JPH10289811A - Rare-earth magnet material, method of manufacturing the same and rare-earth bonded magnet by the method - Google Patents

Rare-earth magnet material, method of manufacturing the same and rare-earth bonded magnet by the method

Info

Publication number
JPH10289811A
JPH10289811A JP9098611A JP9861197A JPH10289811A JP H10289811 A JPH10289811 A JP H10289811A JP 9098611 A JP9098611 A JP 9098611A JP 9861197 A JP9861197 A JP 9861197A JP H10289811 A JPH10289811 A JP H10289811A
Authority
JP
Japan
Prior art keywords
rare earth
magnet material
gas
earth magnet
rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9098611A
Other languages
Japanese (ja)
Inventor
Masahiro Tobiyo
飛世  正博
Katsunori Iwasaki
克典 岩崎
Hiroshi Okajima
弘 岡島
Masaaki Tokunaga
雅亮 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP9098611A priority Critical patent/JPH10289811A/en
Publication of JPH10289811A publication Critical patent/JPH10289811A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To make high the absolute value of the iHc of a rare-earth magnet material and also to lessen the temperature coefficient of the iHc by a method wherein the magnet material is composed of a comment composition, which is shown by a specified formula, has a monoclinic and/or hexagonal crystal structure and contains an R3 (Fe, M, B)29 Ny main phase of a specified mean crystal grain diameter. SOLUTION: The component composition of a rare-earth magnet material is shown by formula of RαFe100-(α+β+γ+δ)MβBγNδ and the rare-earth magnet material has a monoclinic and/or hexagonal crystal structure and contains an R3 (Fe, M, B)29 Ny main phase of a mean crystal grain diameter of 0.05 to 1.0 μm. The R is one kind of the element or more than tow kinds of the elements of some of rare-earth elements including Y and the M is one kind of the element or more than two kinds of the elements of some of Al, Ti, V, Cr, Mn, Cu, Ga, Zr, Nb, Mo, Hf, Ta and W. The (α), the (β), the (γ) and the (δ) are respectively set in the ranges of 5<=α<=18, 1<=β<=50, 0.1<=γ<=5 and 4<=δ<=30 at atomic percentage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はR3(Fe,M,
B)29y主相を含む希土類磁石材料およびその製造方
法ならびにそれを用いた希土類ボンド磁石に関する。
The present invention relates to R 3 (Fe, M,
B) A rare earth magnet material containing a 29 Ny main phase, a method for producing the same, and a rare earth bonded magnet using the same.

【0002】[0002]

【従来の技術】従来より、等方性希土類ボンド磁石用磁
粉として超急冷したNd-Fe-B系磁粉が多用されてい
るが、キュリー温度が300℃前後と低く、固有保磁力
(以後iHcと記す)の温度係数が大きいために高温で
の使用が制限されてきた。最近、Sm2Fe17化合物が
窒素を吸蔵することによりNd2Fe14B化合物よりも
160℃も高い470℃というキュリー温度を示し、そ
の異方性磁界もNd2Fe14B化合物の異方性磁界(7
5kOe)を大きく上回る260kOeになることが報
告され、ボンド磁石用磁粉として工業化が検討されてい
る。Sm2Fe17の窒化物Sm2Fe17xは例えばガス
窒化法等で作製されるが粒径を単磁区粒子(数μm)程
度にしないと5kOe以上の高いiHcが得られないと
ともに、この粒径の磁粉は容易に酸化して磁気特性が劣
化し、かつ急激な酸化による発火の危険性を伴うので現
在のところ実用化が困難である。このようにSm2Fe
17x磁粉は粒径が数μmであるのでボンド磁石に圧縮
成形する際、成形体密度を上げることができず最大エネ
ルギー積の高い希土類ボンド磁石を得られない。また、
成形性が非常に悪く作業効率を著しく低下させるという
問題がある。また、メカニカルアロイング法などの特殊
な製造方法で高いiHcが得られることが報告されてい
るが、この方法は実験室規模の少量生産に適するもの
の、コストパーフォーマンスの点で劣るため量産に至っ
ていない。さらに、Sm2Fe17x窒化物以外にもTh
Mn12型の結晶構造を有したNd(Fe,M)12x
金(MはV、Ti、Mn、Mo等の遷移金属)や、Tb
Cu7型の結晶構造を有したSmFe7x合金等が提案
されているが、磁気特性の点で不十分であったり生産性
が悪く高コストになる等の理由で実用化されていない。
2. Description of the Related Art Conventionally, ultra-quenched Nd-Fe-B-based magnetic powders have been frequently used as magnetic powders for isotropic rare-earth bonded magnets, but the Curie temperature is as low as about 300 ° C., and the intrinsic coercive force (hereinafter iHc The use at high temperatures has been limited due to the large temperature coefficient of Recently, the Sm 2 Fe 17 compound has a Curie temperature of 470 ° C., which is 160 ° C. higher than that of the Nd 2 Fe 14 B compound, due to the storage of nitrogen, and its anisotropic magnetic field is also anisotropic of the Nd 2 Fe 14 B compound. Magnetic field (7
It is reported to be 260 kOe, which is much higher than 5 kOe), and industrialization as a magnetic powder for bonded magnets is being studied. Nitride Sm 2 Fe 17 N x of Sm 2 Fe 17 together with it is produced by, for example, a gas nitriding method or the like can not be obtained and not the 5kOe or more high iHc particle size to a degree single domain particles (a few [mu] m), this Magnetic powder having a particle size is easily oxidized to deteriorate magnetic properties and is accompanied by a risk of ignition due to rapid oxidation. Thus, Sm 2 Fe
Since 17 N x magnetic powder has a particle size of several μm, it is not possible to increase the density of the compact and to obtain a rare earth bonded magnet having a high maximum energy product when compression molded into a bonded magnet. Also,
There is a problem that the moldability is very poor and the working efficiency is significantly reduced. It has been reported that high iHc can be obtained by a special manufacturing method such as a mechanical alloying method. However, this method is suitable for small-scale production on a laboratory scale, but is inferior in cost performance, leading to mass production. Not in. In addition to Thm other than Sm 2 Fe 17 N x nitride,
Nd (Fe, M) 12 N x alloy (M is a transition metal such as V, Ti, Mn, Mo) having a Mn 12 type crystal structure, Tb
Although an SmFe 7 N x alloy having a Cu 7 type crystal structure has been proposed, it has not been put to practical use because of insufficient magnetic properties, poor productivity and high cost.

【0003】Collocottらによって最初にProc. 12th In
t.Workshop on RE Magnets and Applications, Canber
a, pp.437-444,1992 (unpublished)に報告されたR
3(Fe,M)29合金もその窒化物R3(Fe,M)29
yが一軸磁気異方性を示すことから永久磁石材料として
有望であることが示唆されている。この合金系のSm3
(Fe,Ti)29y合金をボールミルで平均粒径15
μmまで微粉砕することによって保磁力を高められるこ
とがBo-Ping Hu et al.(J.Phys.:Condens.Matter 6(199
4)L197-L200)によって報告されている。しかし、このも
のも平均粒径が15μmと小さいため成形体密度の不足
や成形性が悪い等の理由でボンド磁石用磁粉として実用
化することは難しい。一方、Margarian et al.は、J.Ap
pl.Phys.76(1994)6135-6155においてこのR3(Fe,
M)29合金は非常に不安定で900〜1000℃より低
温では他の相に分解してしまうと報告している。このR
3(Fe,M)29合金の単相を得ることは非常に難し
く、ThMn12型やTh2Zn17型の結晶構造を有する
R-(Fe,M)合金やFe-M合金が生成し易い。
[0003] Proc. 12th In
t.Workshop on RE Magnets and Applications, Canber
a, pp. 437-444, 1992 (unpublished)
The 3 (Fe, M) 29 alloy also has its nitride R 3 (Fe, M) 29 N
Since y shows uniaxial magnetic anisotropy, it is suggested that it is promising as a permanent magnet material. Sm 3 of this alloy
(Fe, Ti) 29 Ny alloy is ball milled to have an average particle size of 15
Bo-Ping Hu et al. (J. Phys .: Condens. Matter 6 (199
4) Reported by L197-L200). However, these powders also have a small average particle size of 15 μm, so that it is difficult to put them into practical use as magnetic powders for bonded magnets because of insufficient compact density and poor moldability. On the other hand, Margarian et al.
pl.Phys. 76 (1994) 6135-6155, this R 3 (Fe,
M) 29 alloy is reported to be very unstable and decompose to other phases below 900-1000 ° C. This R
3 (Fe, M) 29 alloy it is very difficult to obtain a single phase, has a crystal structure of 12-type and Th 2 Zn 17 type ThMn R- (Fe, M) tends to produce an alloy or Fe-M alloy .

【0004】また、特開平8-111305ではこのR3
(Fe,M)29合金に対してアンモニアガスによる窒化
処理あるいはメタンガスによる浸炭処理を行ってNまた
はCを導入することにより10〜200μmの粗粉末で
高い保磁力が得られることを開示している。しかし、R
3(Fe,M)29母合金を窒化または浸炭したものの結
晶粒径と磁気特性の相関については何ら検討されていな
い。磁石合金の結晶粒径制御を目的として、水素による
相変態を利用して高い保磁力を有した磁石合金を作製す
る方法が日本応用磁気学会誌、Vol.17、No.
1、1993、P25−31に記載のNd-Fe-B系合
金に開示されているが、iHcの温度係数は−0.53
と悪く高温減磁が大きな問題となっていた。さらにNd
-Fe-B系合金は水素吸収時に大量の熱を発生しまた再
結晶時に大量の熱を吸収する性質を有しており、量産設
備において上記水素による相変態を利用して磁気特性を
担うNd−Fe−B系磁石の主相組織を高い保磁力の得
られる結晶粒径範囲に微細化するためには精密な温度制
御を必要とするものであった。これらのことが、上記の
水素による相変態を利用した高保磁力のNd-Fe-B系
合金の工業化を妨げている最大の問題である。
In Japanese Patent Application Laid-Open No. Hei 8-111305, this R 3
It discloses that a high coercive force can be obtained with a coarse powder of 10 to 200 μm by introducing N or C by performing nitriding treatment with ammonia gas or carburizing treatment with methane gas on (Fe, M) 29 alloy. . But R
No correlation has been studied between the crystal grain size and magnetic properties of the 3 (Fe, M) 29 mother alloy nitrided or carburized. For the purpose of controlling the crystal grain size of a magnet alloy, a method of producing a magnet alloy having a high coercive force using phase transformation by hydrogen is disclosed in Journal of the Japan Society of Applied Magnetics, Vol.
1, 1993, P25-31, the temperature coefficient of iHc is -0.53.
High temperature demagnetization became a serious problem. Further Nd
-Fe-B alloys have the property of generating a large amount of heat when absorbing hydrogen and absorbing a large amount of heat during recrystallization. Precise temperature control was required in order to refine the main phase structure of the Fe-B based magnet to a crystal grain size range in which a high coercive force could be obtained. These are the biggest problems that hinder the industrialization of the high coercive force Nd-Fe-B-based alloy utilizing the above-described phase transformation by hydrogen.

【0005】また特開平8−37122にはR−T−M
−N系異方性ボンド磁石の製造方法において、Th2
17型構造またはTbCu7型構造を有する合金を異方
性化する手段として水素を用いた相変態を利用する方法
を開示している。しかし、R3(Fe,M,B)29化合
物については全く開示がない。
Japanese Patent Application Laid-Open No. 8-37122 discloses an RTM
-N-based anisotropic bonded magnet manufacturing method, wherein Th 2 Z
A method utilizing a phase transformation using hydrogen as a means for anisotropizing an alloy having an n 17 type structure or a TbCu 7 type structure is disclosed. However, there is no disclosure of the R 3 (Fe, M, B) 29 compound.

【0006】[0006]

【発明が解決しようとする課題】ボンド磁石の耐熱性を
向上するためにはiHcの絶対値を高くするとともにi
Hcの温度係数を小さくする必要があるので、異方性磁
界が大きいとともにキュリー温度が高い希土類磁石粉末
が必要である。前述したようにR-Fe-N系合金は従来
のNd-Fe-B系合金よりも異方性磁界が大きくかつキ
ュリー温度が高いことからiHcの温度係数の小さい材
料として期待されているが、R-Fe-N系合金で5kO
e以上の高いiHcを得るには上記の通り数μmの微粉
状にする必要があり、この微粉末は通常工業生産で用い
られている6〜10ton/cm2程度の成形圧力では
ボンド磁石の成形体密度を十分に上げることができず最
大エネルギー積の高いものが得られないとともに、酸化
し易く不安定でさらに成形性が非常に悪いものである。
上記従来の問題を踏まえて、本発明の課題はiHcが大
きいとともに従来に比べてiHcの温度係数が小さく熱
安定性に優れたR3(Fe,M,B)29y主相を含む希
土類磁石材料およびその製造方法ならびにそれを用いた
希土類ボンド磁石を提供することである。
In order to improve the heat resistance of the bonded magnet, the absolute value of iHc must be increased and i
Since it is necessary to reduce the temperature coefficient of Hc, a rare-earth magnet powder having a large anisotropic magnetic field and a high Curie temperature is required. As described above, the R-Fe-N-based alloy is expected to be a material having a small temperature coefficient of iHc because of its larger anisotropic magnetic field and higher Curie temperature than the conventional Nd-Fe-B-based alloy. 5kO with R-Fe-N alloy
In order to obtain a high iHc of e or more, it is necessary to form a fine powder of several μm as described above. This fine powder can be formed into a bonded magnet at a molding pressure of about 6 to 10 ton / cm 2 which is usually used in industrial production. In addition to the fact that the body density cannot be sufficiently increased and a product having a high maximum energy product cannot be obtained, it is liable to be oxidized, is unstable, and has very poor moldability.
In view of the above conventional problems, an object of the present invention is to provide a rare earth element containing a main phase of R 3 (Fe, M, B) 29 Ny having a large iHc and a small temperature coefficient of iHc as compared with the conventional, and having excellent thermal stability. An object of the present invention is to provide a magnet material, a method of manufacturing the same, and a rare-earth bonded magnet using the same.

【0007】[0007]

【課題を解決するための手段】本発明者らはボンド磁石
の成形工程における成形容易性およびそれに用いる希土
類磁石材料粉末の高い磁気特性を確保する目的で、平均
粒径が20μm以上の粗粉において高いiHcと飽和磁
化、および低いiHcの温度係数(η)を有したRーF
eーN系磁石粉末を得るために種々のプロセスを鋭意検
討した結果、R−Fe−M−B−N系磁石材料において
水素を用いた特定の条件下で水素化、分解、脱水素、再
結合の順で相変態反応を起こさせ、その後窒化処理する
ことにより微細結晶のR3(Fe,M,B)29y主相が
得られ上記課題を解決できることを見出し本発明に想到
した。すなわち、本発明は、成分組成がRαFe100-
(α+β+γ+δ)MβBγNδで表され、単斜晶および/
または六方晶の結晶構造を有し平均結晶粒径が0.05
〜1.0μmであるR3(Fe,M,B)29y主相を含
み、前記RはYを含めた希土類元素のいずれか1種また
は2種以上であり、前記MはAl、Ti、V、Cr、M
n、Cu、Ga、Zr、Nb、Mo、Hf、Ta、Wの
いずれか1種または2種以上であり、前記α、β、γ、
δは原子百分率で下記の範囲にあることを特徴とする希
土類磁石材料である。 5≦α≦18 1≦β≦50 0.1≦γ≦5 4≦δ≦30 上記希土類元素RとしてはY、La、Ce、Pr、N
d、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、Yb、Luのいずれか1種または2種以上を含めば
よく、ミッシュメタルやジジム等の2種以上の希土類元
素の混合物を用いてもよい。好ましい希土類元素Rとし
てはY、Ce、Pr、Nd、Sm、Gd、Dy、Erの
いずれか1種または2種以上であり、さらに好ましくは
Y、Ce、Pr、Nd、Smのいずれか1種または2種
以上であり、特に好ましいのはSmである。R成分の5
0原子%以上さらには70原子%以上がSmである場合
に際だって高い保磁力が得られる。ここで、希土類元素
Rは工業的生産により入手可能な純度でよく、製造上混
入が避けられないO、H、C、Al、Si、Na、M
g、Ca等の不純物元素が含有されていてもよい。本発
明の希土類磁石材料はR成分を5〜18原子%含有す
る。R成分が5原子%未満になると鉄成分を多く含む軟
磁性相の析出を促進してiHcが低下し、18原子%を
越えると非磁性のRリッチ化合物が析出して飽和磁束密
度を低下させるので好ましくない。さらに好ましいR成
分範囲は6〜12原子%である。
Means for Solving the Problems In order to ensure the ease of molding in the molding step of the bonded magnet and the high magnetic properties of the rare-earth magnet material powder used in the method, the present inventors have proposed a method for producing a coarse powder having an average particle diameter of 20 μm or more. RF with high iHc and saturation magnetization, and low iHc temperature coefficient (η)
As a result of intensive studies on various processes for obtaining an eN-based magnet powder, hydrogenation, decomposition, dehydrogenation, and re-generation under specific conditions using hydrogen in an R-Fe-MBN-based magnet material were performed. The present inventors have found out that the above-mentioned problem can be solved by causing a phase transformation reaction in the order of bonding and then performing a nitriding treatment to obtain a fine crystal R 3 (Fe, M, B) 29 Ny main phase and solve the above-mentioned problems. That is, in the present invention, the component composition is RαFe100-
(α + β + γ + δ) MβBγNδ, monoclinic and / or
Or having a hexagonal crystal structure and an average crystal grain size of 0.05
A main phase of R 3 (Fe, M, B) 29 N y of 1.0 to 1.0 μm, wherein R is one or more of rare earth elements including Y, and M is Al, Ti , V, Cr, M
n, Cu, Ga, Zr, Nb, Mo, Hf, Ta, W or any one or more of the above, α, β, γ,
δ is a rare earth magnet material characterized by the following atomic percentage in the following range. 5 ≦ α ≦ 18 1 ≦ β ≦ 50 0.1 ≦ γ ≦ 54 4 ≦ δ ≦ 30 As the rare earth element R, Y, La, Ce, Pr, N
d, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
Any one or more of m, Yb, and Lu may be included, and a mixture of two or more rare earth elements such as misch metal and dymium may be used. Preferred rare earth elements R are any one or more of Y, Ce, Pr, Nd, Sm, Gd, Dy, and Er, and more preferably any one of Y, Ce, Pr, Nd, and Sm. Alternatively, two or more kinds are preferable, and Sm is particularly preferable. R component 5
A remarkably high coercive force is obtained when Sm is at least 0 atomic% and further at least 70 atomic%. Here, the rare earth element R may have a purity that can be obtained by industrial production, and O, H, C, Al, Si, Na, and M, which are unavoidable in production.
An impurity element such as g or Ca may be contained. The rare earth magnet material of the present invention contains 5 to 18 atomic% of the R component. When the R component is less than 5 atomic%, the precipitation of a soft magnetic phase containing a large amount of iron component is promoted to lower iHc. When the R component exceeds 18 atomic%, a non-magnetic R-rich compound is precipitated to lower the saturation magnetic flux density. It is not preferable. A more preferable range of the R component is 6 to 12 atomic%.

【0008】また、上記希土類磁石材料は粉体の平均粒
径を20μm以上500μm以下とすると好ましい。2
0μm未満では酸化による品質劣化および成形性劣化が
顕著となり、500μmを超えると通常の窒化条件では
窒素の拡散距離が粒子径の大きな粉末粒子に対して不十
分となり易く粉末粒子内にほぼ均一に窒化物が形成され
ない不具合を生じて好ましくない。より好ましい粉体の
平均粒径の範囲は30〜400μmである。
It is preferable that the rare earth magnet material has a powder having an average particle diameter of 20 μm or more and 500 μm or less. 2
If it is less than 0 μm, quality deterioration and formability deterioration due to oxidation become remarkable, and if it exceeds 500 μm, under normal nitriding conditions, the diffusion distance of nitrogen tends to be insufficient for powder particles having a large particle diameter, and nitriding is almost uniform in powder particles. It is not preferable because a problem that a product is not formed occurs. A more preferable range of the average particle size of the powder is 30 to 400 μm.

【0009】また、本発明ではR3(Fe,M,B)29
y相の結晶粒内にM元素またはM化合物が析出してい
る場合に高いiHcと低いiHcの温度係数(η)が得
られている。
In the present invention, R 3 (Fe, M, B) 29
When the M element or the M compound is precipitated in the crystal grains of the N y phase, a temperature coefficient (η) of high iHc and low iHc is obtained.

【0010】本発明の希土類磁石材料は単斜晶および/
または六方晶の結晶構造を有したR3(Fe,M,B)
29y相単相のものが理想的であるが、この主相の他に
磁石特性に寄与しない他の化合物(以後副相と呼ぶ)を
含有することができる。この副相としてTh2Zn
17型、TbCu7型、ThMn12型などの結晶構造を有
するR-Fe-M-B-N系磁性化合物を含んでいてもよい
が、本発明ではR3(Fe,M,B)29y主相の含有比
率は60体積%以上が好ましく、75体積%以上がより
好ましい。
The rare earth magnet material of the present invention is monoclinic and / or
Or R 3 (Fe, M, B) having a hexagonal crystal structure
A single phase of 29 N y phase is ideal, but may contain other compounds that do not contribute to the magnetic properties (hereinafter referred to as sub-phases) in addition to the main phase. Th 2 Zn as this subphase
R-Fe-MBN-based magnetic compounds having a crystal structure such as 17- type, TbCu 7- type, and ThMn 12- type may be included, but in the present invention, R 3 (Fe, M, B) 29 N The content ratio of the y main phase is preferably at least 60% by volume, more preferably at least 75% by volume.

【0011】本発明の希土類磁石材料は、粉末状態で2
5℃におけるiHcが6kOe以上であり、25〜10
0℃におけるiHcの温度係数(η)が−0.45以上
である高い磁気特性を有している。
[0011] The rare earth magnet material of the present invention can be used in powder form.
IHc at 5 ° C. is 6 kOe or more, and 25 to 10
It has high magnetic properties with the temperature coefficient (η) of iHc at 0 ° C. being −0.45 or more.

【0012】上記希土類磁石材料の粉末を、高分子重合
体、純金属、合金のいずれかのバインダーで結合した希
土類ボンド磁石は高いiHcと低いiHcの温度係数
(η)を有している。前記ボンド磁石の25℃における
iHcは6kOe以上であり、25〜100℃における
iHcの温度係数(η)が−0.45以上である等方性
の希土類ボンド磁石を提供できる。
A rare earth bonded magnet in which the powder of the above rare earth magnet material is bound with a binder of a polymer, a pure metal, or an alloy has a high iHc and a low iHc temperature coefficient (η). It is possible to provide an isotropic rare earth bonded magnet in which the bond magnet has an iHc at 25 ° C. of 6 kOe or more and a temperature coefficient (η) of iHc at 25 to 100 ° C. of −0.45 or more.

【0013】Feは47原子%以上を含有することが好
ましい。Feが47原子%未満では飽和磁化が小さくな
り好ましくない。
It is preferable that Fe contains 47 atomic% or more. If Fe is less than 47 atomic%, the saturation magnetization is undesirably small.

【0014】上記M元素はR3(Fe,M,B)29主相
の安定性を向上させる役割を果たしている。高い磁気特
性を有するレベルにR3(Fe,M,B)29相を生成さ
せるに要するM元素の添加量はM元素の種類毎に異な
る。M元素のいずれでも50原子%を越えて添加すると
ThMn12型の結晶構造を有するR(Fe,M,B)12
相の生成率が大きくなりiHcが顕著に低下する。M元
素が1原子%未満ではTh2Zn17型の結晶構造を有す
るR2(Fe,M,B)17相の生成率が大きくなりR
3(Fe,M,B)29相の存在比率が相対的に低下す
る。よってM元素の好ましい添加量は1〜50原子%で
ある。M元素のうちでより好ましい元素はTi、Mn、
Cr、Zr、Vのいずれか1種または2種以上である。
The above-mentioned M element plays a role of improving the stability of the R 3 (Fe, M, B) 29 main phase. The addition amount of the M element required to generate the R 3 (Fe, M, B) 29 phase at a level having high magnetic characteristics differs depending on the type of the M element. When any of the M elements is added in excess of 50 atomic%, R (Fe, M, B) 12 having a ThMn 12 type crystal structure
The formation rate of the phase is increased, and iHc is significantly reduced. If the M element is less than 1 atomic%, the generation rate of the R 2 (Fe, M, B) 17 phase having a Th 2 Zn 17 type crystal structure increases, and the R
The proportion of the 3 (Fe, M, B) 29 phase is relatively reduced. Therefore, the preferable addition amount of the element M is 1 to 50 atomic%. Among the M elements, more preferred elements are Ti, Mn,
Any one or more of Cr, Zr, and V.

【0015】BはM元素が共存することにより母合金相
中におけるR3(Fe,M,B)29相の構成比率を高め
る効果、母合金の均質化処理温度を広い温度域とし結果
として低温度域での均質化処理を選択できることにより
Smの蒸発量を少なくする効果、窒化処理時にR3(F
e,M,B)29相の分解を抑制する効果等を有する。ま
た、水素によるより低温域での相変態反応すなわち水素
化、分解、脱水素、再結合反応を可能にしこの反応時に
おけるSmの蒸発を抑制し組成ずれを防ぐ効果も認めら
れる。本発明においてBの好ましい含有量は0.1〜5
原子%である。Bが0.1原子%未満および5原子%を
越えるとR3(Fe,M,B)29y窒化物相が不安定と
なり他の相へ分解し易くなり好ましくない。すなわち、
3(Fe,M,B)29y相を安定化する作用は上記B
添加量の範囲にあるときに発揮される。
B has the effect of increasing the composition ratio of the R 3 (Fe, M, B) 29 phase in the master alloy phase due to the coexistence of the M element, and the homogenization temperature of the master alloy is set to a wide temperature range, resulting in a low temperature. effect of reducing the amount of evaporation of Sm by can select a homogenization treatment at a temperature range, R 3 during the nitriding treatment (F
e, M, B) It has an effect of suppressing decomposition of the 29 phase. In addition, an effect is also recognized that enables a phase transformation reaction by hydrogen at a lower temperature range, that is, hydrogenation, decomposition, dehydrogenation, and recombination reactions, suppresses evaporation of Sm during this reaction, and prevents a composition deviation. In the present invention, the preferable content of B is 0.1 to 5
Atomic%. If B is less than 0.1 atomic% or more than 5 atomic%, the R 3 (Fe, M, B) 29 N y nitride phase becomes unstable and is easily decomposed into another phase, which is not preferable. That is,
The effect of stabilizing the R 3 (Fe, M, B) 29 Ny phase is described in the above B
It is exhibited when it is within the range of the addition amount.

【0016】R3(Fe,M,B)29相に導入される窒
素Nは4〜30原子%とすることが好ましい。窒素Nが
4原子%未満では磁化が低くなるとともに、30原子%
を越えると保磁力を向上させることが困難である。より
好ましい窒素Nの含有量は10〜20原子%である。
The nitrogen N introduced into the R 3 (Fe, M, B) 29 phase is preferably 4 to 30 atomic%. If the nitrogen N content is less than 4 at%, the magnetization becomes low and
If it exceeds, it is difficult to improve the coercive force. More preferably, the content of nitrogen N is 10 to 20 atomic%.

【0017】また、Feの0.01〜30原子%をCo
および/またはNiで置換することが好ましく、Coお
よび/またはNiの導入によりキュリー温度が上昇する
とともにiHcの温度係数(η)を向上する効果があ
る。しかし、30原子%を越えると飽和磁束密度および
iHcの顕著な低下を招来するとともに、0.01原子
%未満ではCoおよび/またはNiの添加効果が認めら
れない。Coおよび/またはNiによるFe置換量のよ
り好ましい範囲は1〜20原子%である。
Further, 0.01 to 30 atomic% of Fe is Co
And / or Ni is preferable, and the introduction of Co and / or Ni has an effect of increasing the Curie temperature and improving the temperature coefficient (η) of iHc. However, if it exceeds 30 atomic%, the saturation magnetic flux density and iHc are remarkably reduced, and if it is less than 0.01 atomic%, the effect of adding Co and / or Ni is not recognized. A more preferred range of the amount of Fe replaced by Co and / or Ni is 1 to 20 atomic%.

【0018】また、本発明は、成分組成がRαFe100-
(α+β+γ+δ)MβBγNδで表され、単斜晶および/
または六方晶の結晶構造を有したR3(Fe,M,B)
29y主相を含み、前記RはYを含めた希土類元素のい
ずれか1種または2種以上であり、前記MはAl、T
i、V、Cr、Mn、Cu、Ga、Zr、Nb、Mo、
Hf、Ta、Wのいずれか1種または2種以上であり、
前記α、β、γ、δが原子百分率で下記の範囲にある希
土類磁石材料の製造方法において、前記組成の合金を鋳
造後、均質化処理を行い、続いて粗粉砕したものを、
0.1〜10atmのH2ガス中またはH2ガス分圧を有
した不活性ガス(N2ガスを除く)中で700〜900
℃×0.5〜8時間保持する水素化、分解反応処理を行
い、続いてさらに好ましくは1×10-2〜1×10-6
orrの真空中に700〜900℃×0.5〜8時間保
持する脱水素、再結合反応処理を行った後、窒化処理を
行うことを特徴とする希土類磁石材料の製造方法であ
る。 5≦α≦18 1≦β≦50 0.1≦γ≦5 4≦δ≦30 また、鋳造後に、700〜1250℃×0.5〜100
時間の均質化処理を行うことが高い磁気特性を安定に得
るために好ましい。また、窒化処理後に、真空中あるい
は不活性ガス中(N2ガスを除く)で300〜600℃
×0.5〜50時間の熱処理を行うとさらに高いiHc
が得られ易いので好ましい。また、0.2〜10atm
のN2ガス、H2が1〜95モル%で残部N2からなるH2
とN2の混合ガス、NH3のモル%が1〜50%で残部H
2からなるNH3とH2の混合ガスのうちのいずれかの雰
囲気中で300〜650℃×0.1〜30時間保持する
ガス窒化処理が実用性に富む窒化処理方法である。
Further, according to the present invention, the component composition is RαFe100-
(α + β + γ + δ) MβBγNδ, monoclinic and / or
Or R 3 (Fe, M, B) having a hexagonal crystal structure
29 N y main phase, wherein R is one or more of rare earth elements including Y, and M is Al, T
i, V, Cr, Mn, Cu, Ga, Zr, Nb, Mo,
One or more of Hf, Ta, and W;
In the method for producing a rare earth magnet material in which the α, β, γ, and δ are in the following range in atomic percentage, after casting an alloy having the above composition, a homogenization treatment is performed, and then a roughly pulverized material is obtained.
In H 2 gas 0.1~10atm or H 2 (except for N 2 gas) gas partial inert gas having a pressure in 700-900
Hydrogenation and decomposition reaction treatment are performed at a temperature of 0.5 ° C. × 0.5 to 8 hours, and then more preferably 1 × 10 −2 to 1 × 10 −6 T
This is a method for producing a rare-earth magnet material, which comprises performing a dehydrogenation / recombination reaction treatment at 700 to 900 ° C. × 0.5 to 8 hours in an orr vacuum, followed by a nitriding treatment. 5 ≦ α ≦ 18 1 ≦ β ≦ 50 0.1 ≦ γ ≦ 54 4 ≦ δ ≦ 30 Also, after casting, 700 to 1250 ° C. × 0.5 to 100
It is preferable to perform a time homogenization treatment in order to stably obtain high magnetic characteristics. After the nitriding treatment, 300 to 600 ° C. in vacuum or in an inert gas (excluding N 2 gas).
× 0.5 to 50 hours heat treatment for higher iHc
Is preferred because it is easily obtained. Also, 0.2 to 10 atm
H 2 to the N 2 gas, H 2 is the balance N 2 with 1 to 95 mol%
Remainder H and a mixed gas of N 2, in mole percent of NH 3 1 to 50%
Gas nitriding of holding 300 to 650 ° C. × 0.1 to 30 hours in one atmosphere of NH 3 and a mixed gas of H 2 consisting of 2 are nitriding method rich in practicability.

【0019】本発明ではR3(Fe,M,B)29相を主
相とする化合物を上記加熱条件でH2と反応させる水素
化、分解反応処理により希土類元素Rの水素化物RH
x、αFe−M(B)相などに分解する。さらにこの状
態から上記加熱条件で水素成分を強制的に取り除く脱水
素、再結合反応処理によりR3(Fe,M,B)29相の
微細な再結合組織(平均結晶粒径が0.05〜1.0μ
mの再結晶組織であり、各結晶粒子はランダム方向に配
向している。)が得られる。この水素化、分解反応では
2ガスの単独またはN2ガスを除く不活性ガスとH2
スとの混合ガス中での加熱に際し、H2分圧が0.1a
tm未満では上記分解反応が十分に起こらず、10at
mを越えると処理設備が大型化しコスト高を招来するの
で好ましくない。よってH2分圧の好ましい範囲は0.
1〜10atmであり、0.5〜2.0atmがより好
ましい。また、この水素化、分解反応の加熱条件は70
0℃×0.5時間未満ではR−Fe−M−B系化合物が
2を吸収するのみでRHx、αFe-M(B)、Fe-B
(M)相などへの分解がほとんど起こらず、また900℃
×8時間を越えると脱水素後のR3(Fe,M,B)29
相の結晶粒径が粗大化してこのものを窒化処理して得ら
れるR3(Fe,M,B)29y相の結晶粒径が粗大化し
iHcが顕著に低下するので700〜900℃×0.5
〜8時間が好ましく、上記の分解反応を十分に行わせる
ためには725〜875℃×0.5〜10時間がより好
ましい。脱水素、再結合処理時のH2分圧が1x10-2
Torrよりも低いと処理に長時間を要し好ましくな
く、1x10-6Torrを越えた高真空とすると真空排
気装置のコストが増大するので実用的でない。脱水素、
再結合処理時の加熱保持条件が700℃×0.5時間未
満ではRHx等の分解がほとんど進行せず、また900
℃×10時間を越えると得られたR3(Fe,M,B)29相の再
結晶組織が粒成長のため粗大結晶粒化し易く高いiHc
を得ることが困難である。したがって脱水素、再結合反
応処理は700〜900℃×0.5〜10時間が好まし
く、RHx等の分解反応およびR3(Fe,M,B)29
の再結晶反応を微細結晶組織を保持しながら十分に行わ
せるためには725〜875℃×0.5〜10時間の加
熱保持を行うことがより好ましい。上記の通り、本発明
の製造方法の特長は水素化、分解反応処理により母合金
結晶を十分に分解し、続いて行う脱水素、再結合反応処
理により再結合反応処理後のものおよび窒化処理後の主
相の結晶組織をランダム方位に微細化するものであり、
高いiHcを安定に得られる実用性に富む製法である。
In the present invention, a compound having a main phase of R 3 (Fe, M, B) 29 is reacted with H 2 under the above-mentioned heating conditions, and a hydride RH of a rare earth element R is obtained by a decomposition reaction treatment.
Decomposes into x, αFe-M (B) phase and the like. Further, from this state, a fine recombined structure of R 3 (Fe, M, B) 29 phase (average crystal grain size of 0.05 to less) is obtained by dehydrogenation and recombination reaction treatment for forcibly removing the hydrogen component under the above heating conditions. 1.0μ
m, and each crystal grain is oriented in a random direction. ) Is obtained. In this hydrogenation and decomposition reaction, when H 2 gas is heated alone or in a mixed gas of an inert gas excluding N 2 gas and H 2 gas, the H 2 partial pressure is 0.1 a.
If it is less than tm, the above decomposition reaction does not sufficiently occur and 10 atm
Exceeding m is not preferable because the processing equipment becomes large and the cost is increased. Therefore, the preferable range of the H 2 partial pressure is 0.1.
1 to 10 atm, preferably 0.5 to 2.0 atm. The heating conditions for this hydrogenation and decomposition reaction are 70
When the temperature is less than 0 ° C. × 0.5 hours, the R-Fe-MB compound only absorbs H 2 and RHx, αFe-M (B), Fe-B
Decomposition into (M) phase etc. hardly occurs, and 900 ° C
If over 8 hours, R 3 (Fe, M, B) after dehydrogenation 29
The crystal grain size of the R 3 (Fe, M, B) 29 Ny phase obtained by nitriding the crystal grain of the phase is coarsened and iHc is remarkably reduced. 0.5
-8 to 8 hours, more preferably 725 to 875 ° C. × 0.5 to 10 hours in order to sufficiently perform the above decomposition reaction. H 2 partial pressure at the time of dehydrogenation and recombination treatment is 1 × 10 -2
If the pressure is lower than Torr, it takes a long time for the treatment, which is not preferable. If a high vacuum exceeding 1 × 10 −6 Torr is used, the cost of the vacuum pumping device increases, which is not practical. Dehydrogenation,
If the heating and holding conditions during the recombination treatment are less than 700 ° C. × 0.5 hours, the decomposition of RHx and the like hardly proceeds,
When the temperature exceeds 10 ° C. × 10 hours, the recrystallized structure of the obtained R 3 (Fe, M, B) 29 phase tends to become coarse grains due to grain growth, and high iHc
Is difficult to obtain. Therefore, the dehydrogenation and recombination reaction treatment is preferably performed at a temperature of 700 to 900 ° C. for 0.5 to 10 hours, and the decomposition reaction such as RHx and the recrystallization reaction of the R 3 (Fe, M, B) 29 phase maintain a fine crystal structure. It is more preferable to perform heating and holding at 725 to 875 ° C. × 0.5 to 10 hours in order to perform the heating sufficiently. As described above, the features of the production method of the present invention are that the mother alloy crystal is sufficiently decomposed by hydrogenation and decomposition reaction treatment, and subsequently dehydrogenation and recombination reaction treatment are performed after the recombination reaction treatment and after nitriding treatment. To refine the crystal structure of the main phase into random orientations,
This is a highly practical production method capable of stably obtaining high iHc.

【0020】窒化処理後の磁性粉の平均結晶粒径を0.
05〜1.0μmに限定した理由は0.05μm未満の
平均結晶粒径のものを安定に量産することが困難であ
り、また1.0μmを越えると磁性粉のiHcが顕著に
減少するからである。より好ましい平均結晶粒径は0.
1〜0.5μmである。本発明において窒化処理を行う
前に必要に応じて粉砕、分級を行い粉末の粒径を調整す
ることは均一な窒化処理を行う上から好ましい。ガス窒
化法を採用する場合には、窒化処理時のN2単独ガスま
たはN2を含有したガスの圧力を0.2〜10atmに
することが好ましい。0.2atm未満では窒化反応が
遅く、10atmを越えると高圧ガスの設備に多大のコ
ストを要する。より好ましいN2圧力範囲は1〜10a
tmである。ガス窒化の加熱条件は300〜650℃×
0.1〜30時間が好ましい。300℃×0.1時間未
満では窒化がほとんど進行せず、650℃×30時間を
越えるとR3(Fe,M,B)N2 9主相がほとんどRN
とFe−M(B)に分解しiHcが顕著に低下するので好
ましくない。より好ましいガス窒化の加熱条件は400
〜550℃×0.5〜30時間であり、400〜550
℃×1〜10時間が特に好ましい。
The average crystal grain size of the magnetic powder after nitriding is set to 0.1.
The reason for limiting to 0.5 to 1.0 μm is that it is difficult to stably mass-produce those having an average crystal grain size of less than 0.05 μm, and if it exceeds 1.0 μm, the iHc of the magnetic powder is significantly reduced. is there. A more preferred average crystal grain size is 0.1.
1 to 0.5 μm. In the present invention, it is preferable to adjust the particle size of the powder by performing pulverization and classification as necessary before performing the nitriding treatment from the viewpoint of performing a uniform nitriding treatment. When the gas nitriding method is employed, it is preferable that the pressure of the N 2 gas alone or the gas containing N 2 during the nitriding treatment is set to 0.2 to 10 atm. If it is less than 0.2 atm, the nitridation reaction is slow, and if it exceeds 10 atm, enormous cost is required for high-pressure gas equipment. A more preferable N 2 pressure range is 1 to 10a.
tm. Heating conditions for gas nitriding are 300-650 ° C x
0.1 to 30 hours is preferred. At less than 300 ° C. × 0.1 hours hardly proceed nitride, exceeds 650 ° C. × 30 h R 3 (Fe, M, B ) N 2 9 main phase is almost RN
And Fe-M (B), which is not preferable because iHc is remarkably reduced. More preferred heating conditions for gas nitriding are 400
5550 ° C. × 0.5〜30 hours, 400〜550
C. x 1 to 10 hours are particularly preferred.

【0021】[0021]

【発明の実施の形態】以下本発明を詳説する。R3(F
e,M,B)29y主相は、理想的には母合金全部また
は母合金を主に構成するR3(Fe,M,B)29相の結
晶格子間に窒素が侵入してその結晶格子が膨張すること
によって得られるが、その結晶構造はR3(Fe,M,
B)29相とほぼ同じ対称性を有する。例えば母合金粉末
として原子%表示でSm9.4Fe84.0B2.0V4.5の組成
のものを選んだ場合、窒素を導入することによって結晶
磁気異方性が面内異方性から一軸異方性に変化し永久磁
石材料として好適なものになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. R 3 (F
e, M, B) 29 N y major phase, the ideally penetrate nitrogen between crystal lattice of R 3 (Fe, M, B ) 29 phase which mainly constitute the matrix alloy whole or master alloy to The crystal structure is obtained by expanding the crystal lattice, and its crystal structure is represented by R 3 (Fe, M,
B) It has almost the same symmetry as the 29 phase. For example, when a mother alloy powder having a composition of Sm9.4Fe84.0B2.0V4.5 in atomic% is selected, the introduction of nitrogen changes the crystal magnetic anisotropy from in-plane anisotropy to uniaxial anisotropy. It changes and becomes suitable as a permanent magnet material.

【0022】本発明にかかる希土類ボンド磁石は、上記
希土類磁石材料を高分子重合体、純金属、合金等のいず
れかのバインダーで固めてなるものであるが、高分子重
合体としてはエポキシ樹脂やフェノール樹脂等に代表さ
れる熱硬化樹脂またはポリアミド樹脂やEEA樹脂等の
熱可塑性樹脂または合成ゴムや天然ゴム等の公知のもの
を用い得る。また、純金属または合金としては亜鉛や錫
などの公知の低融点金属や低融点合金を用いることがで
きる。また、希土類ボンド磁石の成形方法としては圧縮
成形や射出成形などの公知の成形方法を採用できる。
The rare-earth bonded magnet according to the present invention is obtained by solidifying the above-mentioned rare-earth magnet material with a binder such as a polymer, a pure metal or an alloy. A thermosetting resin represented by a phenol resin, a thermoplastic resin such as a polyamide resin or an EEA resin, or a known resin such as a synthetic rubber or a natural rubber can be used. In addition, as the pure metal or alloy, a known low melting point metal or alloy such as zinc or tin can be used. Further, as a molding method of the rare earth bonded magnet, a known molding method such as compression molding or injection molding can be adopted.

【0023】本発明によれば、R3(Fe,M,B)29
y主相の平均結晶粒径を0.05〜1.0μmとした
希土類磁石材料を容易かつ安定に作製できるので、キュ
リー温度が約480±20℃と高く、また粉末粒子の平
均粒径で20〜500μmの幅広い粒径にわたって略一
定の高いiHcと低いiHcの温度係数(η)を有した
耐熱性に優れた希土類磁石粉末を提供できると同時に、
耐熱性に富む高い磁気特性の等方性ボンド磁石を容易に
提供できる。
According to the present invention, R 3 (Fe, M, B) 29
Since the N y main phase rare earth magnet materials with average 0.05~1.0μm the crystal grain size of easily and stably be produced, the Curie temperature is as high as about 480 ± 20 ° C., and in the average particle size of the powder particles It is possible to provide a rare-earth magnet powder excellent in heat resistance having a substantially constant high iHc and a low iHc temperature coefficient (η) over a wide range of particle diameters of 20 to 500 μm,
An isotropic bonded magnet having high magnetic properties and high heat resistance can be easily provided.

【0024】次に、本発明の代表的な製造工程を説明す
る。
Next, a typical manufacturing process of the present invention will be described.

【0025】(母合金の調整)R-Fe-M-B系母合金
は例えば高周波溶解法、アーク溶解法、超急冷法、スト
リップキャスト法、ガスアトマイズ法、還元拡散法、メ
カニカルアロイング法等のいずれかを用いて合金化され
る。ここで、高周波溶解法またはアーク溶解法を用いた
場合には上記合金が凝固する際にαFeを主成分とする
軟磁性相が析出し易いが、この軟磁性相は窒化処理後も
残留しiHcを低下させる要因となるので好ましくな
い。この軟磁性相の生成を抑えるには溶製した母合金を
真空中またはアルゴンガス雰囲気で700〜1250℃
×0.5〜100時間の加熱条件で均質化処理すること
が望ましい。
(Adjustment of Master Alloy) The R-Fe-MB base alloy is prepared by, for example, a high-frequency melting method, an arc melting method, a super-quenching method, a strip casting method, a gas atomizing method, a reduction diffusion method, a mechanical alloying method, or the like. Alloyed using either. Here, when the high frequency melting method or the arc melting method is used, when the above alloy is solidified, a soft magnetic phase containing αFe as a main component is likely to precipitate, but this soft magnetic phase remains after the nitriding treatment, and iHc It is not preferable because it causes a reduction in In order to suppress the formation of this soft magnetic phase, the melted mother alloy is heated to 700 to 1250 ° C. in a vacuum or an argon gas atmosphere.
It is desirable to perform the homogenization treatment under heating conditions of × 0.5 to 100 hours.

【0026】(粉砕)上記方法で溶製した母合金塊を直
接窒化することも可能であるが、窒化処理物のサイズが
大きいと窒化処理時間が長くなるので粗粉砕を行って平
均粉末粒径で20〜500μmに粗粉砕後窒化すること
が望ましい。粗粉砕は例えばディスクミル、バンタムミ
ル、ジョークラッシャー、ボールミルなどの粉砕機を用
いて行うことができる。また母合金に水素を吸蔵させた
後に上記粉砕機で粗粉砕する方法や、水素の吸蔵と放出
とを繰り返して粗粉砕する方法を用いてもよい。さらに
粗粉砕の後、篩で分級し窒化すると母合金中に均質な窒
化物の主相を形成できるので好ましく、例えば、窒化処
理前に20μm〜100μm未満、100μm〜200
μm未満、200μm〜300μm未満、300μm〜
400μm未満、400μm〜500μm未満というよ
うに篩分すると窒化処理後の磁石粉末がこれらの篩分粒
径になっており、上記の均質な窒化物形成効果とともに
ボンド磁石形状に応じて要求される成形性の難易に合わ
せて適宜粒径分布の希土類磁石粉末を採用できるので実
用性に富むものである。さらに、粗粉砕後、アルゴンガ
ス雰囲気または真空中で500〜1000℃×0.5〜
100時間熱処理すると磁気特性がより向上するが、こ
の効果は粗粉砕により導入された歪みが緩和されるため
と考えられる。
(Pulverization) Although it is possible to directly nitride the ingot of the mother alloy melted by the above method, if the size of the nitrided product is large, the nitridation treatment time becomes long. It is desirable to nitride after coarse pulverization to 20 to 500 μm. Coarse pulverization can be performed using a pulverizer such as a disc mill, a bantam mill, a jaw crusher, and a ball mill. Further, a method in which hydrogen is occluded in the master alloy and then coarsely pulverized by the above pulverizer or a method in which hydrogen is occluded and released repeatedly to coarsely pulverize may be used. Further, after coarse pulverization, classification and nitriding with a sieve are preferable because a homogeneous main phase of the nitride can be formed in the mother alloy. For example, before the nitriding treatment, 20 to less than 100 μm, 100 to 200 μm
less than 200 μm, less than 300 μm, less than 300 μm
When sieved to a size of less than 400 μm or less than 400 μm to less than 500 μm, the magnet powder after nitriding has these sieved particle sizes, and together with the above-mentioned uniform nitride forming effect, the molding required according to the bond magnet shape Therefore, it is possible to employ a rare-earth magnet powder having a particle size distribution as appropriate according to the difficulty of the properties, and therefore, it is highly practical. Furthermore, after coarse pulverization, in an argon gas atmosphere or a vacuum, 500 to 1000 ° C. × 0.5 to
The magnetic properties are further improved by heat treatment for 100 hours. This effect is considered to be because the strain introduced by the coarse pulverization is reduced.

【0027】(窒化)本発明では公知の窒化処理方法
(例えば、ガス窒化法、イオン窒化法等。)を採用でき
る。一例として、ガス窒化法について説明する。ガス窒
化法は窒素ガス、アンモニアガス、窒素ガスと水素ガス
の混合ガス、アンモニアガスと水素ガスの混合ガス等の
いずれかを上記母合金塊または上記母合金の粗粉砕粉に
接触させて結晶格子内に窒素を導入する工程である。窒
化反応は上記のようなガス種を選ぶこと、加熱温度、加
熱時間、ガス圧力により制御できる。このうち加熱温度
は母合金組成によって異なるが300〜650℃が好ま
しい。母合金の種類によらず300℃未満であると窒化
がほとんど進行せず、また650℃を超えると一旦生成
した窒化物が分解してαFeなどの軟磁性相が顕著に生
成するので好ましくない。窒化後にさらに窒素ガスを含
有しないアルゴン等の不活性ガス中あるいは真空中ある
いは水素ガス中で300〜600℃×0.5〜50時間
熱処理すると保磁力、iHc、飽和磁化等が向上する場
合がある。これは熱処理により窒素が母合金の結晶粒子
内にさらに拡散して主相の窒化物相の割合が増加するこ
とや粉末粒子内により均一に窒化物が形成されて行くた
めと思われる。
(Nitriding) In the present invention, a known nitriding method (for example, a gas nitriding method, an ion nitriding method, etc.) can be adopted. As an example, a gas nitriding method will be described. In the gas nitriding method, any one of nitrogen gas, ammonia gas, a mixed gas of nitrogen gas and hydrogen gas, a mixed gas of ammonia gas and hydrogen gas, or the like is brought into contact with the above-mentioned mother alloy mass or the coarsely pulverized powder of the above-mentioned mother alloy to form a crystal lattice. This is a step of introducing nitrogen into the inside. The nitriding reaction can be controlled by selecting the above gas species, heating temperature, heating time, and gas pressure. Among these, the heating temperature varies depending on the mother alloy composition, but is preferably 300 to 650 ° C. Regardless of the type of the mother alloy, if the temperature is lower than 300 ° C., nitriding hardly proceeds, and if the temperature is higher than 650 ° C., the nitride once formed is decomposed and a soft magnetic phase such as αFe is notably formed, which is not preferable. After nitriding, heat treatment in an inert gas such as argon containing no nitrogen gas, in a vacuum or in a hydrogen gas at 300 to 600 ° C. for 0.5 to 50 hours may improve coercive force, iHc, saturation magnetization and the like. . This is presumably because nitrogen is further diffused into the crystal grains of the mother alloy by the heat treatment to increase the ratio of the main phase nitride phase, and nitrides are more uniformly formed in the powder particles.

【0028】(磁場成形)上記のようにして作成した本
発明の希土類磁石材料粉末を用いて等方性ボンド磁石を
作製するには、その磁石粉末と熱硬化性樹脂または低融
点金属(低融点合金)のバインダーとを適正比率で混合
した後、磁場無しで成形体を形成し、その後加熱硬化処
理を行えばよい。
(Magnetic field molding) In order to produce an isotropic bonded magnet using the rare earth magnet material powder of the present invention prepared as described above, the magnet powder and a thermosetting resin or a low melting point metal (low melting point metal) are used. Alloy) and a binder in an appropriate ratio, a compact is formed without a magnetic field, and then a heat-curing treatment may be performed.

【0029】(着磁)上記のボンド磁石に十分な磁力を
付与するための着磁作業は室温で好ましくは15kOe
以上、より好ましくは20kOe以上の着磁磁場で行う
ことが一般的である。
(Magnetization) The magnetizing operation for imparting a sufficient magnetic force to the above-mentioned bonded magnet is performed at room temperature, preferably at 15 kOe.
As described above, more preferably, the magnetization is performed with a magnetizing magnetic field of 20 kOe or more.

【0030】次に評価方法について具体的に説明する。 (磁気特性の測定)上記磁石材料の25℃におけるiH
cと飽和磁化(σ)、および25〜100℃におけるi
Hcの温度係数(η)はその磁石粉末の所定量を樹脂に
混ぜて銅容器に詰め込み、振動試料型磁力計(東英工業
(株)製のVSM-3型)を用いて測定した。ボンド磁
石の25℃におけるiHcとBrと(BH)max、お
よび25〜100℃におけるiHcの温度係数(η)は
自記磁束計(東英工業(株)製TRF-5H)を用いて
測定した。 (窒素量の分析)不活性ガス融解法によって上記希土類
磁石粉末に含有した窒素量を分析した。分析には堀場製
作所(株)製のガス分析装置:EMGA1300型を用
いた。 (主相の平均結晶粒径の測定)作成した平均結晶粒径測
定用試料の任意断面を顕微鏡観察して、R3(Fe,
M,B)29y主相において任意に選んだ40個の結晶
粒の各最大粒径を測定し、この40個の測定値を加算平
均して平均結晶粒径とした。
Next, the evaluation method will be specifically described. (Measurement of magnetic properties) iH of the above magnet material at 25 ° C
c and saturation magnetization (σ), and i at 25 to 100 ° C.
The temperature coefficient (η) of Hc was measured by mixing a predetermined amount of the magnet powder in a resin, filling the mixture in a copper container, and using a vibrating sample magnetometer (VSM-3 manufactured by Toei Kogyo Co., Ltd.). The iHc, Br and (BH) max of the bonded magnet at 25 ° C. and the temperature coefficient (η) of iHc at 25 to 100 ° C. were measured using a self-recording magnetometer (TRF-5H manufactured by Toei Kogyo Co., Ltd.). (Analysis of nitrogen amount) The amount of nitrogen contained in the rare earth magnet powder was analyzed by an inert gas melting method. For the analysis, a gas analyzer manufactured by Horiba Ltd .: EMGA1300 was used. (Measurement of Average Crystal Grain Size of Main Phase) An arbitrary cross section of the prepared sample for measuring the average crystal grain size was observed with a microscope, and R 3 (Fe,
M, B) 29 N y measures each maximum particle size of the arbitrarily selected 40 pieces of grains in the main phase, and the average crystal grain size of the 40 measurements averaged to.

【0031】次に、本発明を実施例により説明するがこ
れらにより本発明が限定されるものではない。 (実施例1〜7)R3(Fe,M,B)29y主相の平均
結晶粒径(dc)、磁石粉末の平均粒径(dp)と、希
土類磁石粉末の25℃における飽和磁化の強さ(σ)お
よびiHc、25〜100℃におけるiHcの温度係数
(η)との相関を下記のようにして評価した。なお、以
降の各実施例、各比較例の測定は全て上記条件で行っ
た。まず、純度99.9%のSm、Fe、VおよびBを
用いて表1の実施例1〜7の窒化物磁石粉末に対応した
母合金組成になるように各々配合し、アルゴンガス雰囲
気の高周波溶解炉で溶解して実施例1〜7に対応した各
母合金を溶製した。その後、アルゴンガス雰囲気中で1
150℃×20時間の均質化処理を行い、続いてジョー
クラッシャーとディスクミルを用いて平均粉末粒径20
μm以上に粉砕した。これらの母合金粉体のX線回折を
Cu-Kα線を用いて行ったところ回折線はすべてR
3(Fe,M,B)29相として指数付けできることを確
認した。このSm-Fe-V-B系磁性粉を1atmの水
素ガス中に800℃×1時間加熱保持する水素化、分解
反応処理を行った後、さらに水素分圧(真空中)5〜8
×10-2Torrに800℃×1時間保持する脱水素、
再結合反応処理を行った。次に前記各粉体を1atmの
窒素ガス中に450℃×5時間保持するガス窒化処理を
行い冷却した。続いてArガス気流中で400℃×30
分間熱処理して得られた実施例1〜7の窒化物磁石粉末
の主相の平均結晶粒径(dc)、粉末の平均粒径dp、
組成、飽和磁化の強さ(σ)、iHc、iHcの温度係
数(η)の測定結果を表1に示した。この磁石粉末を電
子顕微鏡で観察したところSm3(Fe,V,B)29y
主相内に数十nmの大きさのVリッチなセル構造が認め
られた。
Next, the present invention will be described with reference to examples, but the present invention is not limited by these examples. (Examples 1 to 7) Average grain size (dc) of R 3 (Fe, M, B) 29 Ny main phase, average grain size (dp) of magnet powder, and saturation magnetization of rare earth magnet powder at 25 ° C. And the temperature coefficient (η) of iHc at 25 to 100 ° C. were evaluated as follows. The measurements in the following examples and comparative examples were all performed under the above conditions. First, using Sm, Fe, V, and B having a purity of 99.9%, each was blended so as to have a mother alloy composition corresponding to the nitride magnet powders of Examples 1 to 7 in Table 1, and a high-frequency gas in an argon gas atmosphere was used. Each mother alloy corresponding to Examples 1 to 7 was melted by melting in a melting furnace. Then, in an argon gas atmosphere,
A homogenization treatment at 150 ° C. × 20 hours was performed, and subsequently, an average powder particle size of 20
It was pulverized to at least μm. X-ray diffraction of these mother alloy powders was performed using Cu-Kα radiation.
3 (Fe, M, B) It was confirmed that indexing was possible as 29 phases. This Sm-Fe-VB-based magnetic powder is subjected to a hydrogenation and decomposition reaction treatment by heating and holding at 800 ° C. × 1 hour in 1 atm of hydrogen gas, and then a hydrogen partial pressure (in vacuum) of 5-8.
Dehydrogenation at 800 ° C. × 1 hour at × 10 −2 Torr,
Recombination reaction treatment was performed. Next, each powder was subjected to a gas nitriding treatment in which the powder was held at 450 ° C. for 5 hours in a nitrogen gas of 1 atm and cooled. Subsequently, at 400 ° C. × 30 in an Ar gas stream.
Average grain size (dc) of the main phase of the nitride magnet powders of Examples 1 to 7 obtained by heat treatment for
Table 1 shows the measurement results of the composition, the saturation magnetization strength (σ), iHc, and the temperature coefficient (η) of iHc. Observation of this magnet powder with an electron microscope revealed that Sm 3 (Fe, V, B) 29 N y
A V-rich cell structure with a size of several tens nm was observed in the main phase.

【0032】(比較例1〜6)M元素を含有しない場合
の比較例1〜4およびM元素としてVを含有した比較例
5、6とした以外は実施例1と同様にして評価した結果
を表1に併記した。これら各比較例の合金の生成相は、
Vを含有しない比較例1〜4およびV量が少ない比較例
5の場合はTh2Zn17型のSm2Fe17相およびαFe
相であり、含有量が過多の比較例6の場合はTh2Zn
17型のSm2(Fe,V,B)17相、αFe相、Fe-B相
およびFe-V相であった。
(Comparative Examples 1 to 6) The results evaluated in the same manner as in Example 1 except that Comparative Examples 1 to 4 in the case where the element M was not contained and Comparative Examples 5 and 6 in which V was contained as the element M were used. Also shown in Table 1. The generated phases of the alloys of these comparative examples are:
For Comparative Examples 1 to 4 and V comparison small amount Example 5 not containing V Th 2 Zn 17 type Sm 2 Fe 17 phase and αFe
Th 2 Zn in the case of Comparative Example 6 which is
17 type Sm 2 (Fe, V, B) 17 phase, αFe phase, Fe-B phase and Fe-V phase.

【0033】[0033]

【表1】 [Table 1]

【0034】表1よりR3(Fe,M,B)29合金に対す
る水素を用いた相変態処理の効果が明らかである。すな
わち主相の平均結晶粒径が0.65μmである実施例1
〜7では磁石材料粉末の平均粒径20〜500μmにわ
たって9kOe以上の高いiHcが得られ、iHcの温
度係数(η)も−0.39以上で良好な耐熱性を有して
いることがわかる。一方、元素Vを含まないかあるいは
Vが有効含有量より少ない比較例1〜5と、Vが過剰に
多い比較例6の場合は、いずれもiHcが3kOe未満
でありまたiHcの温度係数(η)も−0.59以下で
あり耐熱性に劣ることがわかる。
From Table 1, the effect of the phase transformation treatment using hydrogen on the R 3 (Fe, M, B) 29 alloy is clear. That is, Example 1 in which the average crystal grain size of the main phase was 0.65 μm.
7 shows that high iHc of 9 kOe or more was obtained over an average particle size of the magnet material powder of 20 to 500 μm, and that the temperature coefficient (η) of iHc was -0.39 or more, indicating that the material had good heat resistance. On the other hand, in Comparative Examples 1 to 5 containing no element V or containing less than the effective content of V and Comparative Example 6 containing too much V, iHc is less than 3 kOe and the temperature coefficient of iHc (η ) Is -0.59 or less, indicating that the heat resistance is inferior.

【0035】(実施例8〜11)平均結晶粒径dc、B
量と磁気特性との相関を見るために、表2に示した磁石
粉末組成、平均結晶粒径dcにするとともに磁石材料の
粉末平均粒径dpを70μmとした以外は上記実施例1
と同様な操作によって表2に示した磁石粉末を製作する
とともに飽和磁化(σ)、iHc,iHcの温度係数
(η)を測定した。これらの母合金粉体のX線回折をC
u-Kα線を用いて行ったところ回折線はすべて強い回
折ピークのR3(Fe,V,B)29相と弱い回折ピーク
のR3(Fe,V)29相として指数付けできることを確
認した。 (比較例7〜9)合金組成をBが0.1未満または5a
t%より多くし、平均結晶粒径dcを変えた以外は実施
例8と同様にして表2の窒化物磁石粉末を作製し評価し
た。これらの磁石粉末に生成した相はSm3(Fe,V,
B)29相以外に、Th2Zn17型のSm2(Fe,V,B)
17相およびαFe相であった。
(Examples 8 to 11) Average grain size dc, B
In order to see the correlation between the amount and the magnetic characteristics, the above-mentioned Example 1 was repeated except that the magnet powder composition and the average crystal grain diameter dc shown in Table 2 were set and the powder average particle diameter dp of the magnet material was 70 μm.
The magnet powders shown in Table 2 were produced by the same operation as described above, and the saturation magnetization (σ) and the temperature coefficient (η) of iHc and iHc were measured. X-ray diffraction of these mother alloy powders
diffraction lines was performed using the u-K [alpha line was confirmed that all be indexed as a strong diffraction peak of R 3 (Fe, V, B ) 29 phase and the weak diffraction peak R 3 (Fe, V) 29 phase . (Comparative Examples 7 to 9) The alloy composition was changed so that B was less than 0.1 or 5a.
The nitride magnet powder of Table 2 was prepared and evaluated in the same manner as in Example 8, except that the amount was larger than t% and the average crystal grain size dc was changed. The phase formed in these magnet powders is Sm 3 (Fe, V,
B) In addition to the 29 phase, Th 2 Zn 17 type Sm 2 (Fe, V, B)
17 phases and αFe phase.

【0036】[0036]

【表2】 [Table 2]

【0037】表2から平均結晶粒径が0.05〜1.0
0μmであり、Bを0.1〜5原子%の範囲にすること
により高いiHcと低いiHcの温度係数(η)が得ら
れることがわかる。また比較例7〜9に示したようにB
が0.05原子%または7原子%以上のときにはiHc
が低下していた。
From Table 2, it can be seen that the average grain size is 0.05 to 1.0.
It can be seen that the temperature coefficient (η) of high iHc and low iHc can be obtained by setting B to be in the range of 0.1 to 5 atomic%. Further, as shown in Comparative Examples 7 to 9, B
Is 0.05 atomic% or 7 atomic% or more, iHc
Had declined.

【0038】(実施例12〜30)主相の平均結晶粒径
が0.06〜0.95μmであり、R成分含有量および
R成分の種類を変化させた場合、窒素含有量を変化させ
た場合、Feの一部をCoおよび/またはNiで置換し
た場合、M元素の種類および含有量を変化させた場合の
磁石特性との相関を各々見るために、平均粉末粒径11
0μmの表3の磁石粉末とした以外は上記実施例1と同
様な操作によって飽和磁化(σ)、iHc,iHcの温
度係数(η)を測定した。 (比較例10〜17)表4の磁石粉末とした以外は実施
例12と同様にして評価した。
(Examples 12 to 30) When the average crystal grain size of the main phase was 0.06 to 0.95 μm and the content of the R component and the type of the R component were changed, the nitrogen content was changed. In the case where a part of Fe was replaced by Co and / or Ni, the average powder particle size was 11
The saturation magnetization (σ) and the temperature coefficient (η) of iHc and iHc were measured by the same operation as in Example 1 except that the magnet powder of Table 3 was 0 μm. (Comparative Examples 10 to 17) Evaluations were made in the same manner as in Example 12 except that the magnet powder shown in Table 4 was used.

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】表3、表4より、平均結晶粒径が0.05
〜1.00μmであり、R成分中のSm比率が50原子
%以上でかつR成分が5〜18原子%であり、窒素が4
〜30原子%のときに高いiHcと低いiHcの温度係
数(η)が得られることがわかる。またFeの成分の
0.01〜30原子%をCoおよび/またはNiで置換
することによりiHcの温度係数(η)がさらに改善さ
れている。また、実施例12〜30において、M元素と
してTi、Mn、Crのいずれかを各々選択した場合に
も高いiHcと低いiHcの温度係数(η)が得られる
ことを確認した。また、実施例29、30の主相の微細
結晶組織を電子顕微鏡で観察したところ、数10nmの
セル構造のM元素が析出した組織が観察された。これに
対し、平均結晶粒径が1.00μmを越えている比較例
10〜12、窒素含有量の少ない比較例13および窒素
過多の比較例14およびCo置換量過多の比較例16、
Cr含有量過多の比較例17のものは上記実施例に比べ
て各特性が劣っていた。また、Co置換量の少ない比較
例15ではCoの添加効果が認められない。
According to Tables 3 and 4, the average crystal grain size was 0.05.
1.00 μm, the Sm ratio in the R component is 50 atomic% or more, the R component is 5 to 18 atomic%, and the nitrogen content is 4%.
It can be seen that a high iHc and a low iHc temperature coefficient (η) can be obtained at の 30 atomic%. Further, the temperature coefficient (η) of iHc is further improved by substituting 0.01 to 30 atomic% of the Fe component with Co and / or Ni. Further, in Examples 12 to 30, it was confirmed that the temperature coefficient (η) of high iHc and low iHc was obtained even when any one of Ti, Mn, and Cr was selected as the M element. When the fine crystal structure of the main phase in each of Examples 29 and 30 was observed with an electron microscope, a structure in which an M element having a cell structure of several tens nm was precipitated was observed. On the other hand, Comparative Examples 10 to 12 in which the average crystal grain size exceeds 1.00 μm, Comparative Example 13 with a low nitrogen content, Comparative Example 14 with an excessive nitrogen content, and Comparative Example 16 with an excessive Co substitution amount,
In the case of Comparative Example 17 in which the Cr content was excessive, the properties were inferior to those of the above-mentioned Examples. In Comparative Example 15 in which the amount of Co substitution is small, the effect of adding Co is not recognized.

【0042】(実施例32〜40)純度99.9%のS
m、Fe、Cr、Bを用いて下記の窒化物粉末に対応し
た母合金組成に配合後、アルゴンガス雰囲気下で高周波
溶解炉し鋳造合金を得た。前記鋳造塊を50mm角以下
に破断後、雰囲気熱処理炉に仕込み1atmの水素ガス
を供給するとともに500℃まで加熱し水素を吸収させ
た後真空にすることにより脱水素を行う工程を繰り返し
平均粒径100μmまで粗粉砕した。このSm-Fe-B
-Cr系磁性粉を表5に示した条件で水素化、分解反応
させる処理と、それに続いた脱水素、再結合反応処理を
行った。水素化、分解反応処理時の水素ガス圧は1at
mとした。脱水素、再結合反応処理時の水素分圧は5〜
7×10-2Torrとした。この処理を終えたSm-F
e-B-Cr系磁性粉を次いで雰囲気熱処理炉に仕込み4
60℃においてアンモニア分圧0.35atm、水素ガ
ス0.65atmの混合気流中で7時間保持する窒化処
理を行った。続いて水素ガス気流中で400℃×30分
間熱処理を行いSm9.2FebalB1.0Cr6.0N12.3(原
子%)の組成を有した各磁石粉末を得た。 (比較例18〜25)表5の水素化、分解処理条件およ
び脱水素、再結合処理条件とした以外は実施例31と同
様にしてσ、iHcを評価した。
(Examples 32 to 40) S having a purity of 99.9%
After mixing m, Fe, Cr, and B into a mother alloy composition corresponding to the following nitride powder, a high frequency melting furnace was used in an argon gas atmosphere to obtain a cast alloy. After the cast ingot is fractured to 50 mm square or less, a process of charging the atmosphere heat treatment furnace, supplying 1 atm of hydrogen gas, heating to 500 ° C. to absorb hydrogen, and then applying vacuum to repeat dehydrogenation is repeated. It was coarsely pulverized to 100 μm. This Sm-Fe-B
A treatment for hydrogenating and decomposing the -Cr magnetic powder under the conditions shown in Table 5, followed by a dehydrogenation and recombination reaction treatment. Hydrogen gas pressure during hydrogenation and decomposition reaction treatment is 1 at
m. Hydrogen partial pressure during dehydrogenation and recombination reaction treatment is 5 to 5.
7.times.10.sup.- 2 Torr. Sm-F after this process
e-B-Cr-based magnetic powder is then charged into an atmosphere heat treatment furnace 4
A nitriding treatment was performed at 60 ° C. for 7 hours in a mixed gas flow of an ammonia partial pressure of 0.35 atm and a hydrogen gas of 0.65 atm. Subsequently, heat treatment was performed at 400 ° C. for 30 minutes in a hydrogen gas stream to obtain each magnet powder having a composition of Sm9.2FebalB1.0Cr6.0N12.3 (atomic%). (Comparative Examples 18 to 25) σ and iHc were evaluated in the same manner as in Example 31 except that the hydrogenation, decomposition treatment conditions, dehydrogenation, and recombination treatment conditions in Table 5 were used.

【0043】[0043]

【表5】 [Table 5]

【0044】表5から水素化、分解処理を700〜90
0℃×0.5〜8時間とし、さらに脱水素、再結合処理
を700〜900℃×0.5〜10時間とすることによ
り高いiHcが得られ、各実施例の主相の平均結晶粒径
は0.05〜1.0μmの範囲に分布していた。これに
対し、比較例18〜25のものはiHcが低く、主相の
平均結晶粒径は0.05〜1.0μmの範囲を外れてい
た。
Table 5 shows that the hydrogenation and decomposition treatments were 700-90.
A high iHc is obtained by setting the temperature to 0 ° C. × 0.5 to 8 hours and the dehydrogenation and recombination treatment to 700 to 900 ° C. × 0.5 to 10 hours. The diameter was distributed in the range of 0.05 to 1.0 μm. In contrast, those of Comparative Examples 18 to 25 had low iHc, and the average crystal grain size of the main phase was out of the range of 0.05 to 1.0 μm.

【0045】(実施例41〜46)ボンド磁石特性を評
価するために主相の平均結晶粒径dcが0.05〜1.
00μmにある表6に示す組成の磁石粉末を作製し、こ
れらをエポキシ樹脂と混合した後、10kOeの磁場中
でプレス圧10ton/cm2で圧縮成形し、さらに硬
化のため140℃、1時間の熱処理を施して等方性ボン
ド磁石を作製した。これらの等方性ボンド磁石の磁気特
性を表6に示した。
(Examples 41 to 46) In order to evaluate the properties of the bonded magnet, the average crystal grain size dc of the main phase was 0.05 to 1.0.
A magnet powder having a composition shown in Table 6 and having a composition of 00 μm was prepared, mixed with an epoxy resin, and then compression-molded at a press pressure of 10 ton / cm 2 in a magnetic field of 10 kOe and further cured at 140 ° C. for 1 hour. Heat treatment was performed to produce an isotropic bonded magnet. Table 6 shows the magnetic properties of these isotropic bonded magnets.

【0046】[0046]

【表6】 [Table 6]

【0047】表6から本発明の等方性ボンド磁石が良好
な磁石特性を有していることがわかる。
Table 6 shows that the isotropic bonded magnet of the present invention has good magnet properties.

【0048】上記各実施例の磁石粉末のキュリー温度は
いずれも480±20℃という良好な値を有していた。
The Curie temperature of each of the magnetic powders of the above examples had a good value of 480 ± 20 ° C.

【0049】[0049]

【発明の効果】R3(Fe,M,B)29y主相の平均結
晶粒径が0.05〜1.0μmである場合に粉体の平均
粒径で20〜500μmにわたって高いiHcと低いi
Hcの温度係数(η)を有した希土類磁石粉末を安定し
て提供できるとともに、この粉末を用いることで良好な
耐熱性を有した希土類ボンド磁石を容易に提供でき、工
業的に非常に有用なものである。
According to the present invention, when the average crystal grain size of the R 3 (Fe, M, B) 29 Ny main phase is 0.05 to 1.0 μm, the iHc is high over the range of 20 to 500 μm in average powder size. Low i
A rare earth magnet powder having a temperature coefficient of Hc (η) can be stably provided, and by using this powder, a rare earth bonded magnet having good heat resistance can be easily provided, which is industrially very useful. Things.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01F 1/08 H01F 1/08 A (72)発明者 徳永 雅亮 埼玉県熊谷市三ケ尻5200番地日立金属株式 会社磁性材料研究所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01F 1/08 H01F 1/08 A (72) Inventor Masaaki Tokunaga 5200 Mikajiri, Kumagaya-shi, Saitama Pref.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 成分組成がRαFe100-(α+β+γ+δ)
MβBγNδで表され、単斜晶および/または六方晶の
結晶構造を有し平均結晶粒径が0.05〜1.0μmで
あるR3(Fe,M,B)29y主相を含み、前記RはY
を含めた希土類元素のいずれか1種または2種以上であ
り、前記MはAl、Ti、V、Cr、Mn、Cu、G
a、Zr、Nb、Mo、Hf、Ta、Wのいずれか1種
または2種以上であり、前記α、β、γ、δは原子百分
率で下記の範囲にあることを特徴とする希土類磁石材
料。 5≦α≦18 1≦β≦50 0.1≦γ≦5 4≦δ≦30
1. The composition of the composition is RαFe100- (α + β + γ + δ).
An R 3 (Fe, M, B) 29 N y main phase represented by MβBγNδ, having a monoclinic and / or hexagonal crystal structure and having an average crystal grain size of 0.05 to 1.0 μm; R is Y
And at least one of rare earth elements, including M, wherein M is Al, Ti, V, Cr, Mn, Cu, G
a rare earth magnet material, wherein at least one of a, Zr, Nb, Mo, Hf, Ta, and W is used, and the α, β, γ, and δ are in the following ranges in atomic percentage. . 5 ≦ α ≦ 18 1 ≦ β ≦ 50 0.1 ≦ γ ≦ 5 4 ≦ δ ≦ 30
【請求項2】 R成分の50原子%以上がSmであるこ
とを特徴とする請求項1に記載の希土類磁石材料。
2. The rare earth magnet material according to claim 1, wherein 50% by atom or more of the R component is Sm.
【請求項3】 希土類磁石材料の粉体の平均粒径が20
μm以上500μm以下であることを特徴とする請求項
1または2に記載の希土類磁石材料。
3. An average particle diameter of the rare earth magnet material powder is 20.
The rare earth magnet material according to claim 1, wherein the rare earth magnet material has a thickness of not less than μm and not more than 500 μm.
【請求項4】 R3(Fe,M,B)29y相の結晶粒内
にM元素またはM化合物が析出していることを特徴とす
る請求項1乃至3のいずれかに記載の希土類磁石材料。
4. The rare earth element according to claim 1, wherein the M element or the M compound is precipitated in the crystal grains of the R 3 (Fe, M, B) 29 Ny phase. Magnet material.
【請求項5】 希土類磁石材料におけるR3(Fe,
M,B)29y主相の構成比率が60体積%以上である
ことを特徴とする請求項1乃至4のいずれかに記載の希
土類磁石材料。
5. R 3 (Fe,
The rare earth magnet material according to any one of claims 1 to 4, wherein the composition ratio of the (M, B) 29 Ny main phase is 60% by volume or more.
【請求項6】 請求項1乃至5のいずれかに記載の希土
類磁石材料の粉体粒子を、高分子重合体、純金属、合金
のいずれかのバインダーで結合したことを特徴とする希
土類ボンド磁石。
6. A rare earth bonded magnet, wherein the powder particles of the rare earth magnet material according to any one of claims 1 to 5 are bonded with a binder of a polymer, a pure metal, or an alloy. .
【請求項7】 成分組成がRαFe100-(α+β+γ+δ)
MβBγNδで表され、単斜晶および/または六方晶の
結晶構造を有したR3(Fe,M,B)29y主相を含
み、前記RはYを含めた希土類元素のいずれか1種また
は2種以上であり、前記MはAl、Ti、V、Cr、M
n、Cu、Ga、Zr、Nb、Mo、Hf、Ta、Wの
いずれか1種または2種以上であり、前記α、β、γ、
δが原子百分率で下記の範囲にある希土類磁石材料の製
造方法において、 前記組成の合金を鋳造後、均質化処理を行い、続いて粗
粉砕したものを、0.1〜10atmのH2ガス中また
はH2ガス分圧を有した不活性ガス(N2ガスを除く)中
で700〜900℃×0.5〜8時間保持する水素化、
分解反応処理を行い、続いて1×10-2Torr以上の
真空中に700〜900℃×0.5〜10時間保持する
脱水素、再結合反応処理を行った後、窒化処理を行うこ
とを特徴とする希土類磁石材料の製造方法。 5≦α≦18 1≦β≦50 0.1≦γ≦5 4≦δ≦30
7. A composition comprising RαFe100- (α + β + γ + δ)
Represented by Emubetabiganmaenuderuta, monoclinic and / or R 3 having a hexagonal crystal structure (Fe, M, B) comprises a 29 N y main phase, wherein R is any one of rare earth elements including Y Or two or more kinds, wherein M is Al, Ti, V, Cr, M
n, Cu, Ga, Zr, Nb, Mo, Hf, Ta, W or any one or more of the above, α, β, γ,
In a method for producing a rare earth magnet material in which δ is in the following range in atomic percentage, an alloy having the above composition is cast, homogenized, and then roughly pulverized in H 2 gas of 0.1 to 10 atm. Or hydrogenation maintained at 700 to 900 ° C. × 0.5 to 8 hours in an inert gas (excluding N 2 gas) having a H 2 gas partial pressure;
After performing a decomposition reaction treatment, and subsequently performing a dehydrogenation and recombination reaction treatment at 700 to 900 ° C. for 0.5 to 10 hours in a vacuum of 1 × 10 −2 Torr or more, a nitriding treatment is performed. A method for producing a rare earth magnet material. 5 ≦ α ≦ 18 1 ≦ β ≦ 50 0.1 ≦ γ ≦ 5 4 ≦ δ ≦ 30
【請求項8】 鋳造後に、700〜1250℃×0.5
〜100時間の均質化処理を行うことを特徴とする請求
項7に記載の希土類磁石材料の製造方法。
8. After casting, the temperature is 700 to 1250 ° C. × 0.5.
The method for producing a rare earth magnet material according to claim 7, wherein the homogenization treatment is performed for 100 hours.
【請求項9】 窒化処理後に、真空中あるいは不活性ガ
ス中(N2ガスを除く)で300〜600℃×0.5〜5
0時間の熱処理を行うことを特徴とする請求項7乃至9
のいずれかに記載の希土類磁石材料の製造方法。
9. After the nitriding treatment, in a vacuum or in an inert gas (excluding N 2 gas), 300 to 600 ° C. × 0.5 to 5 ° C.
10. The heat treatment for 0 hours is performed.
The method for producing a rare earth magnet material according to any one of the above.
【請求項10】 0.2〜10atmのN2ガス、H2
1〜95モル%で残部N2からなるH2とN2の混合ガ
ス、NH3のモル%が1〜50%で残部H2からなるNH
3とH2の混合ガスのうちのいずれかの雰囲気中で300
〜650℃×0.1〜30時間保持する窒化処理を行う
ことを特徴とする請求項7乃至9のいずれかに記載の希
土類磁石材料の製造方法。
10. A mixed gas of H 2 and N 2 consisting of 0.2 to 10 atm of N 2 gas, H 2 of 1 to 95 mol% and the balance N 2 , and NH 3 of 1 to 50 mol% of the balance NH consisting of H 2
300 in any atmosphere of the mixed gas of 3 and H 2
The method for producing a rare-earth magnet material according to any one of claims 7 to 9, wherein a nitriding treatment is performed at a temperature of 650C for 0.1 to 30 hours.
JP9098611A 1997-04-16 1997-04-16 Rare-earth magnet material, method of manufacturing the same and rare-earth bonded magnet by the method Pending JPH10289811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9098611A JPH10289811A (en) 1997-04-16 1997-04-16 Rare-earth magnet material, method of manufacturing the same and rare-earth bonded magnet by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9098611A JPH10289811A (en) 1997-04-16 1997-04-16 Rare-earth magnet material, method of manufacturing the same and rare-earth bonded magnet by the method

Publications (1)

Publication Number Publication Date
JPH10289811A true JPH10289811A (en) 1998-10-27

Family

ID=14224397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9098611A Pending JPH10289811A (en) 1997-04-16 1997-04-16 Rare-earth magnet material, method of manufacturing the same and rare-earth bonded magnet by the method

Country Status (1)

Country Link
JP (1) JPH10289811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289443A (en) * 2001-03-23 2002-10-04 Nec Tokin Corp Inductor component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289443A (en) * 2001-03-23 2002-10-04 Nec Tokin Corp Inductor component

Similar Documents

Publication Publication Date Title
US6413327B1 (en) Nitride type, rare earth magnet materials and bonded magnets formed therefrom
JP2001093713A (en) Multi-element-based rare earth-iron lattice interstitial permanent magnet material, permanent magnet composed of the material and manufacture of the material and the permanent magnet
JP2001189206A (en) Permanent magnet
JP2005527989A (en) Nanocrystalline rare earth permanent magnet materials, nanocomposite rare earth permanent magnet materials, and methods for producing these magnet materials
JP3317646B2 (en) Manufacturing method of magnet
JP2000114017A (en) Permanent magnet and material thereof
JP2004253697A (en) Permanent magnet and material thereof
JP2703281B2 (en) Magnetic anisotropic material and method of manufacturing the same
JPH08191006A (en) Magnetic material
JP3118740B2 (en) Rare earth magnet materials and rare earth bonded magnets
JP3247508B2 (en) permanent magnet
JP3370013B2 (en) Rare earth magnet material and rare earth bonded magnet using the same
JP3469496B2 (en) Manufacturing method of magnet material
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH10289811A (en) Rare-earth magnet material, method of manufacturing the same and rare-earth bonded magnet by the method
JPH10289812A (en) Rare-earth magnet material, method of manufacturing rare-earth magnet material and rare-earth bonded magnet by the method
EP0597582B1 (en) Rare-earth magnet powder material
JPH045739B2 (en)
JPH10241923A (en) Rare-earth magnet material, its manufacture, and rare-earth bond magnet using it
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JP2000235909A (en) Rare earth/iron/boron magnet and manufacture thereof
JPH01274401A (en) Permanent magnet
JP3209291B2 (en) Magnetic material and its manufacturing method
JPH06112019A (en) Nitride magnetic material