)一般式RαFe(100- α- β
- γ) MβNγで表される磁性材料であり、RはYを含
む希土類元素のうち少なくとも一種、Mは、Ga、A
l、Sn、Znの元素のうち少なくとも一種、α、β、
γは原子百分率で 3≦α≦20 0.5≦β≦50 3≦γ≦30 であって、かつそのR、Fe及びNを含んだ相が菱面体
晶又は六方晶の結晶構造を含有する磁性材料のうち、結
晶粒界部のM含有量が結晶中心部のM含有量より多い微
構造を有することを特徴とする磁性材料、及び、(3)
上記請求項1または2に記載の磁性材料の成分であるF
eの0.01〜50原子%をCoで置換した組成を有す
ることを特徴とする磁性材料であり、(4)一般式Rα
/(100-γ) Fe(100- α- β- γ)/(100- γ) Mβ
/(100-γ)で表される合金を、窒素ガス、アンモニアガ
スのうち少なくとも一種を含む雰囲気下で、200〜6
50℃の範囲で熱処理することを特徴とする上記請求項
1又は2又は3に記載の磁性材料の製造法である。
That is, the present invention provides (1) the general formula RαFe
(100- α - β - γ ) is a magnetic material represented by MβNγ, where R is at least one of rare earth elements including Y, M
Is at least one element of Ga, Al, Sn and Zn, α, β and γ are atomic percentages of 3 ≦ α ≦ 20 0.05 ≦ β ≦ 50 3 ≦ γ ≦ 30, and R thereof, A magnetic material characterized in that a phase containing Fe, M and N contains a rhombohedral or hexagonal crystal structure, and (2) a general formula RαFe (100- α - β
- gamma) is a magnetic material represented by Emubetaenuganma, at least one kind of rare earth element R, including the Y, M is, Ga, A
at least one of the elements 1, Sn, Zn, α, β,
γ is an atomic percentage of 3 ≦ α ≦ 20 0.5 ≦ β ≦ 50 3 ≦ γ ≦ 30, and the phase containing R, Fe and N contains a rhombohedral or hexagonal crystal structure. Among the magnetic materials, a magnetic material having a microstructure in which the M content in the crystal grain boundary portion is higher than the M content in the crystal center portion, and (3)
F which is a component of the magnetic material according to claim 1 or 2
A magnetic material having a composition in which 0.01 to 50 atomic% of e is replaced by Co, and (4) the general formula Rα
/ (100- γ) Fe (100- α - β - γ) / (100- γ) Mβ
The alloy represented by / (100- γ ) is used for 200 to 6 in an atmosphere containing at least one of nitrogen gas and ammonia gas.
The method for producing a magnetic material according to claim 1, 2 or 3, wherein the heat treatment is performed in a range of 50 ° C.

【0009】以下本発明について詳細に説明する。希土
類(R)としては、Y、La、Ce、Pr、Nd、P
m、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、YbおよびLuのうち少なくとも一種を含めば良
く、従って、ミッシュメタルやジジム等の二種以上の希
土類元素の混合物を用いても良いが、好ましい希土類と
しては、Y、Ce、Pr、Nd、Sm、Gd、Dy、E
rである。さらに好ましくは、Y、Ce、Pr、Nd、
Smである。
The present invention will be described in detail below. As rare earth (R), Y, La, Ce, Pr, Nd, P
m, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
It suffices to include at least one of m, Yb and Lu. Therefore, a mixture of two or more kinds of rare earth elements such as misch metal and didymium may be used, but preferable rare earth elements are Y, Ce, Pr, Nd, Sm, Gd, Dy, E
r. More preferably, Y, Ce, Pr, Nd,
It is Sm.

【0010】また、このRは工業的生産により入手可能
な純度でよく、製造上不可避の不純物、例えばO、H、
C、Al、Si、F、Na、Mg、Ca、Liなどが存
在していても差し支えない。鉄(Fe)は、強磁性を担
う本磁性材料の基本組成であるが、Feのうち0.01
〜50原子%をCoで置換しても良く、この場合キュリ
ー点、磁化の上昇、耐酸化性の向上が期待される。以
下、鉄成分と表記した場合、Coで最大50原子%まで
置換した場合も含むものとする。
Further, this R may have a purity which can be obtained by industrial production, and impurities which are unavoidable in production, such as O, H,
C, Al, Si, F, Na, Mg, Ca, Li and the like may be present. Iron (Fe) is the basic composition of the present magnetic material responsible for ferromagnetism.
˜50 atomic% may be replaced by Co, and in this case, it is expected that the Curie point, the increase in magnetization and the oxidation resistance are improved. Hereinafter, the expression "iron component" includes the case where Co is replaced up to 50 atomic%.

【0011】本発明におけるR−Fe−M−N系磁性材
料の組成は、希土類が3〜20原子%、鉄成分が25〜
93.95原子%、Nが3〜30原子%の範囲にあるこ
とが必要である。R成分が3原子%未満のとき、鉄成分
を多く含む軟磁性相が分離し、窒化物の保磁力が低下し
て実用的な永久磁石とならない。またR成分が20原子
%を越えると、残留磁束密度が低下して好ましくない。
又、希土類の組成として好ましくは5〜15原子%、更
に好ましくは7〜12原子%である。
The composition of the R-Fe-MN magnetic material in the present invention is 3 to 20 atom% of rare earth and 25 to 25% of iron component.
It is necessary that 93.95 atomic% and N are in the range of 3 to 30 atomic%. When the R component is less than 3 atomic%, the soft magnetic phase containing a large amount of iron component is separated, and the coercive force of the nitride is reduced, so that a practical permanent magnet cannot be obtained. On the other hand, if the R component exceeds 20 atomic%, the residual magnetic flux density decreases, which is not preferable.
The composition of the rare earth is preferably 5 to 15 atom%, more preferably 7 to 12 atom%.

【0012】M成分としては、0.05〜50原子%の
範囲とする必要がある。50原子%を越えると飽和磁化
が低下して好ましくなく、0.05原子%未満の場合は
耐酸化性に対するMの添加効果がほとんどない。また、
M成分量の好ましい範囲としては、0.1〜30原子%
である。M成分としてのGa、Al、Sn、Znに加え
て、Mn、Cr、Ni、Li、Na、K、Mg、Ca、
Sr、Ba、Ti、Zr、Hf、V、Nb、Ta、M
o、W、Pd、Cu、Ag、B、In、C、Si、G
e、Pb、Biの元素のうち1種または2種以上(M’
成分)を添加しても良いが、これらの含有量はGa、A
l、Sn、Znの合計量を越えないで、しかもGa、A
l、Sn、Znとの合計量が50原子%以下の範囲にあ
る様にしなければならない。
The content of M must be in the range of 0.05 to 50 atomic%. If it exceeds 50 atom%, the saturation magnetization is lowered, which is not preferable, and if it is less than 0.05 atom%, there is almost no effect of adding M on the oxidation resistance. Also,
The preferable range of the amount of M component is 0.1 to 30 atom%.
Is. In addition to Ga, Al, Sn, and Zn as M components, Mn, Cr, Ni, Li, Na, K, Mg, Ca,
Sr, Ba, Ti, Zr, Hf, V, Nb, Ta, M
o, W, Pd, Cu, Ag, B, In, C, Si, G
One or more of the elements e, Pb and Bi (M '
Ingredients) may be added, but their contents are Ga, A
Do not exceed the total amount of 1, Sn, Zn, and Ga, A
The total amount of 1, Sn, and Zn must be in the range of 50 atomic% or less.

【0013】R−Fe−M−N系磁性材料の主相の結晶
構造としては、六方晶並びに菱面体晶のうち少なくとも
一種を体積分率で全体の50%以上含むことが必要であ
る。ここにいう主相とは、少なくともR、Fe及びNを
含み、かつ菱面体晶又は六方晶の結晶構造を有する相の
ことであり、それ以外の組成、結晶構造を有する相を副
相と呼ぶ。例えば、副相としてRFe12-XX y 相、
RFe12-Xy 相といった正方晶を取る磁性の高い窒化
物相を含んでいても良いが、本発明の耐酸化性の効果を
充分発揮させるためには、その体積分率は本発明の磁性
材料の体積分率を越えてはならない。主相の体積分率が
75%を越える場合、実用上極めて好ましい材料とな
る。
The crystal structure of the main phase of the R-Fe-MN magnetic material must include at least one of hexagonal and rhombohedral crystals in a volume fraction of 50% or more. The main phase referred to here is a phase containing at least R, Fe and N and having a rhombohedral or hexagonal crystal structure, and a phase having any other composition or crystal structure is called a subphase. . For example, the RFe 12-X M X N y phase as the sub - phase,
A high-magnetism nitride phase having a tetragonal crystal structure such as the RFe 12 -X N y phase may be contained, but in order to fully exert the effect of the oxidation resistance of the present invention, the volume fraction thereof is the same as that of the present invention. The volume fraction of magnetic material should not be exceeded. When the volume fraction of the main phase exceeds 75%, it is a very preferable material for practical use.

【0014】本発明で得られるR−Fe−M−N系材料
の主相は、結晶構造がその原料とするR−Fe−M合金
の主原料相とほぼ同じ対称性を有し、窒素が格子間に侵
入するかもしくはM成分などと置換して導入され、結晶
格子が多くの場合膨張する。ここにいう主原料相とは、
少なくともR及びFeを含み、かつ菱面体晶又は六方晶
の結晶構造を有する相のことであり、それ以外の組成、
結晶構造を有し、かつNを含まない相を副原料相と呼
ぶ。
The main phase of the R-Fe-M-N-based material obtained in the present invention has a crystal structure having substantially the same symmetry as the main raw material phase of the R-Fe-M alloy used as the raw material, and nitrogen is It is introduced between the lattices or replaced with the M component, and the crystal lattice is expanded in many cases. The main raw material phase here is
A phase containing at least R and Fe and having a rhombohedral or hexagonal crystal structure, and a composition other than that,
A phase having a crystal structure and containing no N is called an auxiliary material phase.

【0015】結晶格子の膨張に伴い、耐酸化性及び磁気
特性の各項目のうち一項目以上が向上し、実用上好適な
磁性材料となる。ここにいう磁気特性とは、材料の飽和
磁化(4πIs)、残留磁束密度(Br)、磁気異方性
磁界(Ha)、磁気異方性エネルギー(Ea)、磁気異
方性比、キュリー点(Tc)、固有保磁力(iHc)、
角形比(Br/4πIs)、最大エネルギー積[(B
H)max]、熱減磁率(α)、保磁力の温度変化率
(β)のうち少なくとも一つを言う。但し、磁気異方性
比とは、外部磁場を15kOe印加した時の困難磁化方
向の磁化(a)と容易磁化方向の磁化(b)の比(a/
b)であり、磁気異方性比が小さいもの程、磁気異方性
エネルギーが高いと評価される。
With the expansion of the crystal lattice, one or more of the items of oxidation resistance and magnetic properties are improved, and the magnetic material is suitable for practical use. The magnetic properties referred to here are the saturation magnetization (4πIs) of the material, the residual magnetic flux density (Br), the magnetic anisotropy magnetic field (Ha), the magnetic anisotropy energy (Ea), the magnetic anisotropy ratio, and the Curie point ( Tc), intrinsic coercive force (iHc),
Squareness ratio (Br / 4πIs), maximum energy product [(B
H) max], thermal demagnetization rate (α), and coercive force temperature change rate (β). However, the magnetic anisotropy ratio is the ratio (a / a) between the magnetization (a) in the difficult magnetization direction and the magnetization (b) in the easy magnetization direction when an external magnetic field of 15 kOe is applied.
b), and the smaller the magnetic anisotropy ratio, the higher the magnetic anisotropy energy is evaluated.

【0016】例えば、希土類−鉄−M母合金として、菱
面体構造を有するSm10.5(Fe0. 95Sn0.0589.5
選んだ場合、窒素を導入することによって、結晶磁気異
方性が面内異方性から硬磁性材料として好適な一軸異方
性に変化し、磁気異方性エネルギーを初めとする磁気特
性と耐酸化性が向上する。導入される窒素(N)量は、
3〜30原子%にしなければならない。30原子%を越
えると磁化が低く、磁石材料用途としては実用性が小さ
い。3原子%未満では原料合金の性能をあまり向上させ
ることができず、好ましくない。窒素量としてさらに好
ましくは、5〜25原子%、特に好ましくは10〜17
原子%である。
[0016] For example, rare earth - as an iron -M master alloy, when choosing the Sm 10.5 (Fe 0. 95 Sn 0.05 ) 89.5 having a rhombohedral structure, by introducing nitrogen, crystal magnetic anisotropy in-plane Anisotropy changes to uniaxial anisotropy suitable for a hard magnetic material, and magnetic properties such as magnetic anisotropy energy and oxidation resistance are improved. The amount of nitrogen (N) introduced is
It must be 3 to 30 atomic%. If it exceeds 30 atomic%, the magnetization is low, and its practicality as a magnet material is small. If it is less than 3 atomic%, the performance of the raw material alloy cannot be improved so much, which is not preferable. The amount of nitrogen is more preferably 5 to 25 atomic%, particularly preferably 10 to 17
It is atomic%.

【0017】また、目的とするR−Fe−M−N系磁性
材料のR−Fe−M主原料相の組成比や副原料相の量比
さらに結晶構造などによって、最適な窒素量は異なり、
例えば菱面体構造を有するNd10.5(Fe0.9
0.1 89.5を原料合金として選ぶと、最適な窒素量は
13〜14原子%付近となる。このときの最適な窒素量
とは、目的に応じて異なるが材料の耐酸化性及び磁気特
性のうち少なくとも一項目が最適となる窒素量であり、
磁気特性が最適とは磁気異方性比、減磁率及び保磁力の
温度変化率の絶対値は極小、その他は極大となることで
ある。
The optimum nitrogen content differs depending on the composition ratio of the main raw material phase of the target R-Fe-M-N magnetic material, the amount ratio of the auxiliary raw material phase, and the crystal structure.
For example, Nd 10.5 (Fe 0.9 A having a rhombohedral structure
If 0.1 0.1 ) 89.5 is selected as the raw material alloy, the optimum nitrogen content is around 13 to 14 atomic%. The optimum nitrogen amount at this time is a nitrogen amount that is optimal for at least one of the oxidation resistance and magnetic properties of the material, although it varies depending on the purpose.
The optimum magnetic property is that the absolute values of the magnetic anisotropy ratio, the demagnetization rate, and the temperature change rate of the coercive force are minimum, and the others are maximum.

【0018】本発明により得られたR−Fe−M−N系
磁性材料には、水素(H)が0.01〜15原子%、さ
らに酸素(O)が0.01〜15原子%含まれることが
好ましい。更に好ましい水素量及び酸素量は、0.1〜
10原子%及び0.1〜10原子%である。従って、本
発明の請求項1に示したR−Fe−M−N系磁性材料の
特に好ましい組成は、一般式RαFe(100- α- β- γ
- δ- ε) MβNγHδOεで表わしたとき、α、β、
γ、δ、εは原子%で、 2.4≦α≦20 0.04≦β≦50 2.4≦γ≦30 0.1≦δ≦10 0.1≦ε≦10 の範囲である。
The R—Fe—M—N magnetic material obtained by the present invention contains 0.01 to 15 atomic% of hydrogen (H) and 0.01 to 15 atomic% of oxygen (O). It is preferable. A more preferable amount of hydrogen and oxygen is 0.1 to
It is 10 atomic% and 0.1-10 atomic%. Therefore, the particularly preferable composition of the R—Fe—M—N magnetic material shown in claim 1 of the present invention is represented by the general formula RαFe (100- α - β - γ).
- δ - ε) when expressed in MβNγHδOε, α, β,
γ, δ, and ε are atomic%, and are in the range of 2.4 ≦ α ≦ 20 0.04 ≦ β ≦ 50 2.4 ≦ γ ≦ 30 0.1 ≦ δ ≦ 10 0.1 ≦ ε ≦ 10.

【0019】本発明の請求項2に示したR−Fe−M−
N系磁性材料の特に好ましい組成範囲は、上記と同様な
一般式で示した場合、 2.4≦α≦20 0.4≦β≦50 2.4≦γ≦30 0.1≦δ≦10 0.1≦ε≦10 となる。
R-Fe-M- according to claim 2 of the present invention
A particularly preferable composition range of the N-based magnetic material is 2.4 ≦ α ≦ 20 0.4 ≦ β ≦ 50 2.4 ≦ γ ≦ 30 0.1 ≦ δ ≦ 10 when represented by the same general formula as described above. 0.1 ≦ ε ≦ 10.

【0020】R−Fe−N系磁性材料に対するM成分の
共存効果としては、主に耐酸化性の向上である。特に、
R−Fe−N系磁性材料の酸化による劣化では、磁化の
低下に比べ、保磁力の低下が問題となる。本発明の組成
物は酸化に対する保磁力の安定性に優れる特徴を有す
る。その特徴を構成するM成分の2つの効果は、主相共
存効果及び酸素遮断効果である。 第1の効果の源は強
磁性を担うR−Fe−N磁性材料主相にM成分が共存す
ることにより、主相そのものが酸化されづらくなって磁
化の劣化を妨げる。
The coexistence effect of the M component with respect to the R-Fe-N magnetic material is mainly improvement of oxidation resistance. In particular,
Deterioration of the R—Fe—N-based magnetic material due to oxidation causes a problem of a decrease in coercive force as compared with a decrease in magnetization. The composition of the present invention is characterized by excellent stability of coercive force against oxidation. The two effects of the M component constituting the feature are a main phase coexistence effect and an oxygen blocking effect. The source of the first effect is that the M component coexists in the main phase of the R—Fe—N magnetic material that is responsible for ferromagnetism, so that the main phase itself becomes difficult to oxidize and prevents deterioration of magnetization.

【0021】第2の効果は、本発明で選ばれたM成分の
濃度が粒界で高く、中心部で実質上0であるような微構
造を持つR−Fe−M−N系磁性材料を製造した場合、
耐酸化性の優れた磁性材料となることである。即ち、M
成分に富んだ粒界層は、主に酸素から磁性粉を遮断し、
保磁力低下の原因となる表面軟磁性層の析出を防ぐ効果
を持たらす事である。
The second effect is to use an R-Fe-MN magnetic material having a microstructure in which the concentration of the M component selected in the present invention is high at the grain boundaries and substantially zero at the central portion. When manufactured,
It is to be a magnetic material having excellent oxidation resistance. That is, M
The grain boundary layer rich in components shields the magnetic powder mainly from oxygen,
The purpose is to prevent the deposition of the surface soft magnetic layer, which causes a decrease in coercive force.

【0022】同様にして、R−Fe−M−N系磁性材料
の結晶粒界層にM成分含有量が高い層を導入すると、主
相共存効果と上記の酸素遮断効果との相乗作用により極
めて高い耐酸化性能を有する磁性材料が得られる。本発
明の結晶粒界にM成分を偏析させたR−Fe−M−N系
磁性材料は、その結晶粒界のM成分含有量が中心部のM
成分含有量以下であるR−Fe−M−N系磁性材料より
耐酸化性能が高いという特徴を有する。これは、M成分
以外の多くのM’成分には見られない効果である。
Similarly, when a layer having a high content of M component is introduced into the crystal grain boundary layer of the R-Fe-MN magnetic material, a synergistic effect of the main phase coexisting effect and the above oxygen blocking effect is extremely exerted. A magnetic material having high oxidation resistance can be obtained. In the R-Fe-MN magnetic material in which the M component is segregated in the crystal grain boundary of the present invention, the M component content of the crystal grain boundary is M at the central portion.
It is characterized in that it has higher oxidation resistance performance than the R-Fe-M-N based magnetic material having a component content or less. This is an effect not seen in many M ′ components other than the M component.

【0023】本発明にいう耐酸化性能とは、酸化雰囲気
中での磁気特性の安定性のことをいう。これを評価する
方法としては、例えば大気中0〜250℃における磁化
及び保磁力の経時変化や、残留磁束密度の劣化と正の相
関がある酸化重量増加などの測定が挙げられ、初期の磁
気特性が大きく低下しない磁性材料ほど耐酸化性能が高
いと判定される。
The oxidation resistance referred to in the present invention refers to the stability of magnetic characteristics in an oxidizing atmosphere. As a method for evaluating this, for example, changes in magnetization and coercive force with time at 0 to 250 ° C. in the atmosphere, measurement of an increase in oxidized weight having a positive correlation with deterioration of residual magnetic flux density, etc. It is judged that the magnetic material having a higher decrease in the oxidation resistance has a higher oxidation resistance.

【0024】要求される耐酸化性能及びその測定法は、
用途に応じて異なるが、少なくとも本発明の磁性材料を
用いれば、M成分のないR−Fe−N系磁性材料より高
い耐酸化性能が得られ、本発明の請求項で規定する磁性
材料は多くの用途で使用可能な材料である。なお、本発
明の磁性は、母合金の調整方法やM成分の添加方法及び
条件によっては、粒表面、粒界近傍、或はRFe3 相な
どのRリッチの窒化物相並びにα−Fe相またはそれら
の窒化物相の様なR−Fe−N組成の材料では軟磁性を
示す副相にM成分が凝縮されて、非磁性相化されること
により、窒化物の角形比や保磁力の絶対値を向上させる
効果も有している。
The required oxidation resistance and its measuring method are as follows:
Although it depends on the application, at least the magnetic material of the present invention provides higher oxidation resistance performance than the R-Fe-N magnetic material having no M component, and many magnetic materials specified in the claims of the present invention can be obtained. It is a material that can be used for. The magnetism of the present invention depends on the method of adjusting the mother alloy, the method of adding the M component, and the conditions, depending on the grain surface, near the grain boundaries, or the R-rich nitride phase such as the RFe 3 phase and the α-Fe phase or In a material having an R-Fe-N composition such as the nitride phase, the M component is condensed in the sub-phase exhibiting soft magnetism and turned into a non-magnetic phase, so that the squareness ratio and the absolute coercive force of the nitride are absolute. It also has the effect of improving the value.

【0025】以下、本発明の製造法について例示する。 (1)母合金の調製 本発明の磁性材料において、窒化原料となるR−Fe−
M母合金の主原料相は、R−Fe合金結晶構造中のFe
サイトにM成分が置き替わる構造を取り、本発明の主相
共存効果を発揮する。従って、Mの添加は第1に母合金
調整の段階で行うことが望ましい。
The production method of the present invention will be illustrated below. (1) Preparation of master alloy In the magnetic material of the present invention, R-Fe- serving as a nitriding raw material
The main raw material phase of the M mother alloy is Fe in the R-Fe alloy crystal structure.
The site has a structure in which the M component is replaced, and exhibits the main phase coexisting effect of the present invention. Therefore, it is desirable that the addition of M is first performed at the stage of preparing the master alloy.

【0026】R−Fe−M合金の製造法としては、R、
Fe、M金属を高周波により溶解し、鋳型などに鋳込む
高周波溶解法、銅などのボートに金属成分を仕込み、ア
ーク放電により溶かし込むアーク溶解法、高周波溶解し
た溶湯を、回転させた銅ロール上に落しリボン状の合金
を得る超急冷法、高周波溶解した溶湯をガスで噴霧して
合金粉体を得るガスアトマイズ法、Fe及びまたはMの
粉体またはFe−M合金粉体、R及びまたはMの酸化物
粉体、及び還元剤を高温下で反応させ、RまたはR及び
Mを還元しながら、RまたはR及びMを、Fe及びまた
はFe−M合金粉末中に拡散させるR/D法、各金属成
分単体及びまたは合金をボールミルなどで微粉砕しなが
ら反応させるメカニカルアロイング法、上記何れかの方
法で得た合金を水素雰囲気下で加熱し、一旦R及びまた
はMの水素化物と、Fe及びまたはMまたはFe−M合
金に分解し、この後高温下で低圧として水素を追い出し
ながら再結合させ合金化するHDDR法のいずれを用い
てもよい。
The R-Fe-M alloy can be produced by using R,
High-frequency melting method in which Fe and M metals are melted by high frequency and cast in a mold, arc melting method in which metal components are charged in a boat such as copper and melted by arc discharge, high-frequency molten metal is rotated on a copper roll Quenching method for obtaining a ribbon-shaped alloy, a gas atomization method for obtaining an alloy powder by spraying a high-frequency molten metal with a gas, Fe and / or M powder or Fe-M alloy powder, R and / or M powder R / D method of reacting an oxide powder and a reducing agent at a high temperature to reduce R or R and M while diffusing R or R and M into Fe and / or Fe-M alloy powder. A mechanical alloying method in which a metal component alone and / or an alloy is reacted while being finely pulverized by a ball mill or the like, and the alloy obtained by any one of the above methods is heated in a hydrogen atmosphere, and once converted into a hydride of R and / or M. Decomposed into Fe and or M or Fe-M alloy, both the may be used in the HDDR method alloying are recombined while removing hydrogen as low at a high temperature after this.

【0027】高周波溶解法、アーク溶解法を用いた場
合、溶融状態から、合金が凝固する際にFe主体の軟磁
性成分が析出しやすく、特に窒化工程を経た後も保磁力
の低下をひきおこす。そこで、この軟磁性成分を消失さ
せたり、結晶性を向上させる目的として、アルゴン、ヘ
リウムなどの不活性ガス中もしくは真空中、800℃〜
1300℃の温度範囲で焼鈍を行うことが有効である。
この方法で作製した合金は、超急冷法などを用いた場合
に比べ、結晶粒径が大きく結晶性が良好であり、高い残
留磁束密度を有している。
When the high frequency melting method or the arc melting method is used, a soft magnetic component mainly composed of Fe is likely to precipitate from the molten state when the alloy is solidified, and particularly the coercive force is lowered even after the nitriding step. Therefore, for the purpose of eliminating the soft magnetic component or improving the crystallinity, the temperature is 800 ° C. or higher in an inert gas such as argon or helium or in a vacuum.
It is effective to anneal in the temperature range of 1300 ° C.
The alloy produced by this method has a large crystal grain size, good crystallinity, and high residual magnetic flux density, as compared with the case of using the ultra-quenching method.

【0028】また超急冷法を用いた場合は、微細な結晶
粒が得られ、条件によってはサブミクロンの粒子も調製
できる。但し、冷却速度が大きい場合には、合金の非晶
質化が起こり、窒化後においても磁化などの磁気特性が
低下する。この場合も合金調製後の焼鈍は有効である。
ガスアトマイズ法で得た合金は、球状の形態を取ること
が多く、微粉体から粗粉体まで調製することが可能であ
る。この場合も条件によっては焼鈍を行い、結晶性を良
好にすることが必要となる。この方法に加えてR/D
法、メカニカルアロイング法、HDDR法により調製し
た合金は、微細な結晶粒を調整したり、M成分の組成に
分布を持たしたり、或はピニング型の磁石材料とするこ
とが可能であるため、本発明の効果をより顕著にするこ
とが可能である。
When the ultraquenching method is used, fine crystal grains are obtained, and submicron particles can be prepared depending on the conditions. However, when the cooling rate is high, the alloy becomes amorphous and the magnetic properties such as magnetization are deteriorated even after nitriding. Also in this case, annealing after alloy preparation is effective.
The alloy obtained by the gas atomization method often takes a spherical form, and fine powder to coarse powder can be prepared. Also in this case, depending on the conditions, it is necessary to perform annealing to improve the crystallinity. R / D in addition to this method
The alloy prepared by the method, the mechanical alloying method, or the HDDR method can have fine crystal grains adjusted, the composition of the M component has a distribution, or a pinning type magnet material. The effect of the present invention can be made more remarkable.

【0029】ところで、焼鈍条件によっては、合金の結
晶相が異なる場合がある。例えば、R成分によっては、
焼鈍した場合と急冷した場合で、菱面体晶系をとる場合
と六方晶系をとる場合がある。従って、焼鈍の条件は充
分注意を要するし、また焼鈍条件を制御することで目的
とする結晶相を選ぶことができる。
By the way, depending on the annealing conditions, the crystal phase of the alloy may differ. For example, depending on the R component,
Depending on whether it is annealed or quenched, it may have a rhombohedral system or a hexagonal system. Therefore, it is necessary to pay sufficient attention to the annealing conditions, and the target crystal phase can be selected by controlling the annealing conditions.

【0030】また、後述する(4)微粉砕工程の前中後
にM成分を添加する場合は、母合金の調製段階でM成分
を添加しなくても耐酸化性能が高いR−Fe−M−N磁
性材料が得られる。 (2)粗粉砕及び分級 上記方法で作製した合金インゴットを直接窒化すること
も可能であるが、結晶粒径が500μmより大きいと窒
化処理時間が長くなり、粗粉砕を行ってから窒化する方
が効率的である。
When the M component is added before and after the (4) fine pulverization step, which will be described later, R-Fe-M- which has a high oxidation resistance even if the M component is not added in the step of preparing the mother alloy. An N magnetic material is obtained. (2) Coarse crushing and classification It is also possible to directly nitride the alloy ingot produced by the above method, but if the crystal grain size is larger than 500 μm, the nitriding time will be longer, and it is better to carry out coarse crushing before nitriding. It is efficient.

【0031】粗粉砕はジョ−クラッシャー、ハンマー、
スタンプミル、ローターミル、ピンミル、コーヒーミル
などを用いて行う。また、ボールミルやジェットミルな
どのような粉砕機を用いても、条件次第では窒化に適当
な、合金粉末の調製が可能である。また、粗粉砕の後、
ふるい、振動式あるいは音波式分級機、サイクロンなど
を用いて粒度調整を行うことも、より均質な窒化を行う
ために有効である。
For coarse crushing, a jaw crusher, a hammer,
It is performed by using a stamp mill, a rotor mill, a pin mill, a coffee mill, or the like. Further, even if a crusher such as a ball mill or a jet mill is used, it is possible to prepare an alloy powder suitable for nitriding depending on the conditions. Also, after coarse crushing,
Adjusting the particle size using a sieve, a vibration type or a sonic type classifier, or a cyclone is also effective for performing more uniform nitriding.

【0032】粗粉砕、分級の後、不活性ガスや水素中で
焼鈍を行うと構造の欠陥を除去することができ、場合に
よっては効果がある。以上で、本発明の製造法における
希土類−鉄合金の粉体原料またはインゴット原料の調製
法を例示したが、これらの原料の結晶粒径、粉砕粒径、
微構造、表面状態などにより、以下に示す窒化の最適条
件に違いが見られる。 (3)窒化・焼鈍 窒化はアンモニアガス、窒素ガスのうち少なくとも一種
を含むガスを、上記(1)または、(1)及び(2)で
得たR−Fe−M合金粉体またはインゴットに接触させ
て、結晶構造内に窒素を導入する工程である。
After coarse pulverization and classification, annealing in an inert gas or hydrogen can remove structural defects, which is effective in some cases. In the above, the rare earth-iron alloy powder raw material or ingot raw material preparation method in the production method of the present invention has been illustrated.
The optimum conditions for nitriding shown below differ depending on the microstructure and surface condition. (3) Nitriding / annealing In nitriding, a gas containing at least one of ammonia gas and nitrogen gas is brought into contact with the R-Fe-M alloy powder or ingot obtained in the above (1) or (1) and (2). And the step of introducing nitrogen into the crystal structure.

【0033】このとき、窒化雰囲気ガス中に水素ガスを
共存させると、窒化効率が高いうえに、結晶構造が安定
なまま窒化できる点で好ましい。また反応を制御するた
めに、アルゴン、ヘリウム、ネオンなどの不活性ガスな
どを共存させる場合もある。窒化反応は、ガス組成、加
熱温度、加熱処理時間、加圧力で制御し得る。このうち
加熱温度は、母合金組成、窒化雰囲気によって異なる
が、200〜650℃の範囲で選ばれる。200℃以下
では窒素の侵入速度は遅く、反応に時間がかかりすぎ好
ましくなく、650℃以上では主相が分解して磁気特性
が劣化する。
At this time, coexistence of hydrogen gas in the nitriding atmosphere gas is preferable because the nitriding efficiency is high and the nitriding can be performed while the crystal structure is stable. In addition, in order to control the reaction, an inert gas such as argon, helium, or neon may coexist. The nitriding reaction can be controlled by gas composition, heating temperature, heat treatment time, and pressure. Among them, the heating temperature is selected in the range of 200 to 650 ° C., though it depends on the mother alloy composition and the nitriding atmosphere. If the temperature is 200 ° C. or lower, the penetration rate of nitrogen is slow and the reaction takes too long, which is not preferable.

【0034】また窒化を行った後、不活性ガス及び又は
水素ガス中で焼鈍することは磁気特性を向上させる点で
好ましい。窒化・焼鈍装置としては、横型、縦型の管状
炉、回転式反応炉、密閉式反応炉などが挙げられる。何
れの装置においても、本発明の磁性材料を調整すること
が可能であるが、特に窒素組成分布の揃った粉体を得る
ためには回転式反応炉を用いるのが好ましい。
After nitriding, it is preferable to anneal in an inert gas and / or hydrogen gas in order to improve the magnetic properties. Examples of the nitriding / annealing device include horizontal and vertical tubular furnaces, rotary reaction furnaces, and closed reaction furnaces. It is possible to adjust the magnetic material of the present invention in any of the apparatuses, but it is preferable to use a rotary reactor in order to obtain a powder having a uniform nitrogen composition distribution.

【0035】反応に用いるガスは、ガス組成を一定に保
ちながら1気圧以上の気流を反応炉の送り込む気流方
式、ガスを容器に加圧力0.01〜70気圧の領域で封
入する封入方式、或いはそれらの組合せなどで供給す
る。 (4)微粉砕 例えば、単磁区粒子型のR−Fe−M−N系磁性材料や
R−Fe−N系磁性材料のうち、特に、窒化処理後も大
きな結晶粒径を保っていてかつ大きな保磁力を発現させ
たい場合、窒化処理後も多結晶粒体を保っていてかつ異
方性の硬磁性材料としたい場合などに微粉砕を行う。
The gas used for the reaction is a gas flow system in which a gas flow of 1 atm or more is fed into the reaction furnace while keeping the gas composition constant, an encapsulation system in which the gas is sealed in a container at a pressure of 0.01 to 70 atm. Supply them in combination. (4) Fine pulverization For example, among single-domain particle type R—Fe—M—N-based magnetic materials and R—Fe—N-based magnetic materials, a large crystal grain size is maintained and a large size is maintained even after nitriding treatment. Fine pulverization is performed when it is desired to develop a coercive force, or when it is desired to keep the polycrystalline grains even after nitriding and to use an anisotropic hard magnetic material.

【0036】微粉砕の方法としては、回転ボールミル、
振動ボールミル、遊星ボールミル、ウエットミル、ジェ
ットミル、カッターミル、ピンミル、自動乳鉢及びそれ
らの組合せなどが用いられる。水素や酸素の量の調整及
び目標とする粉砕粒径に応じて、微粉砕方法が選ばれ
る。
As a method of fine pulverization, a rotary ball mill,
Vibratory ball mills, planetary ball mills, wet mills, jet mills, cutter mills, pin mills, automatic mortars and combinations thereof are used. The fine pulverization method is selected according to the adjustment of the amount of hydrogen or oxygen and the target pulverized particle size.

【0037】水素や酸素の量を本発明の特に好ましい範
囲に制御する方法としては、例えばジェットミルを用い
る場合、粉砕ガス中の酸素及び水蒸気濃度を所定の濃度
に保ったり、またアトライターなどの湿式粉砕を用いる
場合は、溶媒中の溶存酸素や水分量を調整するなどの方
法が挙げられる。この工程で、本発明のM成分を添加し
た後、熱処理を行って各種磁石材料とする方法は、酸素
遮断効果のみならず絶対値を向上させる点で極めて有効
な方法である。
As a method for controlling the amounts of hydrogen and oxygen within the particularly preferred range of the present invention, for example, when a jet mill is used, the oxygen and water vapor concentrations in the pulverized gas are kept at a predetermined concentration, and an attritor or the like is used. When wet pulverization is used, methods such as adjusting the amount of dissolved oxygen and water in the solvent can be mentioned. In this step, the method of adding the M component of the present invention and then subjecting it to heat treatment to obtain various magnet materials is an extremely effective method in terms of improving not only the oxygen barrier effect but also the absolute value.

【0038】以上が本発明のR−Fe−M−N系磁性材
料の製造法に関する説明であるが、特に実用的な硬磁性
材料として本発明の磁性材料を応用する際には、(5)
磁場成形、(6)着磁を行う場合がある。以下、その例
を簡単に示す。 (5)磁場成形 例えば、(3)又は(4)で得た磁性粉体を異方性ボン
ド磁石に応用する場合、磁場中で圧縮成形したり、磁場
中で射出成形を行ったりして、磁場成形する。
The above is a description of the method for producing the R-Fe-MN magnetic material of the present invention. In particular, when the magnetic material of the present invention is applied as a practical hard magnetic material, (5)
Magnetic field shaping and (6) magnetization may be performed. The example will be briefly described below. (5) Magnetic field molding For example, when the magnetic powder obtained in (3) or (4) is applied to an anisotropic bonded magnet, compression molding in a magnetic field or injection molding in a magnetic field is performed. Magnetic field molding.

【0039】磁場成形は、R−Fe−M−N系磁性材料
を充分に磁場配向せしめるため、好ましくは10kOe
以上、さらに好ましくは15kOe以上の磁場中で行
う。M成分を(4)で添加し、磁場成形工程の前、中、
後で熱処理を行う方法は特に有効である。 (6)着磁 (5)で得た異方性ボンド磁石材料や、焼結磁石材料に
ついては、磁石性能を高めるために、通常着磁が行われ
る。
The magnetic field shaping is preferably 10 kOe in order to sufficiently orient the magnetic field of the R-Fe-MN magnetic material.
Above, more preferably in a magnetic field of 15 kOe or more. M component was added in (4), before and during the magnetic field molding step,
The method of performing the heat treatment later is particularly effective. (6) Magnetization The anisotropic bonded magnet material and the sintered magnet material obtained in (5) are usually magnetized in order to improve the magnet performance.

【0040】着磁は、例えば静磁場を発生する電磁石、
パルス磁場を発生するコンデンサー着磁器などによって
行う。充分着磁を行わしめるための、磁場強度は、好ま
しくは15kOe以上、さらに好ましくは30kOe以
上である。
The magnetization is, for example, an electromagnet that generates a static magnetic field,
It is performed by a condenser magnetizer that generates a pulsed magnetic field. The magnetic field strength for sufficiently magnetizing is preferably 15 kOe or more, more preferably 30 kOe or more.

【0041】[0041]

【実施例】以下、実施例により本発明を具体的に説明す
る。評価方法は以下のとおりである。 (1)磁気特性 平均粒径約3μmのR−Fe−M−N系磁性材料を、外
部磁場15kOe中、12ton/cm2 で5mm×1
0mm×2mm程度に成形し、室温で60kOeの磁場
でパルス着磁した後、振動試料型磁力計(VSM)を用
いて、固有保磁力(iHc/kOe)を測定した。 (2)窒素量、酸素量及び水素量 Si3 4 (SiO2 を定量含む)を標準試料として、
不活性ガス融解法により窒素量及び酸素量を定量した。
水素量は、高純度水素ガス(99.999%)を標準ガ
スとして、不活性ガス融解法により定量した。 (3)平均粒径 リー・ナース比表面積計を用いて、評価した。 (4)耐酸化性能 (1)で評価した平均粒径3μmの粉体の成形品を、1
10℃の恒温槽に入れ、200時間後の固有保磁力を
(1)と同様にして測定し、(1)の結果と比較して固
有保磁力の保持率(%)を求めた。保持率の高いものほ
ど、耐酸化性能が高い。なお、本試験では、バインダー
を含まない圧粉体で評価しているので、保持率70%を
越える材料については、実用上許容範囲の耐酸化性能を
有すると判断できる。但し、実施例の中で粉体にM成分
を加え熱処理した材料については、実用の形態と同等で
あるので、保持率90%を越える材料を耐酸化性の優れ
た磁性材料と判定する。 (5)酸化試験 平均粒径15μmに調整した粗粉体試料10mgを熱天
秤に入れ、50ml/minの空気気流中、昇温速度1
0℃/minの条件で50℃から250℃までの重量変
化率(重量%)を測定した。重量変化率の小さいものほ
ど酸化されにくい。
EXAMPLES The present invention will be specifically described below with reference to examples. The evaluation method is as follows. (1) Magnetic characteristics An R-Fe-MN magnetic material having an average particle diameter of about 3 μm was used at an external magnetic field of 15 kOe and 12 ton / cm 2 at 5 mm × 1.
After shaping into about 0 mm × 2 mm and pulse-magnetizing at room temperature with a magnetic field of 60 kOe, the intrinsic coercive force (iHc / kOe) was measured using a vibrating sample magnetometer (VSM). (2) Nitrogen amount, oxygen amount and hydrogen amount Si 3 N 4 (including a fixed amount of SiO 2 ) as a standard sample,
The amount of nitrogen and the amount of oxygen were quantified by the inert gas melting method.
The amount of hydrogen was quantified by an inert gas melting method using high-purity hydrogen gas (99.999%) as a standard gas. (3) Average particle size It was evaluated using a Lee-Nurse specific surface area meter. (4) Oxidation resistance performance A molded product of powder having an average particle diameter of 3 μm evaluated in (1) was
The sample was placed in a constant temperature bath at 10 ° C. and the intrinsic coercive force after 200 hours was measured in the same manner as in (1), and the retention rate (%) of the intrinsic coercive force was determined by comparing with the result of (1). The higher the retention rate, the higher the oxidation resistance performance. In this test, since a green compact containing no binder was evaluated, it can be judged that a material having a retention rate of more than 70% has a practically acceptable oxidation resistance. However, in the examples, the material obtained by adding the M component to the powder and subjecting it to heat treatment is equivalent to the practical form, so a material having a retention rate of more than 90% is determined to be a magnetic material having excellent oxidation resistance. (5) Oxidation test 10 mg of a coarse powder sample adjusted to have an average particle size of 15 μm was placed in a thermobalance, and the heating rate was 1 in an air stream of 50 ml / min.
The rate of weight change (% by weight) from 50 ° C. to 250 ° C. was measured under the condition of 0 ° C./min. The smaller the weight change rate, the less likely it is to be oxidized.

【0042】[0042]

【実施例1】純度99.9%のSm、純度99.9%の
Fe及び純度99.9%のAlを用いてアルゴンガス雰
囲気下高周波溶解炉で溶解混合し、次いで溶湯を純鉄の
鋳型中に流し込んで冷却し、さらにアルゴン雰囲気中
で、1050℃、35時間焼鈍することにより、Sm
11.0(Fe0.9 Al0.1 89.0組成の合金を調製した。
Example 1 Sm having a purity of 99.9%, Fe having a purity of 99.9%, and Al having a purity of 99.9% were melt-mixed in a high-frequency melting furnace under an argon gas atmosphere, and then the molten metal was cast into a pure iron mold. It is poured into the inside of the container, cooled, and further annealed at 1050 ° C. for 35 hours in an argon atmosphere to obtain Sm.
An alloy having a composition of 11.0 (Fe 0.9 Al 0.1 ) 89.0 was prepared.

【0043】この合金をジョークラッシャーにより粉砕
し、次いで窒素雰囲気中ローターミルでさらに粉砕した
後、ふるいで粒度を調整して、平均粒径約50μmの粉
体を得た。このSm−Fe−Al合金粉体を横型管状炉
に仕込み、450℃において、アンモニア分圧0.32
atm、水素ガス0.68atmの混合気流中で加熱処
理し、続いてアルゴン気流中で焼鈍したのち、平均粒径
約15μmに調整した。次いで、この粉体をジェットミ
ルにより平均粒径約3μmに粉砕した。このとき、粉砕
ガスとして、窒素を主体とし一部酸素及び水蒸気を混入
させたガスを用いた。
This alloy was crushed with a jaw crusher and then further crushed with a rotor mill in a nitrogen atmosphere, and the particle size was adjusted with a sieve to obtain a powder having an average particle size of about 50 μm. This Sm-Fe-Al alloy powder was charged into a horizontal tubular furnace and the ammonia partial pressure was 0.32 at 450 ° C.
After heat treatment in a mixed gas flow of atm and hydrogen gas of 0.68 atm, followed by annealing in an argon gas flow, the average particle size was adjusted to about 15 μm. Next, this powder was pulverized by a jet mill to an average particle size of about 3 μm. At this time, as the pulverizing gas, a gas containing nitrogen as a main component and partially mixing oxygen and water vapor was used.

【0044】得られたSm−Fe−Al−N系粉体の組
成、耐酸化性能、酸化試験結果を表1に示した。また約
3μmに粉砕したSm−Fe−Al−N系粉体の成形体
の固有保磁力は5.8kOe、残留磁束密度は8.2k
Gであった。なお、X線回折法により解析した結果、こ
の材料の結晶構造は主として菱面体晶であり、Al単体
に対応する回折線は見られなかった。
Table 1 shows the composition, oxidation resistance and oxidation test results of the obtained Sm-Fe-Al-N powder. The intrinsic coercive force of the Sm-Fe-Al-N-based powder compact pulverized to about 3 μm is 5.8 kOe, and the residual magnetic flux density is 8.2 k.
It was G. As a result of an X-ray diffraction analysis, the crystal structure of this material was mainly rhombohedral, and no diffraction line corresponding to Al alone was observed.

【0045】[0045]

【実施例2〜4】母合金の組成を、表1に示す組成に変
更する以外は実施例1と同様な操作によって、R−Fe
−M−N系粉体を得た。その結果を表1に示す。なお、
X線回折法により解析した結果、この材料の結晶構造は
主として菱面体晶であった。
Examples 2 to 4 R-Fe was prepared in the same manner as in Example 1 except that the composition of the mother alloy was changed to that shown in Table 1.
A -MN powder was obtained. The results are shown in Table 1. In addition,
As a result of analysis by an X-ray diffraction method, the crystal structure of this material was mainly rhombohedral.

【0046】[0046]

【実施例5、6】実施例1で合成した3μmのSm−F
e−Al−N系粉体にSn或いはZnを表1の組成比に
なるように添加し、2ton/cm2 、15kOeの条
件で磁場成形したあと、アルゴン雰囲気下、8ton/
cm2 、450℃、1時間の条件で加圧熱処理を行っ
た。得られた成形体の組成、耐酸化性能、酸化試験結果
を表1に示した。EPMAを用いて試料の断面を観察し
た結果、中央部より粒界部にM成分を多く含むことが判
った。
Examples 5 and 6 Sm-F of 3 μm synthesized in Example 1
Sn or Zn was added to the e-Al-N-based powder so as to have the composition ratio shown in Table 1, and magnetic field molding was performed under the conditions of 2 ton / cm 2 and 15 kOe, and then 8 ton / cm 2 in an argon atmosphere.
The pressure heat treatment was performed under the conditions of cm 2 , 450 ° C., and 1 hour. Table 1 shows the composition, oxidation resistance, and oxidation test results of the obtained molded product. As a result of observing the cross section of the sample using EPMA, it was found that the grain boundary portion contained more M component than the central portion.

【0047】[0047]

【実施例7】Alを加えないで、その分量(原子%)だ
けFeを加える以外は実施例1と同様にしてSm−Fe
−N系粉体を得たのち、この粉体を実施例6と同様にし
て加圧熱処理し、成形体を得た。その結果を表1に示
す。
[Example 7] Sm-Fe was prepared in the same manner as in Example 1 except that Al was not added but Fe (atomic%) was added.
After the -N-based powder was obtained, this powder was heat-treated under pressure in the same manner as in Example 6 to obtain a molded body. The results are shown in Table 1.

【0048】[0048]

【比較例1】Alを加えないで、その分量(原子%)だ
けFeを加える以外は実施例1と同様にして、Sm−F
e−N系粉体を得た。その結果を表1に示す。
COMPARATIVE EXAMPLE 1 Sm-F was prepared in the same manner as in Example 1 except that Al was not added and Fe was added by the amount (atomic%).
An eN powder was obtained. The results are shown in Table 1.

【0049】[0049]

【比較例2】Znの替わりに高融点のZrを添加する以
外は、実施例7と同様にして成形体を得た。その結果を
表1に示す。
Comparative Example 2 A molded product was obtained in the same manner as in Example 7, except that Zr having a high melting point was added instead of Zn. The results are shown in Table 1.

【0050】[0050]

【比較例3】実施例1で得た粒径約3μmのSm
9.1 (Fe0.9 Al0.1 74.313.90. 4 2.3 組成
の粉体を、2ton/cm2 、15kOeの条件で磁場
成形したあと、アルゴン雰囲気下、800℃、1時間の
条件で熱処理を行った。これを急冷したときの成形体の
固有保磁力は0.07kOeであった。この成形体を再
び約3μmに粉砕した粉体の固有保磁力は0.08kO
eであった。なおこの材料の結晶構造をX線回折により
解析した結果、α−鉄、窒化鉄に対応する回折線が主に
検出された。
Comparative Example 3 Sm having a particle size of about 3 μm obtained in Example 1
9.1 (Fe 0.9 Al 0.1) 74.3 N 13.9 powders H 0. 4 O 2.3 composition, After a magnetic field molding under the conditions of 2 ton / cm 2, 15 kOe, under an argon atmosphere, 800 ° C., a heat treatment under conditions of 1 hour went. The intrinsic coercive force of the molded body when it was rapidly cooled was 0.07 kOe. The intrinsic coercive force of the powder obtained by pulverizing this compact again to about 3 μm is 0.08 kO.
It was e. As a result of analyzing the crystal structure of this material by X-ray diffraction, diffraction lines mainly corresponding to α-iron and iron nitride were detected.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【発明の効果】以上説明した様に、本発明によれば、優
れた耐酸化性を有し、磁気特性の高い希土類−鉄−窒素
系磁性材料を提供することができる。
As described above, according to the present invention, it is possible to provide a rare earth-iron-nitrogen based magnetic material having excellent oxidation resistance and high magnetic properties.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一般式RαFe(100- α- β- γ) MβN
γで表される磁性材料であり、 RはYを含む希土類元素のうち少なくとも一種、 Mは、Ga、Al、Sn、Znの元素のうち少なくとも
一種、α、β、γは原子百分率で 3≦α≦20 0.05≦β≦50 3≦γ≦30 であって、かつそのR、Fe、M及びNを含んだ相が菱
面体晶又は六方晶の結晶構造を含有することを特徴とす
る磁性材料。
1. A general formula RαFe (100- α - β - γ ) MβN
R is at least one of rare earth elements including Y, M is at least one of Ga, Al, Sn, and Zn elements, and α, β, and γ are atomic percentages of 3 ≦. α ≦ 20 0.05 ≦ β ≦ 50 3 ≦ γ ≦ 30, and the phase containing R, Fe, M and N contains a rhombohedral or hexagonal crystal structure. Magnetic material.
【請求項2】一般式RαFe(100- α- β- γ) MβN
γで表される磁性材料であり、 RはYを含む希土類元素のうち少なくとも一種、 Mは、Ga、Al、Sn、Znの元素のうち少なくとも
一種、α、β、γは原子百分率で 3≦α≦20 0.5≦β≦50 3≦γ≦30 であって、かつそのR、Fe及びNを含んだ相が菱面体
晶又は六方晶の結晶構造を含有する磁性材料のうち、結
晶粒界部のM含有量が結晶中心部のM含有量より多い微
構造を有することを特徴とする磁性材料。
2. A general formula RαFe (100- α - β - γ ) MβN
R is at least one of rare earth elements including Y, M is at least one of Ga, Al, Sn, and Zn elements, and α, β, and γ are atomic percentages of 3 ≦. Among the magnetic materials, α ≦ 20 0.5 ≦ β ≦ 50 3 ≦ γ ≦ 30, and the phase containing R, Fe and N contains a rhombohedral or hexagonal crystal structure, the crystal grains A magnetic material having a microstructure in which the M content in the boundary portion is higher than the M content in the crystal center portion.
【請求項3】上記請求項1または2に記載の磁性材料の
成分であるFeの0.01〜50原子%をCoで置換し
た組成を有することを特徴とする磁性材料。
3. A magnetic material having a composition in which 0.01 to 50 atomic% of Fe, which is a component of the magnetic material according to claim 1 or 2, is replaced by Co.
【請求項4】一般式Rα/(100-γ) Fe(100- α- β-
γ)/(100- γ) Mβ/(100-γ) で表される合金を、窒素
ガス、アンモニアガスのうち少なくとも一種を含む雰囲
気下で、200〜650℃の範囲で熱処理することを特
徴とする上記請求項1又は2又は3に記載の磁性材料の
製造法。
Wherein formula Rα / (100- γ) Fe ( 100- α - β -
The alloy represented by γ ) / (100- γ )/ (100- γ ) is heat-treated at a temperature of 200 to 650 ° C. in an atmosphere containing at least one of nitrogen gas and ammonia gas. The method for producing a magnetic material according to claim 1, 2 or 3, wherein
JP4272832A 1992-10-12 1992-10-12 Nitride magnet powder and its synthesizing method Withdrawn JPH06124812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4272832A JPH06124812A (en) 1992-10-12 1992-10-12 Nitride magnet powder and its synthesizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4272832A JPH06124812A (en) 1992-10-12 1992-10-12 Nitride magnet powder and its synthesizing method

Publications (1)

Publication Number Publication Date
JPH06124812A true JPH06124812A (en) 1994-05-06

Family

ID=17519396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4272832A Withdrawn JPH06124812A (en) 1992-10-12 1992-10-12 Nitride magnet powder and its synthesizing method

Country Status (1)

Country Link
JP (1) JPH06124812A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002089153A1 (en) * 2001-04-24 2002-11-07 Asahi Kasei Kabushiki Kaisha Solid material for magnet
JP2002329603A (en) * 2001-04-27 2002-11-15 Asahi Kasei Corp Magnetic solid material and its manufacturing method
JP2003017307A (en) * 2001-06-29 2003-01-17 Asahi Kasei Corp Solid material for magnet and method of fabricating the magnet
JP2005314743A (en) * 2004-04-28 2005-11-10 Nichia Chem Ind Ltd Magnetic powder
JP2010196170A (en) * 2010-03-23 2010-09-09 Nichia Corp Magnetic powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002089153A1 (en) * 2001-04-24 2002-11-07 Asahi Kasei Kabushiki Kaisha Solid material for magnet
US7364628B2 (en) 2001-04-24 2008-04-29 Asahi Kasei Kabushiki Kaisha Solid material for magnet
JP2002329603A (en) * 2001-04-27 2002-11-15 Asahi Kasei Corp Magnetic solid material and its manufacturing method
JP2003017307A (en) * 2001-06-29 2003-01-17 Asahi Kasei Corp Solid material for magnet and method of fabricating the magnet
JP2005314743A (en) * 2004-04-28 2005-11-10 Nichia Chem Ind Ltd Magnetic powder
JP4590920B2 (en) * 2004-04-28 2010-12-01 日亜化学工業株式会社 Magnetic powder
JP2010196170A (en) * 2010-03-23 2010-09-09 Nichia Corp Magnetic powder

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
US5750044A (en) Magnet and bonded magnet
JP2001189206A (en) Permanent magnet
JP2005527989A (en) Nanocrystalline rare earth permanent magnet materials, nanocomposite rare earth permanent magnet materials, and methods for producing these magnet materials
JPH11186016A (en) Rare-earth element-iron-boron permanent magnet and its manufacture
JPH0574618A (en) Manufacture of rare earth permanent magnet
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP3560387B2 (en) Magnetic material and its manufacturing method
JPH01219143A (en) Sintered permanent magnet material and its production
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP2024020341A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JP4170468B2 (en) permanent magnet
JP2898229B2 (en) Magnet, manufacturing method thereof, and bonded magnet
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JPH06207204A (en) Production of rare earth permanent magnet
JP3784085B2 (en) Magnetic material having stable coercive force and method for producing the same
JPH06112019A (en) Nitride magnetic material
JPH10312918A (en) Magnet and bonded magnet
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JP3209291B2 (en) Magnetic material and its manufacturing method
JP3294645B2 (en) Nitride magnetic powder and its production method
JPH045739B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104