JPH10226007A - Moldable antistatic resin molding - Google Patents

Moldable antistatic resin molding

Info

Publication number
JPH10226007A
JPH10226007A JP9331553A JP33155397A JPH10226007A JP H10226007 A JPH10226007 A JP H10226007A JP 9331553 A JP9331553 A JP 9331553A JP 33155397 A JP33155397 A JP 33155397A JP H10226007 A JPH10226007 A JP H10226007A
Authority
JP
Japan
Prior art keywords
antistatic
resin
fibers
fiber
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9331553A
Other languages
Japanese (ja)
Other versions
JP3398587B2 (en
Inventor
Makoto Ihira
誠 井平
Masahito Sakai
将人 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP33155397A priority Critical patent/JP3398587B2/en
Publication of JPH10226007A publication Critical patent/JPH10226007A/en
Application granted granted Critical
Publication of JP3398587B2 publication Critical patent/JP3398587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate substantial increase of surface resistivity even by fabricating after antistatic property is given by forming a conductive long fiber winding in a thermoplastic resin of a coated film held at an interval having contact with each other or conductivity and dispersing therein. SOLUTION: To maintain a dispersed state of a conductive long fiber 1 of a small amount in a resin layer in a wide range, a coated film of a resin coating liquid added with the fiber 1 is formed on a surface of a base material. Even if it is heated to be deformed to fabricate after the film is formed, entangling of the fiber 1 in the resin layer can be held as remained short-circuited without disengaging, and a decrease in antistatic property due to fabricating is small. In the coated film added with an ultrafine length carbon fiber 1, the antistatic property is not lowered by fabricating, a frequency of contact of many carbon fibers output from a pill-like aggregate 2 or an aggregate in the coated film with each other or approach with each other in a conductive manner is raised, and the antistatic property is enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面に制電性を付
与して、成形加工によっても表面抵抗率の実質的な増加
を伴わない制電性樹脂成形品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antistatic resin molded article which imparts antistatic properties to the surface and does not substantially increase the surface resistivity even by molding.

【0002】[0002]

【従来の技術】制電性合成樹脂成形品は、成形品の表面
に制電性を付与して、表面で蓄積する静電気を逃がし
て、成形品表面での埃、粉塵の付着や堆積を嫌う用途に
使用されている。
2. Description of the Related Art An antistatic synthetic resin molded article imparts antistatic properties to the surface of the molded article, releases static electricity accumulated on the surface, and dislikes adhesion and accumulation of dust and dust on the surface of the molded article. Used for applications.

【0003】合成樹脂成形品に制電性を付与するには、
従来は、酸化錫などの導電性微粒子や炭素などの導電性
の微粒子あるいは繊維を樹脂に配合して均一に分散させ
ていた。これら粒子間ないし繊維間の相互接触により制
電性が生じ、成形品の電気抵抗を低下させるものであ
る。
In order to impart antistatic properties to a synthetic resin molded product,
Conventionally, conductive fine particles such as tin oxide or conductive fine particles or fibers such as carbon have been blended with a resin and uniformly dispersed. The mutual contact between the particles or the fibers causes antistatic properties, thereby reducing the electrical resistance of the molded article.

【0004】また、成形品の表層部だけに導電性の粒子
や繊維を含有させることにより、成形品表面にだけ制電
性を付与することも行われ、このような例としては、樹
脂基板の表面に、合成樹脂に導電性の粒子や繊維を含有
させて形成した塗膜やフィルムを添着して形成したもの
があり、制電性樹脂板などとして利用されている。
[0004] In addition, by adding conductive particles or fibers only to the surface layer of a molded article, antistatic properties can be imparted only to the surface of the molded article. There is a surface formed by attaching a coating film or film formed by adding conductive particles or fibers to a synthetic resin, and is used as an antistatic resin plate or the like.

【0005】[0005]

【発明が解決しようとする課題】上記従来の制電性樹脂
板は、熱可塑性の樹脂基板を成形した後で上記制電性の
フィルムを積層形成することにより、表面が良好な制電
性を示し、表面抵抗率1011Ω/□以下の樹脂板が得ら
れる。しかし、このように形成した樹脂板を、さらに加
熱して曲げ加工や真空成形のように面域を拡大するが如
き変形をさせると、二次成形後の表面抵抗率が高くな
り、制電性が低下すると言う問題があった。表面抵抗率
は一般に制電性樹脂板の引張変形によって増加するが、
この原因は、導電性粒子や繊維を分散した樹脂の伸びに
より導電性の粒子や繊維の相互接触頻度が少なくなり、
また、粒子間相互距離が大きくなるためであると考えら
れる。
The conventional antistatic resin plate has a good antistatic property by forming a thermoplastic resin substrate and then laminating the above antistatic film. As a result, a resin plate having a surface resistivity of 10 11 Ω / □ or less is obtained. However, when the resin plate formed in this way is further heated and deformed to expand the surface area as in the case of bending or vacuum forming, the surface resistivity after secondary forming becomes high, and the antistatic property becomes high. There was a problem that it decreased. Surface resistivity generally increases due to tensile deformation of the antistatic resin plate,
The cause of this is that the frequency of mutual contact between the conductive particles and fibers decreases due to the elongation of the resin in which the conductive particles and fibers are dispersed,
It is also considered that the mutual distance between particles increases.

【0006】さらに、成形過程の変形量が大きくて塑性
変形を生ずるような場合には、繊維状の導電材料は変形
方向に配向してしまうので、さらに線維間の相互接触や
導通可能な間隔保持の頻度が少なくなり、表面抵抗率が
高くなることが認められる。この傾向は、導電材料が剛
直な短繊維である場合ほど生じやすいものである。
Further, in the case where plastic deformation occurs due to a large amount of deformation in the forming process, the fibrous conductive material is oriented in the deformation direction, so that the fibers can be in contact with each other or the gap can be maintained. Is reduced and the surface resistivity is increased. This tendency is more likely to occur when the conductive material is a rigid short fiber.

【0007】このように、制電性樹脂板がその後に二次
加工などの成形加工に供されると、加工後の成形品の表
面抵抗率が高くなって制電性が低下するのでは、その用
途が限られる。このような場合には、通常の熱可塑性樹
脂板から成形加工した後に、制電性塗料を成形品の表面
所望部位に塗布することで制電性を付与することは可能
であるけれども、制電性塗料の塗布のための工程が必要
となり、しかも、複雑な形状の成形品では均質で表面性
状の良好な塗膜形成が困難で、均一な制電性の付与がで
きない。
As described above, if the antistatic resin plate is subsequently subjected to molding processing such as secondary processing, the surface resistivity of the molded article after processing is increased and the antistatic property is reduced. Its use is limited. In such a case, after forming from a normal thermoplastic resin plate, it is possible to impart antistatic properties by applying an antistatic paint to a desired portion of the surface of the molded article. A step for applying a conductive paint is required, and it is difficult to form a uniform and good surface coating film on a molded article having a complicated shape, and uniform antistatic properties cannot be imparted.

【0008】本発明は、上記問題に鑑み、制電性付与後
の二次加工によっても表面抵抗率の実質的な増加を伴わ
ないような熱成形可能な制電性樹脂成形品を提供しよう
とするものである。
The present invention has been made in view of the above problems, and has as its object to provide a thermoformed antistatic resin molded article that does not substantially increase the surface resistivity even by secondary processing after imparting antistatic properties. Is what you do.

【0009】[0009]

【解決手段】本発明の制電性樹脂成形品は、熱可塑性樹
脂基材と、該樹脂基材の何れかの表面に被着された制電
性樹脂層とから成る制電性樹脂成形品であるが、上記制
電性樹脂層は、熱可塑性樹脂中に導電性の長繊維が曲が
りくねって且つ互いに接触及び/若しくは導通性を有す
る間隔を保持して分散している塗膜により形成されてな
るものである。この成形品がその後の熱加工によって制
電性樹脂層の圧下ないし引張り、曲げなどの変形を受け
ても、曲がりくねった長繊維が真直ぐになろうとするの
みでお互いの接触や導通可能な間隔を保てなくなること
がなく、従って、成形後も、樹脂層の制電性を保持する
ことができる。これにより、加熱成形などの二次加工に
よっても制電性を有する成形性と制電性とを同時に保持
した制電性樹脂成形品とすることができるのである。
An antistatic resin molded product according to the present invention comprises a thermoplastic resin substrate and an antistatic resin layer adhered to any surface of the resin substrate. However, the antistatic resin layer is formed of a coating film in which conductive long fibers meander in a thermoplastic resin and are dispersed while maintaining an interval having contact and / or conductivity with each other. It becomes. Even if this molded product undergoes deformation such as rolling, pulling, bending, etc. of the antistatic resin layer due to subsequent thermal processing, it keeps the space where it can contact and conduct each other only by trying to straighten the winding long fibers. Therefore, even after molding, the antistatic property of the resin layer can be maintained. This makes it possible to obtain an antistatic resin molded article having both moldability having antistatic properties and antistatic properties at the same time even by secondary processing such as heat molding.

【0010】このような導電性の長繊維には、炭素繊
維、金属繊維、導電化された有機繊維、等が利用可能
で、できるだけ細くて長い繊維がお互いに絡み合って接
触し易く、また曲がりくねり易いので好ましい。特に好
ましいのは、超極細の長炭素繊維である。超極細の長炭
素繊維はお互いに絡み合って毛玉状に集合し易い性質が
あり、該毛玉状繊維集合体から多数の繊維が放出してい
て、熱可塑性樹脂中にその毛玉状繊維集合体を多数均一
に分散させることにより、樹脂層中の繊維集合体を相互
に接触させ及び/若しくは導通可能な間隔を保持させ、
該樹脂層に制電性を付与する。
As such conductive long fibers, carbon fibers, metal fibers, conductive organic fibers, and the like can be used, and the long and thin fibers that are as thin and long as possible are easily entangled with each other and are easily twisted and bent. It is preferred. Particularly preferred are ultrafine long carbon fibers. The ultra-fine long carbon fibers are entangled with each other and tend to be aggregated in a pill-like shape, and a large number of fibers are released from the pill-like fiber aggregate, and a large number of the pill-like fiber aggregates are uniformly dispersed in a thermoplastic resin. By causing the fiber aggregate in the resin layer to contact each other and / or to maintain a conductive interval,
An antistatic property is imparted to the resin layer.

【0011】従来の炭素繊維は線径が大きくて剛直であ
り、繊維同士の絡み合いがないのであるが、本発明に使
用する長繊維、特に超極細炭素繊維は、繊維が超極細
で、即ち、線径に比して長さが長いので樹脂層中でも各
炭素繊維が絡み合った状態で分散する。毛玉状に絡み合
った超極細炭素繊維は、毛玉状として分散し易くて絡み
合いも容易になされる。炭素繊維を毛玉状集合体とする
ためには、線径が3.5〜500nmで、アスペクト比
(線径に対する長さの比)が100〜3000の超極細
であることが望ましい。この毛玉状炭素繊維集合体から
は多数の炭素繊維が放出した状態をなし、毛玉状の集合
体同士が接近している状態では、毛玉から放射状に突出
延伸している炭素繊維が、樹脂層中で相互に接触して或
いは導通可能な間隔を保持して、電気的に導通状態を形
成している。
Conventional carbon fibers have a large wire diameter and are rigid, and there is no entanglement between the fibers. However, the long fibers used in the present invention, particularly the ultra-fine carbon fibers, have ultra-fine fibers. Since the length is longer than the wire diameter, the carbon fibers are dispersed in the resin layer in a state of being entangled. The ultra-fine carbon fibers entangled in a pill shape are easily dispersed in a pill shape and are easily entangled. In order to make the carbon fibers into a pill-shaped aggregate, it is desirable that the ultrafine fibers have a wire diameter of 3.5 to 500 nm and an aspect ratio (ratio of length to wire diameter) of 100 to 3000. A large number of carbon fibers are released from the pill-shaped carbon fiber aggregate, and in a state where the pill-shaped aggregates are close to each other, carbon fibers radially projecting and extending from the pill are formed in the resin layer. An electrically conductive state is formed by contacting with each other or maintaining a conductive interval.

【0012】本発明は、少ない量で樹脂層中での導電性
長繊維の広範囲の分散状態を維持するために、導電性長
繊維を添加した樹脂塗液の塗膜を基材表面に形成した。
塗膜形成後に二次加工のため加熱して変形しても、樹脂
層中で導電性長繊維の絡み合いは解けずに短絡したまま
保持でき、加工による制電性の低下は少ない。超極細長
炭素繊維を添加した塗膜では、加工により制電性が低下
するどころか、むしろ、適度な加工成形に伴う塗膜の適
度の圧下によって、塗膜中で毛玉状集合体同士ないしは
集合体から出ている多数の炭素繊維同士の接触や導通可
能に接近する頻度が高くなり、制電性が高くなる効果が
認められる。
According to the present invention, in order to maintain a wide dispersion state of the conductive long fibers in the resin layer in a small amount, a coating film of a resin coating solution containing the conductive long fibers is formed on the surface of the substrate. .
Even if it is deformed by heating for the secondary processing after the coating film is formed, the entanglement of the conductive long fibers in the resin layer can be maintained in a short-circuited state without being unraveled, and the reduction in antistatic property due to the processing is small. In the coating film to which ultra-fine carbon fiber is added, instead of reducing the antistatic property by processing, rather, by the appropriate reduction of the coating film due to appropriate processing, from the ball-shaped aggregates or aggregates in the coating film The frequency with which a large number of carbon fibers coming out come into contact with each other or in a conductive manner is increased, and the effect of increasing antistatic properties is recognized.

【0013】[0013]

【発明の実施の形態】本発明の成形用制電性樹脂成形品
は、熱可塑性樹脂基材と制電性樹脂層とからなるもので
あるが、熱可塑性樹脂基材は、その成形品の用途により
適した熱可塑性樹脂から選ばれ、例示すると、ポリエチ
レン、ポリプロピレンなどオレフイン系樹脂、ポリ塩化
ビニル、ポリメチルメタクリレートなどビニル系樹脂、
ポリカーボネート、ポリエチレンテレフタレート、不飽
和ポリエステル、芳香族ポリエステルなどエステル系樹
脂などがある。このなかで、耐薬品性に優れ、耐熱性も
70〜80℃で、強度も有するポリ塩化ビニルが好まし
く用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION The antistatic resin molded article of the present invention comprises a thermoplastic resin base and an antistatic resin layer. It is selected from thermoplastic resins more suitable for the application, for example, olefin resins such as polyethylene and polypropylene, polyvinyl resins such as polyvinyl chloride and polymethyl methacrylate,
Examples include ester resins such as polycarbonate, polyethylene terephthalate, unsaturated polyester, and aromatic polyester. Among them, polyvinyl chloride having excellent chemical resistance, heat resistance of 70 to 80 ° C. and strength is preferably used.

【0014】基材の形態は、板、シート、フイルム、
管、その他、線、条、棒などがあり、この基材は、成形
品の用途と制電性樹脂層の形成に適したものであれば特
に制限されないが、好ましくは、後に熱成形するのに適
したものから選ばれる。特に、板又はシートが、熱成形
に利用できるので、好ましく適用される。
The form of the substrate may be a plate, a sheet, a film,
There are pipes, other, wires, strips, rods, and the like, and the base material is not particularly limited as long as it is suitable for the use of the molded article and the formation of the antistatic resin layer. Selected from those suitable for In particular, a plate or a sheet is preferably used because it can be used for thermoforming.

【0015】制電性樹脂層は、熱可塑性樹脂中に導電性
の長繊維、好ましくは導電性長炭素繊維の毛玉状繊維集
合体を分散させて成る塗膜であって、成形品の表面に制
電性を付与するものであるが、この樹脂層を熱可塑性樹
脂から形成するのは、この樹脂層も二次加工による成形
を可能にするためである。
The antistatic resin layer is a coating film formed by dispersing a conductive long fiber, preferably a pill-like fiber aggregate of conductive long carbon fibers, in a thermoplastic resin. The resin layer is formed of a thermoplastic resin to impart electrical properties, in order to enable the resin layer to be formed by secondary processing.

【0016】この樹脂層は、上記の基材を構成する上記
熱可塑性樹脂と同種又は異種の熱可塑性樹脂が選ばれ
る。特に、この樹脂層が塗膜から形成されるので、塗膜
形成の樹脂は、基材樹脂と同種の樹脂であって、且つ導
電性長繊維を容易に分散させるために塗液に形成可能な
ものが、基材との接着性の点から、好ましい。異種の樹
脂を使用することも可能であるが、特に、同種の樹脂か
らは塗液の形成が困難であるとき或は同種の樹脂が耐候
性、表面硬度、耐磨耗性等において劣るときは、異種の
熱可塑性樹脂であって、塗液の形成が可能で、同種の樹
脂より耐候性や表面硬度や耐磨耗性等に優れ、塗液硬化
後は基材樹脂との接着力の大きい樹脂のなかから選ばれ
る。
For this resin layer, a thermoplastic resin of the same type or a different type from the above-mentioned thermoplastic resin constituting the above-mentioned base material is selected. In particular, since this resin layer is formed from a coating film, the resin for forming the coating film is a resin of the same type as the base resin, and can be formed in a coating liquid in order to easily disperse the conductive long fibers. Are preferred from the viewpoint of adhesiveness to the substrate. It is also possible to use different types of resins, especially when it is difficult to form a coating liquid from the same type of resin or when the same type of resin is inferior in weather resistance, surface hardness, abrasion resistance, etc. A different kind of thermoplastic resin, capable of forming a coating liquid, has better weather resistance, surface hardness and abrasion resistance than the same kind of resin, and has a large adhesive strength with the base resin after the coating liquid is cured. Selected from among resins.

【0017】制電性樹脂層の塗液は、樹脂基材がポリ塩
化ビニルの場合には、ポリ塩化ビニル、その共重合体や
アクリル樹脂を、相溶性が高い揮発性の溶媒、例えば、
メチルイソブチルケトン、メチルエチルケトン、シクロ
ヘキサノンなどに溶解して塗液にしたものが利用され
る。樹脂基材がポリカーボネートの場合にも、ポリ塩化
ビニルやその共重合体やアクリル樹脂の上記塗液が使用
され、また、樹脂基材がアクリル樹脂の場合はアクリル
樹脂の上記塗液が使用される。
When the resin base material is polyvinyl chloride, the coating liquid for the antistatic resin layer is formed by adding polyvinyl chloride, a copolymer thereof, or an acrylic resin to a highly compatible volatile solvent, for example,
A solution that is dissolved in methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone, or the like to form a coating solution is used. When the resin base is polycarbonate, the above-mentioned coating liquid of polyvinyl chloride or its copolymer or acrylic resin is used, and when the resin base is acrylic resin, the above-mentioned coating liquid of acrylic resin is used .

【0018】この樹脂層は、基材表面、例えば基板の何
れかの表面又は両面に塗膜として形成されている。塗膜
の形成は基材表面に直接グラビアロール等で塗布した
り、ディッビングにて行う方法もある。また、熱可塑性
樹脂フィルムの表面に導電性長繊維を含む塗膜を形成
し、このフィルムの裏面を上記の基材に添着する方法も
ある。この場合には、基材表面にこのフィルムの裏面を
接着剤を介在して接着する方法や直接に加熱プレスやロ
ールプレスで熱圧着する方法等が採用される。
This resin layer is formed as a coating film on the surface of a base material, for example, any surface or both surfaces of a substrate. The coating film may be formed by directly applying a gravure roll or the like to the substrate surface or by diving. There is also a method in which a coating film containing conductive long fibers is formed on the surface of a thermoplastic resin film, and the back surface of the film is attached to the above-described substrate. In this case, a method of bonding the back surface of the film to the surface of the base material with an adhesive or a method of directly thermocompression-bonding with a hot press or a roll press is used.

【0019】本発明に使用する導電性長繊維は、炭素繊
維、ステンレスや銅等の金属繊維、硫化銅等を含有した
有機繊維等が使用される。これらの繊維は曲がりくねっ
ていてお互いがいずれかで接触及び/若しくは導通性を
有する間隔を保っていて、導通性を有している。各繊維
の径は50μm以下であることが、樹脂層中で曲がりく
ねって接触させたり導通可能に接近させるために有用で
ある。
As the conductive long fibers used in the present invention, carbon fibers, metal fibers such as stainless steel and copper, organic fibers containing copper sulfide and the like are used. These fibers are tortuous and spaced apart from one another to have contact and / or conductivity and are conductive. When the diameter of each fiber is 50 μm or less, it is useful to make a meandering contact in the resin layer or to make it close to be conductive.

【0020】導電性長繊維として、線径に対して充分に
長い長炭素繊維が好ましく、長炭素繊維には、特に、超
極細としたものが好ましく使用される。このような長炭
素繊維は、不定形炭素質繊維とグラファイト質繊維の両
方を含み、さらに長炭素繊維には、素繊維に不定形炭素
とグラファイトとが共存するような炭素繊維も使用され
る。これらは、いずれも超極細状の繊維であって、繊維
同士が縺れて絡み合いにより集合体を形成する性質を有
するものが好ましい。
As the conductive long fibers, long carbon fibers that are sufficiently long with respect to the wire diameter are preferable. As the long carbon fibers, particularly, ultrafine fibers are preferably used. Such long carbon fibers include both amorphous carbon fibers and graphite fibers, and carbon fibers in which amorphous carbon and graphite coexist in raw fibers are also used as long carbon fibers. These are all ultra-fine fibers, and preferably have the property that the fibers are entangled and entangled to form an aggregate.

【0021】導電性の長炭素繊維として、最も良いの
は、構造上はグラファイト質繊維であって、繊維軸に同
軸状にグラファイト層が積層形成された断面円形のグラ
ファイト質の極細状の長繊維であり、その線径が1μm
以下のものである。
As the conductive long carbon fiber, the best one is a graphite fiber in terms of structure, and a graphite-like ultrafine long fiber having a circular cross section in which a graphite layer is laminated coaxially with the fiber axis. And the wire diameter is 1 μm
These are:

【0022】このようなグラファイト質繊維は、特公平
3−64606号公報明細書中にその製法が開示されて
いるが、芳香族又は非芳香族炭化水素と水素との混合気
流中で鉄族金属又はその酸化物の接触反応により繊維軸
に同軸状のグラファイト層が析出されて形成された極細
な繊維である。この繊維はグラファイトの層状結晶のC
軸が繊維軸と直交する構造であり、不定形炭素の析出が
少なくなされているものが好ましい。
The production method of such a graphite fiber is disclosed in Japanese Patent Publication No. 3-64606, but the iron-group metal is mixed in a mixed gas flow of aromatic or non-aromatic hydrocarbon and hydrogen. Alternatively, it is an ultrafine fiber formed by depositing a coaxial graphite layer on the fiber axis by a contact reaction of the oxide. This fiber is made of graphite layered crystal C
It is preferable that the shaft has a structure perpendicular to the fiber axis and that the precipitation of amorphous carbon is reduced.

【0023】特に、超極細の長炭素繊維の形状は、線径
(単一繊維の直径)が1μm以下、好ましくは3.5〜
500nmである。超極細の長炭素繊維は、線径の小さ
い方が樹脂層中で集合し易くてよいが、3.5nm未満
では成形時に切断されやすく、線径が500nmを超え
ると、繊維が剛直になりやすく、集合するのに不利とな
る。
Particularly, the shape of the ultra-fine ultra-long carbon fiber has a wire diameter (diameter of a single fiber) of 1 μm or less, preferably 3.5 to 1.5 μm.
500 nm. As for the ultra-fine ultra-long carbon fiber, the smaller the wire diameter, the easier it is to aggregate in the resin layer, but if it is less than 3.5 nm, it is easy to be cut at the time of molding, and if the wire diameter exceeds 500 nm, the fiber tends to be rigid. , It is disadvantageous to gather.

【0024】超極細の長炭素繊維は、アスペクト比(線
径に対する長さの比)を5以上にして、繊維の縺れや絡
み合いを容易にする。その結果、繊維は集合体が形成し
やすくなる。特に、アスペクト比100〜3000とす
るのが好ましく、アスペクト比100未満では、集合体
を形成し難く、各繊維相互の接触頻度が低下したり、或
いは導通可能な間隔が保持できず、成形品の熱成形の際
に塗膜中の集合体間の接触短絡が解けて、制電性が低下
するおそれもある。他方、アスペクト比3000以上の
ときは、炭素繊維の集合体が大きくなりすぎ、添加量の
割りに集合体間の接触や導通可能な間隔保持の頻度が低
下する。
The ultra-fine long carbon fiber has an aspect ratio (ratio of length to wire diameter) of 5 or more to facilitate entanglement and entanglement of the fiber. As a result, the fiber is easily formed into an aggregate. In particular, it is preferable that the aspect ratio is 100 to 3000. If the aspect ratio is less than 100, it is difficult to form an aggregate, the frequency of contact between the fibers is reduced, or the interval capable of conducting cannot be maintained. At the time of thermoforming, the contact short circuit between the aggregates in the coating film is broken, and the antistatic property may be reduced. On the other hand, when the aspect ratio is 3000 or more, the aggregate of carbon fibers becomes too large, and the frequency of contact between the aggregates and the maintenance of a conductive interval is reduced depending on the added amount.

【0025】図1(A)に示すように、超極細の長炭素
繊維1は、線径が小さく且つアスペクト比が大きいの
で、繊維1、1同士が絡み合って、顕微鏡的外観では、
毛玉状に集合し、該毛玉状繊維集合体2は、直径aが
0.2〜10μm程度の寸法で、この毛玉の周囲から曲
がりくねった繊維1が放射状に放出した形態を示す。そ
して、毛玉状繊維集合体2も、図1(B)に示すよう
に、多数集まって相互に接触し又相互に導通可能な間隔
を保持しながら重なり合って凝集した凝集体3を形成し
ている。
As shown in FIG. 1A, the ultrafine long carbon fiber 1 has a small wire diameter and a large aspect ratio.
The pill-shaped fiber aggregate 2 has a diameter a of about 0.2 to 10 μm, and has a shape in which the meandering fibers 1 are radially released from the periphery of the pill. As shown in FIG. 1 (B), the pill-shaped fiber aggregates 2 also form agglomerates 3 which are gathered together, are in contact with each other, and are overlapped and aggregated while maintaining an interval capable of conducting each other.

【0026】このような凝集した毛玉状集合体2を塗液
中に添加すると、毛玉中に樹脂液が浸透して毛玉間相互
の凝集が解けて毛玉が分散して均一に分布するようにな
る。これを樹脂表面に塗布すると塗液中の溶剤が揮発
し、その後には、硬化した樹脂層中においても毛玉がそ
の繊維の一部を周囲に放出する状態となり、相互に隣接
する周囲の毛玉同士がその繊維を交叉接触しあるいは接
近させながら、毛玉状の炭素繊維集合体2間が導通し、
樹脂層の電気抵抗が低下するのである。
When such an aggregated pill-shaped aggregate 2 is added to the coating liquid, the resin liquid penetrates into the pills and the pills are disaggregated and the pills are dispersed and uniformly distributed. . When this is applied to the resin surface, the solvent in the coating liquid evaporates, and thereafter, even in the cured resin layer, the pills release a part of the fiber to the surroundings, and the surrounding hairs adjacent to each other are removed. While the balls are in cross contact with or close to each other, the hair ball-shaped carbon fiber aggregates 2 conduct,
The electric resistance of the resin layer decreases.

【0027】制電性樹脂層の形成は、熱可塑性樹脂を揮
発性溶剤に溶解して溶液にし、この溶液中に上記長炭素
繊維を分散させて塗液を作り、上記基材表面に塗布し
て、溶剤を揮散させて硬化させて塗膜にする。基材表面
への塗布は、ナイフエッジコーティング、ロールコーテ
ィング、スプレーコーティング等が利用可能であるが、
基材が表面平坦な平板であるときは、ロールコーテイン
グによるグラビア印刷法が塗布厚み一定に調整できて良
い。
The antistatic resin layer is formed by dissolving a thermoplastic resin in a volatile solvent to form a solution, dispersing the long carbon fibers in the solution to form a coating solution, and applying the coating solution on the surface of the substrate. Then, the solvent is volatilized and cured to form a coating film. For application to the substrate surface, knife edge coating, roll coating, spray coating, etc. are available,
When the substrate is a flat plate with a flat surface, the gravure printing method by roll coating may be adjusted to a constant coating thickness.

【0028】本発明が制電性樹脂層を塗膜とするのは、
長炭素繊維の集合体の分散状態を樹脂層中に維持したま
ま基材表面に制電層を形成するためである。
In the present invention, the antistatic resin layer is used as a coating film.
This is because the antistatic layer is formed on the base material surface while the dispersed state of the aggregate of long carbon fibers is maintained in the resin layer.

【0029】制電性樹脂層中の長炭素繊維の添加量は、
1〜8重量%程度とするのがよい。1重量%未満では、
制電性が得られず、8重量%以上では、添加量の多い割
りに表面抵抗率がそれほど低下しないからである。特に
好ましいのは3〜8重量%である。塗液に対しては長炭
素繊維の添加量が0.2〜0.8重量%となるように溶
剤を添加して均一塗布するように塗液を調製するのが良
い。この範囲であれば塗液が適度な粘度を有し均一な塗
布ができるからである。
The amount of the long carbon fiber in the antistatic resin layer is
The content is preferably about 1 to 8% by weight. If it is less than 1% by weight,
This is because the antistatic property cannot be obtained, and if it is 8% by weight or more, the surface resistivity does not decrease so much despite the large amount of addition. Particularly preferred is 3 to 8% by weight. It is preferable that a solvent is added to the coating liquid so that the amount of the long carbon fibers is 0.2 to 0.8% by weight, and the coating liquid is prepared so as to perform uniform coating. This is because in this range, the coating liquid has an appropriate viscosity and uniform coating can be performed.

【0030】そして、乾燥蒸発して硬化した後の塗膜で
ある制電性樹脂層の厚みは、0.1〜10μmとし、こ
れにより、成形品の表面抵抗率が、104 〜1011Ω/
□程度を容易に得ることができる。厚み0.1μm未満
では、充分低い表面抵抗率が得られず、また、成形品を
二次加工して延伸することで、更に塗膜の厚みが減少し
制電性能を維持できなくなる。10μm以上では表面抵
抗率は、10μmでの表面抵抗率とほぼ同程度であっ
て、そこで10μmを超える厚膜としても無意味であ
る。また、塗膜の厚みを増すと、透視性が悪くなるの
で、この点からも10μm以下が好ましい。基材に透明
樹脂を用いると、制電性樹脂層に黒色の長炭素繊維を用
いているにもかかわらず、超極細であると同時に添加量
も1〜8重量%と少なくてすむので、基材の材質、厚み
を考え併せると約30〜90%の全光線透過率の透視性
を有する成形品となすことができる。
The thickness of the antistatic resin layer, which is a coating film after being dried and evaporated and hardened, is 0.1 to 10 μm, whereby the surface resistivity of the molded product is 10 4 to 10 11 Ω. /
□ The degree can be easily obtained. When the thickness is less than 0.1 μm, a sufficiently low surface resistivity cannot be obtained, and when the molded article is subjected to secondary processing and stretching, the thickness of the coating film is further reduced and the antistatic performance cannot be maintained. When the thickness is 10 μm or more, the surface resistivity is almost the same as the surface resistivity at 10 μm. Therefore, it is meaningless even for a thick film exceeding 10 μm. In addition, when the thickness of the coating film is increased, the transparency deteriorates. Therefore, the thickness is preferably 10 μm or less from this point. When a transparent resin is used for the base material, it is ultra-fine and the addition amount can be as small as 1 to 8% by weight, although black long carbon fibers are used for the antistatic resin layer. Considering the material and thickness of the material, it is possible to obtain a molded product having a total light transmittance of about 30 to 90% and transparency.

【0031】このように表面に制電性樹脂層を形成した
成形品は、基材及び樹脂層がいずれも熱可塑性樹脂であ
るので、その用途に応じて、二次加工をすることができ
る。二次加工には、成形品を加熱して行う曲げ加工、プ
レス成形、真空成形、圧空成形、ブロー成形、型押し成
形などがあり、これら二次加工により表面の当該樹脂層
には、引張変形、厚み減少、とこれに伴う面積拡張が生
じるけれども、過激な加工をするのでなければ、表面抵
抗率は殆ど上昇することなく、むしろ低下傾向にあり、
二次加工後も充分な制電性を有している。
In the molded article having the antistatic resin layer formed on the surface as described above, since both the base material and the resin layer are made of a thermoplastic resin, the molded article can be subjected to secondary processing according to its use. The secondary processing includes bending, press forming, vacuum forming, pressure forming, blow molding, and embossing, which are performed by heating a molded product. Although the thickness reduction and the area expansion accompanying this occur, the surface resistivity hardly increases, but rather decreases, unless extreme processing is performed,
It has sufficient antistatic properties even after secondary processing.

【0032】このように加熱加工により表面抵抗率が実
質的に上昇しないのは、制電性樹脂層中に分散して互い
に接触状態あるいは導通性を有する間隔にある毛玉状集
合体は、各炭素繊維が曲がりくねってもつれや絡み合っ
ているので、熱成形により変形を受けて各集合体が離れ
ても絡み合った繊維同士は接触を維持し或いは導通性を
有する間隔を保持したまま曲がりくねった繊維が単に伸
びるだけであり、導通状態は変わらないからである。し
かし、余り大きな変形を受けて曲がりくねった繊維の伸
びの限度以上になると繊維が切断されさらに繊維間の導
通性を有する間隔が保持できなくなる。このため、変形
即ち成形倍率は10.0倍までとすべきである。また、
毛玉状集合体を分散させた樹脂層の場合、成形倍率を2
〜5倍にすると表面抵抗率が低下する傾向にある。これ
は、図2に示すように、熱成形時に制電性樹脂層が上下
方向に圧縮されると、樹脂層の上下に分布して導通して
いなかった各集合体が互いに接近して接触し或いは導電
性を有する間隔になり、線維間が導通し導通点が増加す
るので、熱成形により表面抵抗率が低下すると考えられ
る。
The reason that the surface resistivity does not substantially increase due to the heat treatment is that the pill-shaped aggregates dispersed in the antistatic resin layer and in contact with each other or at intervals having conductivity have the respective carbon fibers. Even if the windings are twisted or entangled, even if they are deformed by thermoforming and each assembly is separated, the entangled fibers maintain contact or maintain the conductive spacing, the winding fibers simply extend This is because the conduction state does not change. However, if the deformation of the meandering fiber exceeds the limit of elongation due to the excessively large deformation, the fiber is cut, and the conductive space between the fibers cannot be maintained. For this reason, the deformation or molding magnification should be up to 10.0 times. Also,
In the case of a resin layer in which pill-shaped aggregates are dispersed, a molding magnification of 2
When it is up to 5 times, the surface resistivity tends to decrease. This is because, as shown in FIG. 2, when the antistatic resin layer is compressed in the vertical direction during thermoforming, the aggregates that were distributed above and below the resin layer and were not conductive come into close contact with each other. Alternatively, the spacing becomes conductive, and the conduction between the fibers is increased to increase the number of conduction points. Therefore, it is considered that the surface resistivity is reduced by thermoforming.

【0033】そして、基材に透明樹脂を用いた透視性を
有する制電性樹脂成形品も同様に二次加工しても制電性
を維持しているので、制電性、二次加工性、透視性を兼
ね備えた成形品を得ることができる。さらに、本発明の
成形品は、基材を透明性樹脂に着色剤を添加して予め所
望の色彩に調色しておくことにより、制電性と、二次加
工性と、さらに、制電性樹脂層のすぐれた透視性と相俟
って意図した色彩を損わない深みのある色調とを兼ね備
えた成形品を得ることができる。
The antistatic resin molded article having a transparent resin as a base material and having transparency also maintains the antistatic property even after the secondary processing, so that the antistatic property and the secondary processing property are maintained. Thus, a molded product having both transparency and transparency can be obtained. Furthermore, the molded article of the present invention has an antistatic property, a secondary workability, and a further antistatic property by adding a coloring agent to a transparent resin and toning the base material to a desired color in advance. It is possible to obtain a molded article having both the excellent transparency of the conductive resin layer and a deep color tone which does not impair the intended color, in combination with the excellent transparency.

【0034】[0034]

【実施例】溶媒としてのシクロヘキサノンに、熱可塑性
樹脂としてポリ塩化ビニルの粉末を添加して溶解し、こ
の溶液中にグラファイト質繊維(ハイピリオンカタリシ
スインターナショナル社製造、品名「グラファイトフィ
ブリルズ」平均線径 10nm、平均長さ10μm)を
種々濃度を変えて添加して、塗液を形成した。
EXAMPLE A powder of polyvinyl chloride as a thermoplastic resin was added to and dissolved in cyclohexanone as a solvent, and a graphite fiber (manufactured by Hypillion Catalysis International Co., Ltd., trade name "Graphite Fibrils") was dissolved in the solution. (Diameter 10 nm, average length 10 μm) was added at various concentrations to form a coating solution.

【0035】樹脂基材として厚み2.0mmのポリ塩化
ビニルシートを用い、その表面に、上記の塗液をバーコ
ータで乾燥塗膜厚が概算2μmと4μmの二水準となる
ように塗布して乾燥硬化させて、制電性塗膜を形成し
た。次いで、このシートを、200℃に加熱して真空成
形加工を行った。真空成形の際の成形倍率(成形前の原
板面積に対する成形後の面積の比)は2〜10とし、真
空成形の前と後で測定した表面抵抗率を対比した。
A 2.0 mm thick polyvinyl chloride sheet is used as a resin base material, and the above coating solution is applied to the surface of the sheet with a bar coater so that the thickness of the dried coating film is approximately 2 μm or 4 μm. Cured to form an antistatic coating. Next, this sheet was heated to 200 ° C. to perform vacuum forming. The forming magnification (the ratio of the area after forming to the area of the original plate before forming) during vacuum forming was 2 to 10, and the surface resistivity measured before and after vacuum forming was compared.

【0036】塗膜中のグラファイト質繊維の添加量が、
4.5重量%の試料(実施例1)と3.6重量%の試料
(実施例2)について、真空成形前後の表面抵抗率の測
定試験結果を表1にまとめた。
When the amount of the graphite fiber in the coating film is
Table 1 summarizes the measurement test results of the surface resistivity of the 4.5% by weight sample (Example 1) and the 3.6% by weight sample (Example 2) before and after vacuum forming.

【0037】また、比較例1として、微粒子状酸化錫S
nO2 系の制電性塗料を使用して制電性のポリ塩化ビニ
ルシートを形成した。この比較例1は、シクロヘキサノ
ンに上記のポリ塩化ビニルを9重量%、SnO2 (触媒
化成(株)製、品名「ELCOM TL35」粒径 2
00nm以下)を15重量%添加して塗液を調製して、
実施例と同じポリ塩化ビニルシートに塗布して塗膜を形
成し、同様に真空成形の前後で表面抵抗率を実測して比
較した。
As Comparative Example 1, finely divided tin oxide S
An antistatic polyvinyl chloride sheet was formed using an nO 2 -based antistatic paint. In Comparative Example 1, 9% by weight of the above polyvinyl chloride was added to cyclohexanone, and SnO 2 (trade name “ELCOM TL35” manufactured by Catalyst Kasei Co., Ltd.) was used.
(Less than 00 nm) is added at 15% by weight to prepare a coating solution.
The same polyvinyl chloride sheet as in the example was applied to form a coating film, and the surface resistivity was measured and compared before and after vacuum forming.

【0038】比較例2として、針状の導電性酸化チタン
を含有した制電性塗料(大日精化(株)製造、「ネオコ
ンコートS2120」)を同様にポリ塩化ビニルシート
に塗布して塗膜を形成し、同様に、真空成形の前後の表
面抵抗率を比較した。
As Comparative Example 2, an antistatic paint containing acicular conductive titanium oxide (manufactured by Dainichi Seika Co., Ltd., "Neoconcoat S2120") was similarly applied to a polyvinyl chloride sheet to form a coating film. Was formed, and the surface resistivity before and after vacuum forming was similarly compared.

【0039】[0039]

【表1】 [Table 1]

【0040】表1から、塗膜形成後で真空成形前(成形
倍率1)にあっては実施例のグラファイト質繊維を含む
成形品が107 〜109 Ω/□の表面抵抗率であり、十
分な制電性を有している。これに対して、比較例1の微
粒子状SnO2 を含む成形品は、ほぼ106 Ω/□程度
の表面抵抗率で、実施例より低くなっていて、より十分
な制電性を有する。比較例2の針状酸化チタンを含む成
形品は、106 〜107 Ω/□程度で、十分な制電性を
有する。また、実施例、比較例共に膜厚が厚くなると表
面抵抗率が低下している。
From Table 1, it can be seen that after forming the coating film and before vacuum forming (forming ratio 1), the molded article containing the graphite fiber of the example had a surface resistivity of 10 7 to 10 9 Ω / □, Has sufficient antistatic properties. On the other hand, the molded article containing the particulate SnO 2 of Comparative Example 1 has a surface resistivity of about 10 6 Ω / □, is lower than that of the example, and has more sufficient antistatic properties. The molded article containing the acicular titanium oxide of Comparative Example 2 has a sufficient antistatic property of about 10 6 to 10 7 Ω / □. Further, in both the examples and the comparative examples, the surface resistivity decreases as the film thickness increases.

【0041】これらの試料を真空成形すると、比較例
1、2の成形品は、成形倍率3.0からその表面抵抗率
が1012Ω/□以上に上昇し制電性を有さなくなるけれ
ども、本発明のグラファイト質繊維の使用の実施例は、
成形倍率5.0でも表面抵抗率が成形前よりもむしろ低
下する現象がみられ、表面抵抗率が107 Ω/□以下と
なった。このような結果となった原因として、この真空
成形の過程では、成形品の伸びと同時に塗膜も伸びて薄
くなるから、あるいは、成形品が金型に接触して塗膜も
圧下されるから、実施例においては、曲がりくねった繊
維が伸びるだけで繊維間の接触や導通可能な間隔は保た
れ、さらに、塗膜中に分散するグラファイト質繊維の集
合体が位置を変えずに偏平に変形して長くなり、上下に
分布していて接触していなかった集合体相互間の接触や
導通可能な接近が新たに起り、これらより接触ないし導
通可能な接近の頻度が高くなったためと解される。
When these samples are vacuum-formed, the molded products of Comparative Examples 1 and 2 have a surface resistivity of 10 12 Ω / □ or more from a molding magnification of 3.0 and have no antistatic properties. Examples of the use of the graphite fibers of the present invention include:
Surface resistivity even forming magnification 5.0 was observed a phenomenon that decreases, rather than prior to molding, the surface resistivity becomes 10 7 Ω / □ or less. The reason for such a result is that, in the vacuum forming process, the coating film is also stretched and thinned simultaneously with the elongation of the molded product, or because the molded product comes into contact with the mold and the coating film is also reduced. In the embodiment, the interval between the fibers that can be contacted or conductive is maintained only by extending the meandering fibers, and furthermore, the aggregate of the graphite fibers dispersed in the coating film is deformed flat without changing the position. It is understood that the contact and the conductive approach between the aggregates which were distributed vertically and were not in contact with each other newly occurred, and the frequency of the contact or the conductive approach became higher than these.

【0042】これに対して、比較例1においては微粒子
状SnO2 であるため、塗膜が伸びると微粒子状SnO
2 の接触や接近がなくなり、表面抵抗率が増加するもの
と考えられる。また比較例2においても、針状の導電性
酸化チタンを用いているため、塗膜が伸びると導電性酸
化チタンの相互距離が広がり接触や導通に要する接近が
なくなると同時に、針状酸化チタンが変形方向に配向し
て上下の接触や接近もなくなるためと考えられる。しか
し、比較例2は、針状であるため比較例1の微粒状のも
のより粒子間は若干接触ないし接近を保つことができる
のであろう。(成形倍率2倍では2×108 Ω/□であ
るが、これとて成形倍率が2倍までであり、実用的でな
い。)
On the other hand, in Comparative Example 1, since the fine particles of SnO 2 were used, when the coating film was elongated, the fine particles of SnO 2 were formed.
It is considered that the contact and the approach of 2 disappear, and the surface resistivity increases. Also in Comparative Example 2, the acicular conductive titanium oxide is used, so that when the coating film is elongated, the mutual distance between the conductive titanium oxides is increased and the approach required for contact and conduction is eliminated, and at the same time, the acicular titanium oxide is used. This is considered to be because orientation in the deformation direction also eliminates vertical contact and approach. However, since Comparative Example 2 has a needle shape, it may be possible to maintain a slight contact or approach between the particles as compared with the fine-grained one of Comparative Example 1. (In the case of a molding magnification of 2 times, it is 2 × 10 8 Ω / □, but the molding magnification is up to 2 times, which is not practical.)

【0043】塗膜中の上記グラファイト質繊維「グラフ
ァイトフィブリルズ」の添加量を変えて作製した制電性
ポリ塩化ビニルシートを使用して、塗膜中の添加量と真
空成形前後の表面抵抗率との関係の測定結果を表2に示
してある。表2より、添加量が0.93wt%では制電性
を有さず、1.3wt%になって若干の制電性を有するよ
うになり、添加量の下限は1wt%であることがわかる。
また、添加量を8.6wt%にしても7wt%と略同じ表面
抵抗率を示し、これ以上の添加量の増加は無意味である
ことがわかる。この結果より、長炭素繊維「グラファイ
トフィブリルズ」の添加範囲が、1〜8重量%の範囲で
あれば適度な制電性を付与できることががわかる。
Using an antistatic polyvinyl chloride sheet prepared by changing the amount of the graphite fiber "graphite fibrils" in the coating film, the amount of addition in the coating film and the surface resistivity before and after vacuum forming were used. Table 2 shows the measurement results of the relationship. From Table 2, it can be seen that when the addition amount is 0.93 wt%, the antistatic property is not obtained, and the antistatic property becomes 1.3 wt%, and the antistatic property is slightly increased. The lower limit of the addition amount is 1 wt%. .
Further, even when the addition amount is 8.6 wt%, the surface resistivity is almost the same as 7 wt%, and it is understood that any further increase in the addition amount is meaningless. From these results, it can be seen that when the range of addition of the long carbon fiber “graphite fibrils” is in the range of 1 to 8% by weight, appropriate antistatic properties can be imparted.

【0044】[0044]

【表2】 [Table 2]

【0045】次に、塗膜中の「グラファイトフィブリル
ズ」の添加量が4.5重量部で、塗膜厚みが4.1μm
の樹脂層を有するポリ塩化ビニルシートを用いて、真空
成形による成形倍率と表面抵抗率との関係を求め、表3
に示した。該表より、成形倍率が7倍になると若干表面
抵抗率が増加し、10倍になると1012Ω/□以上とな
って制電性を有さなくなることがわかる。これは、繊維
が曲がりくねっていても7倍もの成形倍率で加工する
と、繊維が伸びて樹脂の変形に対応してやや追従しづら
くなって接触や導通可能な接近ができなくなるものも出
てくることによるものと考えられる。このことより、後
述の表4から判るように制電性を保持できる成形倍率の
可能性は膜厚が厚くなると増加する傾向にあることと実
際的な成形作業性を考え併せると、成形倍率は10倍程
度までが制電性を保持できるであろうと考えられる。ま
た、この表3より、成形倍率が5倍までは二次加工によ
り表面抵抗率が低下しており、好ましい成形倍率は7倍
までである。
Next, the amount of "graphite fibrils" added to the coating film was 4.5 parts by weight, and the thickness of the coating film was 4.1 μm.
Using a polyvinyl chloride sheet having a resin layer of No. 3, the relationship between the forming ratio by vacuum forming and the surface resistivity was determined.
It was shown to. From the table, it can be seen that when the molding magnification is 7 times, the surface resistivity is slightly increased, and when the molding magnification is 10 times, it is 10 12 Ω / □ or more and the antistatic property is not obtained. This is because even if the fiber is meandering, if it is processed at a molding magnification of 7 times, the fiber will be stretched and it will be difficult to follow the deformation of the resin, making it impossible to make contact or conduct close access. It is considered something. From this, as can be seen from Table 4 below, the possibility of the molding magnification that can maintain the antistatic property tends to increase as the film thickness increases, and considering the actual molding workability, the molding magnification is It is thought that anti-static properties can be maintained up to about 10 times. Also, from Table 3, the surface resistivity is reduced by the secondary processing up to a molding magnification of 5 times, and the preferable molding magnification is 7 times.

【0046】[0046]

【表3】 [Table 3]

【0047】次に、「グラファイトフィブリルズ」の塗
膜中の添加量を4.5重量部に固定し、塗膜厚を変化さ
せて膜厚の表面抵抗率に及ぼす効果について調べ、表4
に示した。表4より、膜厚が厚くなるほど表面抵抗率が
低下し、この傾向は、成形倍率が高い場合にも成り立つ
ことが判る。しかし、膜厚を15μmにしても8μmの
ときとほとんど変わらない表面抵抗率を示し、10μm
程度で十分である。また、膜厚が0.3μmと薄いと1
12Ω/□以上で十分な制電性を有さないが、3倍の成
形をなすことで1010Ω/□と低下し制電性を十分有す
るようになる。また、塗膜中の添加量を増加させると表
面抵抗率が低下する傾向にあることを考え併せると、膜
厚としては、0.1〜10μm程度が良く、好ましくは
1〜8μmである。
Next, the addition amount of "graphite fibrils" in the coating film was fixed at 4.5 parts by weight, and the effect of the film thickness on the surface resistivity by changing the coating film thickness was examined.
It was shown to. From Table 4, it can be seen that the surface resistivity decreases as the film thickness increases, and this tendency holds even when the molding magnification is high. However, even when the film thickness was 15 μm, the surface resistivity was almost the same as that at 8 μm, and the surface resistivity was 10 μm.
A degree is enough. When the film thickness is as thin as 0.3 μm, 1
When it is 0 12 Ω / □ or more, it does not have a sufficient antistatic property, but it is reduced to 10 10 Ω / □ by performing molding three times, so that it has sufficient antistatic property. Considering that the surface resistivity tends to decrease when the amount added in the coating film is increased, the film thickness is preferably about 0.1 to 10 μm, and more preferably 1 to 8 μm.

【0048】[0048]

【表4】 [Table 4]

【0049】さらに、膜厚と透視性の関係について調
べ、その結果を表5に示した。膜厚が厚くなると透視性
は低下するものの、2.3μm厚では57.1%の全光
線透過性を有し、十分成形品を通して透視できるもので
あることがわかる。このものは、表4に示すように、1
8 Ω/□の表面抵抗率を有し、二次加工性も十分有し
ているものである。
Further, the relationship between the film thickness and the transparency was examined, and the results are shown in Table 5. It can be seen that although the transparency decreases as the film thickness increases, the film has a total light transmittance of 57.1% at a thickness of 2.3 μm and can be sufficiently seen through a molded product. This is, as shown in Table 4, 1
It has 0 8 Ω / □ surface resistivity, but it has also sufficient secondary processability.

【0050】[0050]

【表5】 [Table 5]

【0051】このようにして、本発明の制電性樹脂成形
品は、特に、少量のグラファイト質繊維の適量の配合使
用で、しかも極めて薄い塗膜の形成だけで、加工に対し
ても安定して優れた表面制電性を得ることができるので
ある。
In this way, the antistatic resin molded article of the present invention is stable to processing, especially when only a small amount of graphite fiber is used in an appropriate amount and an extremely thin coating film is formed. Thus, excellent surface antistatic properties can be obtained.

【0052】[0052]

【発明の効果】本発明は、樹脂基材の表面に形成する制
電性樹脂層は熱可塑性樹脂中に導電性の長繊維が曲がり
くねって且つ相互接触して、又は導通性を有する間隔を
保持して分散している塗膜としたので、成形品の制電性
を維持しながら二次加工成形ができるような熱成形用制
電性樹脂成形品とすることができる。さらに、導電性長
繊維として超極細の長炭素繊維を用いて塗膜とした制電
性樹脂成形品は、該成形品を二次加工しても、成形品表
面の制電機能を維持することができる。
According to the present invention, the antistatic resin layer formed on the surface of the resin substrate has a conductive long fiber winding and inter-contacting in the thermoplastic resin, or maintaining a conductive interval. As a result, it is possible to obtain a thermoformed antistatic resin molded product that can be subjected to secondary processing molding while maintaining the antistatic property of the molded product. Furthermore, an antistatic resin molded product coated with a superfine long carbon fiber as a conductive long fiber should maintain the antistatic function of the molded product surface even after secondary processing of the molded product. Can be.

【0053】制電性樹脂層に含む導電材料に超極細状で
アスペクト比の大きいグラファイト質繊維を使用するこ
とにより、毛玉状集合体とすることができるので、成形
品の表面制電性を効率良く実現でき、また、制電性樹脂
層を、グラファイト質繊維を含む塗液を塗布して成る塗
膜としたので、成形品の制電性付与の作業を簡便になす
ことができる。また、グラファイト質繊維を少量添加す
ることで十分な制電性を発揮でき、透明基材を用いるこ
とで透視性を有する成形品を得ることができる。
By using ultrafine graphite fibers having a large aspect ratio as the conductive material contained in the antistatic resin layer, a pill-shaped aggregate can be obtained, so that the surface antistatic property of the molded product can be efficiently improved. In addition, since the antistatic resin layer is formed as a coating film formed by applying a coating liquid containing graphite fibers, the work of imparting antistatic properties to the molded product can be easily performed. Further, by adding a small amount of graphite fiber, a sufficient antistatic property can be exhibited, and by using a transparent base material, a molded article having transparency can be obtained.

【0054】制電性樹脂層に制電性を付与するのに、導
電性繊維として、特に、極細状のグラファイト質繊維を
少量添加することにより透視性が良好な成形品を得るこ
とができ、さらに基材を着色剤により予め着色すること
により成形品は所望の色彩に調色し得て、しかも、種々
の深みがあって且つ意図した色調を損なわない色彩を具
備した成形品を容易に得ることができる。
To impart antistatic properties to the antistatic resin layer, it is possible to obtain a molded article having good transparency by adding a small amount of ultrafine graphite fibers as conductive fibers. Further, by pre-coloring the base material with a coloring agent, the molded article can be toned to a desired color, and a molded article having various depths and a color which does not impair the intended color can be easily obtained. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に使用するグラファイト質繊維の毛玉状
集合体(A)と毛玉状集合体が凝集した状態(B)を示
す概念図。
FIG. 1 is a conceptual diagram showing a pill-like aggregate of graphite fibers (A) used in the present invention and a state in which the pill-like aggregate is aggregated (B).

【図2】制電性樹脂層中に分散したグラファイト質繊維
の毛玉状集合体の状態を示す概念図。
FIG. 2 is a conceptual diagram showing a state of a pill-shaped aggregate of graphite fibers dispersed in an antistatic resin layer.

【符号の説明】[Explanation of symbols]

1 長炭素繊維 2 毛玉状集合体 3 凝集体 Reference Signs List 1 long carbon fiber 2 pill-shaped aggregate 3 aggregate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂基材と、該樹脂基材の表面
に被着された制電性樹脂層とから成る熱成形可能な制電
性樹脂成形品であって、 上記制電性樹脂層は熱可塑性樹脂中に導電性の長繊維が
曲がりくねって且つ互いに接触及び/若しくは導通性を
有する間隔を保って分散している塗膜であることを特徴
とする成形可能な制電性樹脂成形品。
1. A thermoformable antistatic resin molded article comprising a thermoplastic resin substrate and an antistatic resin layer adhered to the surface of the resin substrate, wherein the antistatic resin is The moldable antistatic resin molding, characterized in that the layer is a coating in which conductive long fibers are dispersed in a thermoplastic resin in a meandering manner and with an interval having contact and / or conductivity with each other. Goods.
【請求項2】 熱可塑性樹脂基材と、該樹脂基材の表面
に被着された制電性樹脂層とから成る熱成形可能な制電
性樹脂成形品であって、 上記制電性樹脂層は熱可塑性樹脂中に導電性の超極細の
長炭素繊維が分散し且つ互いに接触及び/若しくは導通
性を有する間隔を保っている塗膜であることを特徴とす
る成形可能な制電性樹脂成形品。
2. A thermoformable antistatic resin molded article comprising a thermoplastic resin base material and an antistatic resin layer adhered to the surface of the resin base material, wherein The moldable antistatic resin characterized in that the layer is a coating film in which conductive ultra-fine long carbon fibers are dispersed in a thermoplastic resin and are kept in contact with each other and / or have a conductive property. Molding.
【請求項3】 上記の超極細の長炭素繊維が、線径3.
5nm〜500nmでアスペクト比100〜3000の
範囲にある繊維の毛玉状繊維集合体若しくはこれが凝集
した凝集体である請求項2記載の制電性樹脂成形品。
3. The above ultra-fine long carbon fiber has a wire diameter of 3.
The antistatic resin molded product according to claim 2, wherein the antistatic resin molded product is a pillow fiber aggregate of fibers having an aspect ratio of 100 to 3000 at 5 nm to 500 nm or an aggregate thereof.
【請求項4】 上記制電性樹脂層が、超極細の長炭素繊
維を1〜8重量%含む厚さ0.1〜10μmの塗膜であ
ることを特徴とする請求項2又は3記載の制電性樹脂成
形品。
4. The method according to claim 2, wherein the antistatic resin layer is a coating film having a thickness of 0.1 to 10 μm containing 1 to 8% by weight of ultra-fine long carbon fibers. Antistatic resin molded product.
【請求項5】 請求項2ないし4何れか記載の制電性樹
脂成形品を1.1〜10.0の成形倍率で熱成形して、
その成形品が1011Ω/□以下の表面抵抗率を有する制
電性樹脂成形品。
5. An antistatic resin molded article according to claim 2, which is thermoformed at a molding magnification of 1.1 to 10.0,
An antistatic resin molded product whose molded product has a surface resistivity of 10 11 Ω / □ or less.
JP33155397A 1996-12-10 1997-12-02 Moldable antistatic resin molded product Expired - Fee Related JP3398587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33155397A JP3398587B2 (en) 1996-12-10 1997-12-02 Moldable antistatic resin molded product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32943796 1996-12-10
JP8-329437 1996-12-10
JP33155397A JP3398587B2 (en) 1996-12-10 1997-12-02 Moldable antistatic resin molded product

Publications (2)

Publication Number Publication Date
JPH10226007A true JPH10226007A (en) 1998-08-25
JP3398587B2 JP3398587B2 (en) 2003-04-21

Family

ID=26573204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33155397A Expired - Fee Related JP3398587B2 (en) 1996-12-10 1997-12-02 Moldable antistatic resin molded product

Country Status (1)

Country Link
JP (1) JP3398587B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058369A (en) * 1999-07-14 2001-03-06 Ticona Gmbh Conductive plastic molding
JP2003100147A (en) * 2001-09-25 2003-04-04 Nagase & Co Ltd Conductive material containing carbon nanotube and its manufacturing method
JP2005060497A (en) * 2003-08-11 2005-03-10 Mitsubishi Plastics Ind Ltd Snow- and ice-slipping member and its manufacturing process
JP2006035776A (en) * 2004-07-29 2006-02-09 Takiron Co Ltd Antistatic resin molded product
JP2006035775A (en) * 2004-07-29 2006-02-09 Takiron Co Ltd Antistatic resin molded product
JP2006035774A (en) * 2004-07-29 2006-02-09 Takiron Co Ltd Antistatic resin molded product
JP2007130950A (en) * 2005-11-14 2007-05-31 Takiron Co Ltd Antistatic molded resin body
JP2007137436A (en) * 2005-11-15 2007-06-07 Oji Paper Co Ltd Chip type electronic component storing mount
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072478A1 (en) 2007-12-07 2009-06-11 Daido Corporation Method for producing carbon nanotube-containing conductor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058369A (en) * 1999-07-14 2001-03-06 Ticona Gmbh Conductive plastic molding
JP2003100147A (en) * 2001-09-25 2003-04-04 Nagase & Co Ltd Conductive material containing carbon nanotube and its manufacturing method
JP2005060497A (en) * 2003-08-11 2005-03-10 Mitsubishi Plastics Ind Ltd Snow- and ice-slipping member and its manufacturing process
JP4488825B2 (en) * 2004-07-29 2010-06-23 タキロン株式会社 Antistatic resin molding
JP2006035774A (en) * 2004-07-29 2006-02-09 Takiron Co Ltd Antistatic resin molded product
JP2006035775A (en) * 2004-07-29 2006-02-09 Takiron Co Ltd Antistatic resin molded product
JP2006035776A (en) * 2004-07-29 2006-02-09 Takiron Co Ltd Antistatic resin molded product
JP4488826B2 (en) * 2004-07-29 2010-06-23 タキロン株式会社 Antistatic resin molding
US8049333B2 (en) 2005-08-12 2011-11-01 Cambrios Technologies Corporation Transparent conductors comprising metal nanowires
US9899123B2 (en) 2005-08-12 2018-02-20 Jonathan S. Alden Nanowires-based transparent conductors
US8865027B2 (en) 2005-08-12 2014-10-21 Cambrios Technologies Corporation Nanowires-based transparent conductors
JP2007130950A (en) * 2005-11-14 2007-05-31 Takiron Co Ltd Antistatic molded resin body
JP2007137436A (en) * 2005-11-15 2007-06-07 Oji Paper Co Ltd Chip type electronic component storing mount
JP4591322B2 (en) * 2005-11-15 2010-12-01 王子製紙株式会社 Chip-type electronic component storage mount
US8094247B2 (en) 2006-10-12 2012-01-10 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
US10749048B2 (en) 2006-10-12 2020-08-18 Cambrios Film Solutions Corporation Nanowire-based transparent conductors and applications thereof
US8018563B2 (en) 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
US9534124B2 (en) 2010-02-05 2017-01-03 Cam Holding Corporation Photosensitive ink compositions and transparent conductors and method of using the same

Also Published As

Publication number Publication date
JP3398587B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
JPH10226007A (en) Moldable antistatic resin molding
JP3903159B2 (en) Method for producing conductive molded body
US7956287B2 (en) Transparent conductive formed article for a touch panel and touch panel
US20090159188A1 (en) Method for making touch panel
JP6124099B1 (en) Conductive laminate, molded body using the same, capacitive touch sensor and planar heating element, and method for manufacturing molded body
JP2007112133A (en) Electroconductive shaped article
JP2006035771A (en) Conductive layer transfer sheet
JP2009252014A (en) Touch panel
JP2006035773A (en) Self-adhesive conductive molding
JP2008126469A (en) Conductive resin molding and its manufacturing method
US6214451B1 (en) Formable antistatic resin molded article
JP4454426B2 (en) Conductive film for in-mold molding
JP4087508B2 (en) Antistatic resin molded product and its secondary molded product
JPH0682947B2 (en) Method for producing conductive composite
JP2003258490A (en) Electromagnetic wave shielding material, and manufacturing method thereof
JP2007130950A (en) Antistatic molded resin body
CN116018266A (en) Method for producing transparent conductive film
CN220509722U (en) Flexible composite conductive film
JPH1126984A (en) Electromagnetic wave shield
KR20230117607A (en) Manufacturing method of transparent conductive film
WO2021172086A2 (en) Transparent conductive film
KR20230114757A (en) transparent conductive film
WO2022030106A1 (en) Multilayer body and secondary molded article
WO2021065829A1 (en) Method for producing a transparent electroconductive film
KR100625231B1 (en) A well conductive therm oplastic resin film and its manufacturing process

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees