JP2006035776A - Antistatic resin molded product - Google Patents

Antistatic resin molded product Download PDF

Info

Publication number
JP2006035776A
JP2006035776A JP2004222454A JP2004222454A JP2006035776A JP 2006035776 A JP2006035776 A JP 2006035776A JP 2004222454 A JP2004222454 A JP 2004222454A JP 2004222454 A JP2004222454 A JP 2004222454A JP 2006035776 A JP2006035776 A JP 2006035776A
Authority
JP
Japan
Prior art keywords
antistatic
layer
resin
resin molded
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004222454A
Other languages
Japanese (ja)
Other versions
JP4488826B2 (en
Inventor
Masahito Sakai
将人 坂井
Chieko Uchiyama
千栄子 内山
Hidemi Ito
秀己 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2004222454A priority Critical patent/JP4488826B2/en
Publication of JP2006035776A publication Critical patent/JP2006035776A/en
Application granted granted Critical
Publication of JP4488826B2 publication Critical patent/JP4488826B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antistatic resin molded product rich in alcohols wiping-off resistance, reduced in the rise of surface resistivity even if the wiping-off washing of a surface is repeated using wiping cloth or the like containing alcohols and capable of keeping a practically sufficient antistatic capacity. <P>SOLUTION: The antistatic resin molded product is constituted by laminating an antistatic layer 2c on the surface of a resin molded product 1 and the antistatic layer 2c contains extremely fine conductive fibers 3 and is laminated through an adhesive layer 2a and a protective layer 2b. Since the protective layer 2b for supporting the antistatic layer 2c is hardly attacked by alcohols, alcohols do not penetrate in the adhesive layer 2a and, since the antistatic layer 2c is not peeled, the rise in the surface resistivity accompanied by the peeling of the antistatic layer 2c is slight even if wiping-off washing of the surface of the antistatic layer 2c is repeated using alcohols and the practically sufficient antistatic capacity of the antistatic resin molded product is kept. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アルコール類、特にイソプロピルアルコール(以下、IPAと記す)でワイピングクロス等による表面の拭き取り洗浄を繰り返しても、表面抵抗率の上昇が少ない制電性樹脂成形体に関する。   The present invention relates to an antistatic resin molded article with little increase in surface resistivity even after repeated wiping and cleaning of the surface with a wiping cloth or the like with alcohols, particularly isopropyl alcohol (hereinafter referred to as IPA).

従来より、クリーンルームのパーティション、半導体・液晶製造に用いるキャリアーボックス、製造装置の外板のごとき塵埃を嫌う用途には、静電気を逃がして塵埃の付着を防止する制電性樹脂板が使用されている。また、クリーンルームのクリーン度を一定レベル以上に確保するために、クリーンルームの施工後若しくはクリーンルームの定期的なメンテナンスの際などには汚染分子を除去する作業が不可欠であり、パーティション(制電性樹脂板)をアルコール類等を含ませたワイピングクロス等で拭き取る作業が行われている。   Conventionally, antistatic resin plates that release static electricity and prevent dust adhesion have been used in applications that hate dust, such as clean room partitions, carrier boxes used in semiconductor and liquid crystal manufacturing, and outer panels of manufacturing equipment. . Also, in order to ensure the cleanliness of a clean room above a certain level, it is indispensable to remove contaminating molecules after construction of the cleanroom or during regular maintenance of the cleanroom. ) Is wiped off with a wiping cloth containing alcohol or the like.

かかる制電性樹脂板として、本出願人は、透明な熱可塑性樹脂基板の表面に、曲がりくねって絡み合う極細の長炭素繊維を含んだ透明な熱可塑性樹脂の制電層を形成してなる制電性樹脂板を提案した(特許文献1)。
特開2001−62952号公報
As such an antistatic resin plate, the present applicant has formed an antistatic layer made of a transparent thermoplastic resin containing an ultrafine long carbon fiber that is twisted and intertwined on the surface of a transparent thermoplastic resin substrate. A functional resin plate was proposed (Patent Document 1).
JP 2001-62952 A

しかし、特許文献1に記載の制電性樹脂板は、表面抵抗率のバラツキが少なく、適度な制電性を有し、透明性も良好であるなど、多くの長所を有するものであったが、IPA等のアルコール類を含んだワイピングクロスで制電性樹脂板表面の拭き取り洗浄を繰り返すと、表面抵抗率が大幅に上昇して満足な制電性能(帯電防止性能)を発現し難くなる。この原因は、表面の制電層と基材との界面がアルコール類に侵され劣化が促進されるため、基材から制電層が少しずつ剥離し制電性が低下すると考えられる。   However, the antistatic resin plate described in Patent Document 1 has many advantages such as little variation in surface resistivity, moderate antistatic properties, and good transparency. When wiping and cleaning the surface of the antistatic resin plate with a wiping cloth containing alcohols such as IPA is repeated, the surface resistivity is greatly increased and it becomes difficult to exhibit satisfactory antistatic performance (antistatic performance). The cause is considered to be that the interface between the antistatic layer on the surface and the base material is invaded by alcohols and the deterioration is promoted, so that the antistatic layer is gradually peeled off from the base material and the antistatic property is lowered.

本発明は上記の問題に対処するためになされたもので、耐アルコール類拭き取り性に富み、アルコール類を含んだワイピングクロス等で表面の拭き取り洗浄を繰り返しても表面抵抗率の上昇が少なく、実用上十分な制電性能を維持できる制電性樹脂成形体を提供することを解決課題としている。   The present invention has been made to address the above problems, and has excellent resistance to wiping off alcohols. Even if the surface is wiped and cleaned repeatedly with a wiping cloth containing alcohols, the surface resistivity does not increase and is practically used. An object of the present invention is to provide an antistatic resin molded product that can maintain sufficient antistatic performance.

上記の課題を解決するため、本発明の制電性樹脂成形体は、樹脂成形体の少なくとも片面に制電層を積層した制電性樹脂成形体であって、上記の制電層が、極細導電繊維を含み、且つ接着層と保護層を介して積層されていることを特徴とするものである。   In order to solve the above problems, the antistatic resin molded body of the present invention is an antistatic resin molded body in which an antistatic layer is laminated on at least one surface of the resin molded body, and the above antistatic layer is extremely fine. It includes conductive fibers and is laminated via an adhesive layer and a protective layer.

本発明の制電性樹脂成形体においては、保護層が塩化ビニル系樹脂層であり、この保護層の厚みが0.05〜250μmであることが好ましい。そして、制電層は、保護層と同種又は相溶性のあるバインダー樹脂と極細導電繊維とからなる層であることが好ましく、更に、硬化剤がバインダー樹脂中に含有されていることが好ましい。また、制電層の極細導電繊維は1本ずつ分離した状態で、もしくは、複数本集まって束になったものが1束ずつ分離した状態で、凝集することなく分散して互いに接触していることが好ましく、特に、極細導電繊維はカーボンナノチューブであることが好ましい。   In the antistatic resin molding of the present invention, the protective layer is a vinyl chloride resin layer, and the thickness of the protective layer is preferably 0.05 to 250 μm. The antistatic layer is preferably a layer composed of a binder resin and ultrafine conductive fibers that are the same or compatible with the protective layer, and it is preferable that a curing agent is contained in the binder resin. In addition, in the state where the ultrafine conductive fibers of the antistatic layer are separated one by one or in the state where a plurality of bundles are bundled and separated one by one, they are dispersed without contacting each other and are in contact with each other In particular, the ultrafine conductive fiber is preferably a carbon nanotube.

本発明の制電性樹脂成形体のように、樹脂成形体の少なくとも片面に積層された制電層が、極細導電繊維を含み、且つ接着層と保護層を介して積層したものであると、制電層を担持する保護層がIPAに代表されるアルコール類に侵され難いため、接着層までアルコール類が浸透することがなく、制電層が剥離することがなくなる。従ってIPA等のアルコール類で表面の拭き取り洗浄を繰り返しても、制電層の剥離に伴う表面抵抗率の上昇は僅かであり、実用上十分な当初の制電性能が維持される。   As in the antistatic resin molded body of the present invention, the antistatic layer laminated on at least one surface of the resin molded body contains ultrafine conductive fibers and is laminated via an adhesive layer and a protective layer. Since the protective layer carrying the antistatic layer is hardly affected by alcohols typified by IPA, the alcohols do not penetrate into the adhesive layer, and the antistatic layer does not peel off. Therefore, even if the surface wiping and cleaning is repeated with alcohols such as IPA, the surface resistivity rises slightly due to peeling of the antistatic layer, and the practically sufficient initial antistatic performance is maintained.

本発明の制電性樹脂成形体において、保護層が塩化ビニル系樹脂層であるものは、該塩化ビニル系樹脂が優れた耐薬品性を備え、IPA等のアルコール類に侵されることが殆どないため、アルコール類による制電層の剥離を十分に抑制して、表面抵抗率の上昇を抑えることができる。特に、この塩化ビニル系樹脂層の厚みが0.05〜250μmであると表面抵抗率の上昇抑制効果が顕著である。0.05μmより薄くなると、塩化ビニル系樹脂層を通して、アルコール類が接着層にある程度浸透するために剥離が僅かに生じることもあり、表面抵抗率の上昇抑制効果は多少低下するようになる。一方、250μmより厚い塩化ビニル系樹脂層を形成したとしても、それに見合った表面抵抗率の更なる上昇抑制効果が期待できないので、無駄になる。   In the antistatic resin molding of the present invention, the protective layer is a vinyl chloride resin layer, the vinyl chloride resin has excellent chemical resistance and is hardly affected by alcohols such as IPA. Therefore, peeling of the antistatic layer by alcohols can be sufficiently suppressed, and an increase in surface resistivity can be suppressed. In particular, when the thickness of the vinyl chloride resin layer is 0.05 to 250 μm, the effect of suppressing the increase in surface resistivity is remarkable. When the thickness is less than 0.05 μm, the alcohol penetrates the adhesive layer to some extent through the vinyl chloride resin layer, so that peeling may occur slightly, and the effect of suppressing the increase in surface resistivity is somewhat reduced. On the other hand, even if a vinyl chloride resin layer thicker than 250 μm is formed, a further increase suppressing effect of the surface resistivity commensurate with it cannot be expected.

また、制電層が、保護層と同種又は相溶性のあるバインダー樹脂と極細導電繊維とからなる層であると、保護層に対する制電層の接合強度や密着性が向上し、制電層の剥離を防止することができる。そして、バインダー樹脂中に硬化剤が含まれていると、バインダー樹脂と硬化剤との反応や硬化剤それ自体により制電層が強化されるため、IPA等のアルコール類による表面抵抗率の上昇が更に抑制されるようになる。   In addition, when the antistatic layer is a layer composed of a binder resin that is the same type or compatible with the protective layer and an ultrafine conductive fiber, the bonding strength and adhesion of the antistatic layer to the protective layer are improved, and the antistatic layer Peeling can be prevented. And when the curing agent is contained in the binder resin, the antistatic layer is strengthened by the reaction between the binder resin and the curing agent and the curing agent itself, so that the surface resistivity is increased by alcohols such as IPA. Further suppression is achieved.

また、制電層の極細導電繊維が1本ずつ分離した状態で、若しくは、複数本集まって束になったものが1束ずつ分離した状態で、凝集することなく分散して互いに接触している制電性樹脂成形体は、極細導電繊維の含有量を少なくしても極細導電繊維相互が接触して十分な制電性能を発揮できるため、透明な制電性樹脂成形体を得る場合に有利であり、特に、極細導電繊維がカーボンナノチューブである場合は、該カーボンナノチューブが細くて長いため、相互に接触して充分な制電性を維持しながら含有量をさらに少なくして透明性を向上させる上で極めて有利である。
なお、本発明で「接触」とは、極細導電繊維が現実に接触している場合と、極細導電繊維が導通可能な微小間隔をあけて近接している場合の双方を意味する用語である。
Further, in a state where the ultrafine conductive fibers of the antistatic layer are separated one by one, or in a state where a plurality of bundles are bundled and separated one by one, they are dispersed without contacting each other and are in contact with each other The antistatic resin molded body is advantageous when obtaining a transparent antistatic resin molded body because even if the content of the ultrafine conductive fiber is reduced, the ultrafine conductive fibers can be brought into contact with each other to exhibit sufficient antistatic performance. In particular, when the ultrafine conductive fiber is a carbon nanotube, the carbon nanotube is thin and long, so that it can be in contact with each other and maintain sufficient antistatic properties to further improve the transparency. This is extremely advantageous.
In the present invention, the term “contact” is a term meaning both the case where the fine conductive fibers are actually in contact with each other and the case where the fine conductive fibers are close to each other with a small gap that allows conduction.

以下、図面を参照して本発明の具体的な実施形態を詳述する。   Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施形態に係る制電性樹脂成形体を一部拡大して示す模式断面図である。   FIG. 1 is a schematic cross-sectional view showing a partially enlarged antistatic resin molded body according to an embodiment of the present invention.

この実施形態は透明な板状の制電性樹脂成形体を示したもので、基本的には、透明な板状の樹脂成形体1と、その表面に積層された接着層2aと保護層2bと制電層2cとで構成されている。   This embodiment shows a transparent plate-shaped antistatic resin molded body. Basically, a transparent plate-shaped resin molded body 1, an adhesive layer 2a and a protective layer 2b laminated on the surface thereof. And the antistatic layer 2c.

樹脂成形体1は透明な熱可塑性樹脂や熱や紫外線や電子線や放射線などで硬化する硬化性樹脂を板状に成形したものであって、熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン、環状ポリオレフィン等のオレフィン系樹脂、ポリ塩化ビニル、ポリメチルメタクリレート、ポリスチレン等のビニル系樹脂、ニトロセルロース、トリアセチルセルロース等のセルロース系樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリジメチルシクロヘキサンテレフタレート、芳香族ポリエステル等のエステル系樹脂、ABS樹脂、これらの樹脂の共重合体樹脂、これらの樹脂の混合樹脂などが使用され、また、硬化性樹脂としては、例えばエポキシ樹脂、ポリイミド樹脂、アクリル樹脂などが使用される。この樹脂成形体1には可塑剤、安定剤、紫外線吸収剤等が適宜配合され、成形性、熱安定性、耐候性等が高められる。この樹脂成形体1は用途に応じた厚さとすればよいが、フィルム並びにプレートの通常の厚さである0.03〜10mm程度にすればよい。   The resin molded body 1 is obtained by molding a transparent thermoplastic resin or a curable resin that is cured by heat, ultraviolet light, electron beam, radiation, or the like into a plate shape. Examples of the thermoplastic resin include polyethylene, polypropylene, and cyclic polyolefin. Olefin resins such as polyvinyl chloride, polymethyl methacrylate, polystyrene and other vinyl resins, nitrocellulose, cellulose resins such as triacetyl cellulose, polycarbonate, polyethylene terephthalate, polydimethylcyclohexane terephthalate, aromatic polyesters and other ester resins Resins, ABS resins, copolymer resins of these resins, mixed resins of these resins, and the like are used. As the curable resins, for example, epoxy resins, polyimide resins, acrylic resins, and the like are used. A plasticizer, a stabilizer, an ultraviolet absorber, and the like are appropriately added to the resin molded body 1 to improve moldability, thermal stability, weather resistance, and the like. The resin molded body 1 may have a thickness according to the application, but may be about 0.03 to 10 mm which is a normal thickness of the film and the plate.

この実施形態では、樹脂成形体1を透明な板状体に成形しているが、それ以外の異型形状に成形してもよく、また、フィラーや着色剤を配合して不透明にしてもよい。   In this embodiment, although the resin molding 1 is shape | molded in the transparent plate-shaped body, you may shape | mold to other unusual shapes, and may mix | blend a filler and a coloring agent and may make it opaque.

この樹脂成形体1の表面に積層された接着層2aと保護層2bと制電層2cとは、本実施形態では、これらが積層一体化された制電性フィルム2として提供されて、ラミネート、転写などの方法で積層されてなるものである。そのため、接着層2aとしては、当該制電性フィルム2のフィルムに接着性樹脂を使用することで、フィルムが接着層2aとなされている。   In this embodiment, the adhesive layer 2a, the protective layer 2b, and the antistatic layer 2c laminated on the surface of the resin molded body 1 are provided as an antistatic film 2 in which these are laminated and integrated, They are laminated by a method such as transfer. Therefore, as the adhesive layer 2a, an adhesive resin is used for the film of the antistatic film 2 so that the film becomes the adhesive layer 2a.

接着層2aは、接着機能を有する熱可塑性樹脂をフィルムにしたものであり、このような樹脂としては上述した樹脂成形体1と同種もくしは相溶性のある熱可塑性樹脂からなる透明なフィルムが好ましく、代表的な接着性樹脂としては接着性に優れるアクリル系樹脂、塩化ビニル樹脂、塩化ビニル−酢酸ビニル共重合樹脂が好ましく使用される。このように、接着層2aとして、フィルムに成形した接着層用フィルムを使用すると、例えば、熱圧着や押出ラミネートや転写等の手段によって制電性フィルム2を樹脂成形体1の表面に容易かつ強固にラミネートすることができる。この場合、接着層2aの厚さは特に限定されないが、制電性フィルム2のベースフィルムとしての強度を有する50〜250μm程度の厚さの接着層フィルム2aを使用することが好ましい。   The adhesive layer 2a is a film made of a thermoplastic resin having an adhesive function. As such a resin, a transparent film made of a thermoplastic resin of the same kind as the above-described resin molded body 1 or a compatible resin is used. Preferably, an acrylic resin, a vinyl chloride resin, and a vinyl chloride-vinyl acetate copolymer resin excellent in adhesiveness are preferably used as typical adhesive resins. Thus, when an adhesive layer film formed into a film is used as the adhesive layer 2a, the antistatic film 2 can be easily and strongly adhered to the surface of the resin molded body 1 by means such as thermocompression bonding, extrusion lamination, or transfer. Can be laminated. In this case, the thickness of the adhesive layer 2a is not particularly limited, but it is preferable to use an adhesive layer film 2a having a thickness of about 50 to 250 μm having strength as a base film of the antistatic film 2.

この接着層2aと表面の制電層2cとの間に形成される保護層2bは、IPA等のアルコール類による制電層2cの剥離を抑制して表面抵抗率の上昇を抑える役割を果たすものであり、その好ましい代表例は、耐薬性に優れた透明な塩化ビニル系樹脂層である。塩化ビニル系樹脂には、塩化ビニル樹脂、塩化ビニル−酢酸ビニル共重合体(酢酸ビニルの占める割合が20質量%以下のもの)、塩化ビニル樹脂と酢酸ビニル樹脂との混合樹脂(酢酸ビニル樹脂の配合割合が20質量%以下のもの)などが含まれる。酢酸ビニルの占める割合が20質量%を越える塩化ビニル−酢酸ビニル共重合体や、酢酸ビニル樹脂の配合割合が20質量%を越える混合樹脂は、保護層の耐薬品性が低下したり、機械的強度が低下したりする等の理由から好ましくない。この保護層は0.05〜250μmの厚さに形成することが好ましく、0.05μmより薄くなると、アルコール類の浸透を防止するには層厚が不十分となり、接着層の劣化が進むため、アルコール類による制電層2cの劣化に伴った表面抵抗率の上昇を抑制する効果が低下するようになる。一方、250μmより厚く形成しても、それに見合った表面抵抗率の更なる上昇抑制効果が期待できないので、無駄になる。より好ましい保護層2aの厚さは0.1〜200μmである。保護層2bの他の例としては、エステル系樹脂、アクリル系樹脂(高ガラス転移点のもの)、ウレタン系樹脂、ビニルアルコール系樹脂、ABS樹脂、これらの混合樹脂、及びこれらと上記塩化ビニル系樹脂との混合樹脂等の耐薬品性の高い熱可塑性樹脂が挙げられる。さらに、硬化型アクリル系樹脂、ポリイミド系樹脂、エポキシ系樹脂、硬化型ウレタン系樹脂などの透明性の高い硬化性樹脂も使用できる。   The protective layer 2b formed between the adhesive layer 2a and the surface antistatic layer 2c plays a role of suppressing an increase in surface resistivity by suppressing peeling of the antistatic layer 2c by alcohols such as IPA. A preferable representative example thereof is a transparent vinyl chloride resin layer having excellent chemical resistance. The vinyl chloride resin includes vinyl chloride resin, vinyl chloride-vinyl acetate copolymer (with vinyl acetate occupying 20% by mass or less), a mixed resin of vinyl chloride resin and vinyl acetate resin (of vinyl acetate resin). In which the blending ratio is 20% by mass or less). The vinyl chloride-vinyl acetate copolymer in which the proportion of vinyl acetate exceeds 20% by mass, or the mixed resin in which the proportion of vinyl acetate resin exceeds 20% by mass decreases the chemical resistance of the protective layer. It is not preferable for reasons such as a decrease in strength. This protective layer is preferably formed to a thickness of 0.05 to 250 μm. If the thickness is less than 0.05 μm, the layer thickness becomes insufficient to prevent the permeation of alcohols, and the deterioration of the adhesive layer proceeds. The effect of suppressing the increase in the surface resistivity accompanying the deterioration of the antistatic layer 2c due to the alcohol is reduced. On the other hand, even if it is formed to be thicker than 250 μm, it cannot be expected that a further increase in the surface resistivity corresponding to the thickness will be expected. The thickness of the protective layer 2a is more preferably 0.1 to 200 μm. Other examples of the protective layer 2b include ester resins, acrylic resins (having a high glass transition point), urethane resins, vinyl alcohol resins, ABS resins, mixed resins thereof, and the above vinyl chloride resins. Examples thereof include thermoplastic resins having high chemical resistance such as mixed resins with resins. Furthermore, highly transparent curable resins such as curable acrylic resins, polyimide resins, epoxy resins, and curable urethane resins can also be used.

基材表面に積層された制電層2cは、保護層2bとの相溶性があるバインダー樹脂と極細導電繊維3とからなる透明な層であって、極細導電繊維3は1本ずつ分離した状態で、もしくは、複数本集まって束になったものが1束ずつ分離した状態で、凝集することなく分散して互いに接触している。すなわち、図3(A)に示すように、極細導電繊維3はバインダー樹脂2dの内部に埋没して上記の分散状態で分散して互いに接触しているか、或は、図3(B)に示すように、極細導電繊維3の一部がバインダー樹脂2dに入り込み、他の部分がバインダー樹脂2dの表面から突出ないし露出して、上記の分散状態で分散して互いに接触しているか、或は、一部の極細導電繊維3が図3(A)のようにバインダー樹脂2dの内部に埋没し、他の極細導電繊維3は図3(B)のように表面から突出ないし露出している状態で分散して互いに接触している。   The antistatic layer 2c laminated on the surface of the base material is a transparent layer composed of a binder resin compatible with the protective layer 2b and the ultrafine conductive fibers 3, and the ultrafine conductive fibers 3 are separated one by one. Alternatively, a plurality of bundles gathered in bundles are separated one by one and dispersed without contacting each other and are in contact with each other. That is, as shown in FIG. 3 (A), the ultrafine conductive fibers 3 are buried in the binder resin 2d and dispersed in the above dispersed state and are in contact with each other, or as shown in FIG. 3 (B). As described above, a part of the ultrafine conductive fiber 3 enters the binder resin 2d, and the other part protrudes or is exposed from the surface of the binder resin 2d, and is dispersed in the dispersed state and in contact with each other. In a state where some ultrafine conductive fibers 3 are buried in the binder resin 2d as shown in FIG. 3A, and other ultrafine conductive fibers 3 protrude or are exposed from the surface as shown in FIG. 3B. Distributed and in contact with each other.

この極細導電繊維3の平面的な分散状態を模式的に示したものが図4である。この図4から理解できるように、極細導電繊維3は多少曲がっているが1本ずつ或は1束ずつ分離し、互いに複雑に絡み合うことなく、即ち凝集することなく、単純に交差した状態で制電層2cのバインダー樹脂の内部又は表面に分散し、それぞれの交点で接触している。このように分散していると、凝集している場合に比べて、極細導電繊維が解れて広範囲に存在し、極細導電繊維同士の接触する機会が著しく増加するため、極細導電繊維3の含有量を少なくしても、制電層2cが実用上十分な制電性を発揮できるようになる。従って、極細導電繊維3の量が少なくなった分だけ透明性が向上し、また、制電層2cを薄くすることもできるので一層透明性を向上させることができる。更に、上記のような分散状態であると、制電性樹脂成形体を曲げ加工した場合でも、極細導電繊維3の曲がった部分が伸びたり、例え接触点が外れても他の極細導電繊維と再接触するので、極細導電繊維3同士の接触がなくなり表面抵抗率が低下する心配もない。   FIG. 4 schematically shows a planar dispersion state of the ultrafine conductive fibers 3. As can be seen from FIG. 4, the fine conductive fibers 3 are slightly bent but separated one by one or one bundle, and are not intertwined with each other, that is, do not clump together, and are simply crossed and controlled. It is dispersed inside or on the surface of the binder resin of the electric layer 2c and is in contact at each intersection. When dispersed in this manner, the fine conductive fibers are present in a wide range as compared with the case where they are agglomerated, and the chance of contact between the fine conductive fibers is significantly increased. Even if the amount is reduced, the antistatic layer 2c can exhibit a sufficient antistatic property in practical use. Therefore, the transparency is improved by the amount of the ultrafine conductive fiber 3 reduced, and the antistatic layer 2c can be made thinner, so that the transparency can be further improved. Furthermore, when the antistatic resin molded body is bent as described above, even when the antistatic resin molded body is bent, even if the bent portion of the ultrafine conductive fiber 3 is extended, or even if the contact point is removed, Since the contact is made again, there is no fear that the contact between the ultrafine conductive fibers 3 is lost and the surface resistivity is lowered.

なお、極細導電繊維3は完全に1本ずつ或は1束ずつ分離し分散している必要はなく、一部に絡み合った小さな凝集塊があってもよいが、その大きさは制電層2cを光学顕微鏡で観察し、凝集している塊があれば、その長径と短径とを測定し、その平均値が0.5μm以下であることが好ましい。   The fine conductive fibers 3 do not have to be separated and dispersed completely one by one or one bundle, and there may be small aggregates intertwined with each other, but the size is the antistatic layer 2c. Is observed with an optical microscope, and if there are aggregated lumps, the major axis and minor axis are measured, and the average value is preferably 0.5 μm or less.

制電層2cの厚みは30〜500nmと薄くすることが好ましく、このように薄く形成しても極細導電繊維3の接触が実用上十分な制電性を発揮される程度に十分に保たれるうえに、透明性も高められることになる。制電層2の更に好ましい厚みは50〜300nmである。   The thickness of the antistatic layer 2c is preferably as thin as 30 to 500 nm. Even if the antistatic layer 2c is formed as thin as described above, the contact with the ultrafine conductive fiber 3 is sufficiently maintained to exhibit practically sufficient antistatic properties. In addition, transparency will be improved. A more preferable thickness of the antistatic layer 2 is 50 to 300 nm.

極細導電繊維3としては、カーボンナノチューブやカーボンナノホーン、カーボンナノワイヤ、カーボンナノファイバー、グラファイトフィブリルなどの極細長炭素繊維、或いは、白金、金、銀、ニッケル、シリコンなどの金属ナノチューブ、ナノワイヤなどの極細長金属繊維、或いは、酸化亜鉛などの金属酸化物ナノチューブ、ナノワイヤなどの極細長金属酸化物繊維など、直径が0.3〜100nmで長さが0.1〜20μm、好ましくは長さが0.1〜10μmである極細導電繊維が好ましく用いられる。   As the ultrafine conductive fiber 3, ultrafine carbon fibers such as carbon nanotubes, carbon nanohorns, carbon nanowires, carbon nanofibers, and graphite fibrils, or metal nanotubes such as platinum, gold, silver, nickel, and silicon, and ultrafine lengths such as nanowires are used. Metal fibers, metal oxide nanotubes such as zinc oxide, and ultrafine metal oxide fibers such as nanowires are 0.3 to 100 nm in diameter and 0.1 to 20 μm in length, preferably 0.1 in length. An ultrafine conductive fiber having a thickness of 10 μm to 10 μm is preferably used.

これらの極細導電繊維の中では、カーボンナノチューブが最も好ましく使用される。このカーボンナノチューブには、中心軸線の周りに直径が異なる複数の円筒状に閉じたカーボン壁を同心的に備えた多層カーボンナノチューブや、中心軸線の周りに単独の円筒状に閉じたカーボン壁を備えた単層カーボンナノチューブがあるが、いずれも好ましく使用される。多層カーボンナノチューブは1本ずつ分離した状態で分散するものが殆どであるが、2〜3層カーボンナノチューブは、束になって分散する場合もある。一方、単層カーボンナノチューブは単独で存在することがなく、2本以上が束になった状態で存在し、その束が1束ずつ分離した状態で分散する。   Among these ultrafine conductive fibers, carbon nanotubes are most preferably used. This carbon nanotube has a multi-walled carbon nanotube concentrically provided with a plurality of cylindrically closed carbon walls having different diameters around the central axis, and a single cylindrically closed carbon wall around the central axis. There are single-walled carbon nanotubes, both of which are preferably used. Most of the multi-walled carbon nanotubes are dispersed in a state where they are separated one by one, but the two- to three-walled carbon nanotubes may be dispersed in a bundle. On the other hand, single-walled carbon nanotubes do not exist alone, but two or more are present in a bundle, and the bundle is dispersed in a state of being separated one by one.

制電層2c中の極細導電繊維3の含有量は、制電性能を得るために2〜90質量%とする必要があり、より好ましい含有量は4〜30質量%の範囲である。極細導電繊維3の含有量を2質量%より少なくした場合、制電層の厚みを500nmとしても、表面抵抗率が10Ω/□〜1011Ω/□の実用上十分な制電性を有する樹脂成形体を得ることが難しくなるので好ましくない。他方、極細導電繊維3の含有量を90質量%より多くした場合、極細導電繊維を十分に分散させることが困難になり、又は塗液の分散安定性が極度に低下するので好ましくない。また、制電層2cの厚みは20〜500nmとする必要があり、より好ましい厚みは50〜300nmの範囲である。制電層2cの厚みが20nmより小さいと、制電層が均一に層を形成せず実用上十分な制電性を発現しないので好ましくない。 The content of the ultrafine conductive fiber 3 in the antistatic layer 2c needs to be 2 to 90% by mass in order to obtain antistatic performance, and a more preferable content is in the range of 4 to 30% by mass. When the content of the ultrafine conductive fiber 3 is less than 2% by mass, a practically sufficient antistatic property with a surface resistivity of 10 5 Ω / □ to 10 11 Ω / □ is obtained even when the thickness of the antistatic layer is 500 nm. Since it becomes difficult to obtain the resin molding which has, it is not preferable. On the other hand, when the content of the ultrafine conductive fiber 3 is more than 90% by mass, it is difficult to sufficiently disperse the ultrafine conductive fiber, or the dispersion stability of the coating liquid is extremely lowered, which is not preferable. Moreover, the thickness of the antistatic layer 2c needs to be 20 to 500 nm, and a more preferable thickness is in the range of 50 to 300 nm. If the thickness of the antistatic layer 2c is smaller than 20 nm, the antistatic layer does not form a uniform layer, so that practically sufficient antistatic properties are not exhibited.

制電層2cのバインダー樹脂2dとしては、保護層2bと同種又は相溶性のある樹脂が使用される。従って、保護層2bが前述の塩化ビニル系樹脂層である場合は、塩化ビニル樹脂、塩化ビニル−酢酸ビニル共重合樹脂(酢酸ビニルの占める割合が20質量%以下のもの)、塩化ビニル樹脂と酢酸ビニル樹脂との混合樹脂(酢酸ビニル樹脂の占める割合が20質量%以下のもの)などの塩化ビニル系樹脂等の樹脂が好ましく使用される。   As the binder resin 2d of the antistatic layer 2c, a resin that is the same type or compatible with the protective layer 2b is used. Therefore, when the protective layer 2b is the above-mentioned vinyl chloride resin layer, vinyl chloride resin, vinyl chloride-vinyl acetate copolymer resin (with vinyl acetate occupying less than 20% by mass), vinyl chloride resin and acetic acid. Resins such as vinyl chloride resins such as mixed resins with vinyl resins (the proportion of vinyl acetate resin is 20% by mass or less) are preferably used.

そして、制電層2cの形成は、バインダー樹脂を揮発性溶剤に溶解した溶液に、上記の極細導電繊維を均一に分散させて塗液を調製し、この塗液を基材表面に塗布して乾燥固化させることが望ましい。また、制電性に優れた制電層を形成するには、極細導電繊維を非常に細かく均一に分散させた塗液を調製する必要があるので、高速インぺラー、サンドミル、アトライター、三本ロール、その他公知の方法・装置で十分に混合、分散させることが大切である。   Then, the antistatic layer 2c is formed by preparing a coating liquid by uniformly dispersing the above-mentioned ultrafine conductive fibers in a solution in which a binder resin is dissolved in a volatile solvent, and applying this coating liquid to the substrate surface. It is desirable to dry and solidify. In addition, in order to form an antistatic layer with excellent antistatic properties, it is necessary to prepare a coating solution in which ultrafine conductive fibers are dispersed very finely and uniformly. Therefore, a high-speed impeller, sand mill, attritor, It is important to thoroughly mix and disperse with this roll and other known methods and apparatuses.

制電層2c中の極細導電繊維3の分散性を高めるためには、分散剤を配合することが望ましい。かかる分散剤としては、酸性ポリマーのアルキルアンモニウム塩溶液や3級アミン修飾アクリル共重合物やポリオキシエチレン−ポリオキシプロピレン共重合物などの高分子系分散剤、カップリング剤などが使用される。なお、この制電層2cには紫外線吸収剤、表面改質剤、安定剤等の添加剤を適宜加えて、耐候性その他の物性を向上させても良い。   In order to enhance the dispersibility of the ultrafine conductive fibers 3 in the antistatic layer 2c, it is desirable to add a dispersant. As such a dispersant, a polymer dispersant such as an alkyl ammonium salt solution of an acidic polymer, a tertiary amine-modified acrylic copolymer, a polyoxyethylene-polyoxypropylene copolymer, a coupling agent, or the like is used. In addition, an additive such as an ultraviolet absorber, a surface modifier, and a stabilizer may be appropriately added to the antistatic layer 2c to improve weather resistance and other physical properties.

上記構成の制電性樹脂成形体は、例えば次の方法で製造される。まず、接着機能を有する熱可塑性樹脂から作製された接着層用フィルムの表面に、予め調製した耐薬性樹脂溶液を塗布、乾燥して保護層2bを形成する。そして、バインダー樹脂溶液に極細導電繊維を分散させて調製した塗料を、保護層2bの表面に塗布、乾燥して制電層2cを形成することにより、制電性フィルム2を作製する。次いで、この制電性フィルム2を熱圧着、押出ラミネート、接着などの手段で樹脂成形体1の表面にラミネートし、制電性樹脂成形体を製造する。   The antistatic resin molded body having the above configuration is manufactured, for example, by the following method. First, the protective layer 2b is formed by applying and drying a pre-prepared chemical-resistant resin solution on the surface of an adhesive layer film prepared from a thermoplastic resin having an adhesive function. And the antistatic film 2 is produced by apply | coating and drying the coating material which disperse | distributed the ultrafine conductive fiber in the binder resin solution, and drying, and forming the antistatic layer 2c. Next, the antistatic film 2 is laminated on the surface of the resin molded body 1 by means such as thermocompression bonding, extrusion laminating, and adhesion to produce an antistatic resin molded body.

もう一つの方法は、剥離フィルムの上に、バインダー樹脂溶液に極細導電繊維を分散させて調製した塗料を塗布、乾燥した制電層2c、耐薬性樹脂などからなる保護層用樹脂溶液を塗布、乾燥した保護層2b、接着機能を有する樹脂からなる樹脂溶液を塗布、乾燥した接着層2aとからなる転写フィルムを形成し、この転写フィルムを樹脂成形体1の表面に重ねて熱圧着、転写することにより制電性樹脂成形体を製造する方法である。   Another method is to apply a coating material prepared by dispersing ultrafine conductive fibers in a binder resin solution on a release film, and apply a dried antistatic layer 2c, a protective layer resin solution made of a chemical resistant resin, A dried protective layer 2b and a resin solution made of a resin having an adhesive function are applied, a transfer film made of the dried adhesive layer 2a is formed, and this transfer film is superimposed on the surface of the resin molded body 1 and thermocompression bonded and transferred. This is a method for producing an antistatic resin molding.

このようにして製造される制電性樹脂成形体は、樹脂成形体1の表面に接着層2aと保護層2bを介して極細導電繊維3を含んだ制電層2cを積層したものであって、この制電層2cを担持する保護層2bがIPA等のアルコール類に侵され難いため、IPA等が当該保護層を通して接着層2aまで浸透することがなく、制電層2cの樹脂成形体1からの剥離が抑制されて耐アルコール類拭き取り性が向上する。従って、この制電性樹脂成形体は、その表面をIPA等で繰り返し拭き取り洗浄しても、制電層2cの剥離に伴う表面抵抗率の上昇は僅かであり、当初の実用上十分な制電性を維持することができる。しかも、制電層2cの極細導電繊維3が1本ずつ分離した状態で、又は、複数本集まって束になったものが1束ずつ分離した状態で、凝集することなく分散して互いに接触しているため、この制電性樹脂成形体は、極細導電繊維3の含有量を少なくしても極細導電繊維相互の接触を確保して充分な制電性を発現することができ、極細導電繊維3を減量できる分だけ透明性を向上させることができる。   The antistatic resin molded body manufactured in this way is obtained by laminating the antistatic layer 2c including the ultrafine conductive fiber 3 on the surface of the resin molded body 1 through the adhesive layer 2a and the protective layer 2b. Since the protective layer 2b carrying the antistatic layer 2c is difficult to be attacked by alcohols such as IPA, the IPA or the like does not penetrate into the adhesive layer 2a through the protective layer, and the resin molded body 1 of the antistatic layer 2c. Peeling from the surface is suppressed, and the alcohol-resistant wiping property is improved. Therefore, even if the surface of the antistatic resin molded body is repeatedly wiped and washed with IPA or the like, the surface resistivity increases slightly due to the peeling of the antistatic layer 2c. Sex can be maintained. In addition, in a state where the ultrafine conductive fibers 3 of the antistatic layer 2c are separated one by one, or in a state where a bundle of a plurality of bundles is separated one by one, they are dispersed without agglomeration and contact each other. Therefore, this antistatic resin molded article can secure sufficient antistatic properties by ensuring the contact between the ultrafine conductive fibers even if the content of the ultrafine conductive fibers 3 is reduced. Transparency can be improved by the amount that 3 can be reduced.

なお、本実施形態では制電性樹脂成形体は、接着層2aと保護層2bと制電層2cとを積層したものであるが、さらに制電層2cの上に薄い樹脂のトップコート層を形成してもよい。このトップコート層を形成しても制電層2cによる制電性能が発現されて、制電性を有する成形体とすることができる。   In the present embodiment, the antistatic resin molded body is a laminate of the adhesive layer 2a, the protective layer 2b, and the antistatic layer 2c. A thin resin topcoat layer is further formed on the antistatic layer 2c. It may be formed. Even if this topcoat layer is formed, the antistatic performance by the antistatic layer 2c is expressed, and it can be set as the molded object which has antistatic property.

図2は本発明の他の実施形態に係る制電性樹脂成形体を一部拡大して示す模式断面図である。   FIG. 2 is a schematic cross-sectional view showing a partially enlarged antistatic resin molded body according to another embodiment of the present invention.

この制電性樹脂成形体は、制電層2cのバインダー樹脂中に硬化剤4が含有されている点で、前述した制電性樹脂成形体と異なっている。この硬化剤4は、制電層2cを強化して耐アルコール類拭き取り性を向上させるためにバインダー樹脂中に含有されるものであり、例えば、バインダー樹脂と反応して架橋する硬化剤や、硬化性の樹脂などが使用される。   This antistatic resin molded body is different from the above-described antistatic resin molded body in that the curing agent 4 is contained in the binder resin of the antistatic layer 2c. This curing agent 4 is contained in the binder resin in order to strengthen the antistatic layer 2c and improve the resistance to wiping off alcohols. For example, a curing agent that reacts with the binder resin to crosslink, Resin or the like is used.

バインダー樹脂が前述した塩化ビニル系樹脂である場合、これと反応する硬化剤としてはポリイソシアネート、例えば、2,4―トリレンジイソシアネートとその異性体又は異性体の混合物等のジイソシアネート類が好ましく使用される。かかるイソシアネート化合物を含有させると、該イソシアネート化合物が塩化ビニル系樹脂に起因する水酸基とウレタン結合して、網目構造が形成されることによりバインダー樹脂部分が強化されるため、IPA等のアルコール類による拭き取り洗浄を繰り返してもIPA等が制電層2c内を浸透することが抑制されて、表面抵抗率の上昇が抑えられるようになる。   When the binder resin is the above-described vinyl chloride resin, a polyisocyanate, for example, a diisocyanate such as 2,4-tolylene diisocyanate and its isomer or a mixture of isomers is preferably used as the curing agent that reacts therewith. The When such an isocyanate compound is contained, the binder resin part is reinforced by forming a network structure by urethane bonding with the hydroxyl group resulting from the vinyl chloride resin, and wiping with an alcohol such as IPA. Even if washing is repeated, IPA or the like is prevented from penetrating into the antistatic layer 2c, and an increase in surface resistivity is suppressed.

また、バインダー樹脂に含有させる硬化性樹脂としては、自然硬化型、光硬化型、紫外線硬化型、電子線硬化型、熱硬化型などのいずれの樹脂も使用可能であり、これらの硬化性樹脂をバインダー樹脂中に均等に含有させて強化すると、上記の硬化剤と同様に、IPA等のアルコール類による制電層2c内への浸透が抑制されて表面抵抗率の上昇が少なくなる。   In addition, as the curable resin to be included in the binder resin, any resin such as a natural curable type, a photo curable type, an ultraviolet curable type, an electron beam curable type, and a thermosetting type can be used. When the binder resin is uniformly contained and strengthened, like the above-described curing agent, penetration of the alcohol such as IPA into the antistatic layer 2c is suppressed, and the increase in surface resistivity is reduced.

上記の硬化剤4の含有量は、バインダー樹脂に対して2〜20質量%とすることが好ましい。2質量%未満では、浸透抑制作用が不十分で表面抵抗率の上昇抑制効果が殆ど見られなくなり、一方、20質量%を越えると、バインダー樹脂に起因する反応基以上の含有量となつたり、硬化性樹脂による強化が見られず材料の無駄遣いとなる。   It is preferable that content of said hardening | curing agent 4 shall be 2-20 mass% with respect to binder resin. If it is less than 2% by mass, the permeation inhibiting action is insufficient and the effect of suppressing the increase in surface resistivity is hardly seen. On the other hand, if it exceeds 20% by mass, the content exceeds the reactive group caused by the binder resin. The reinforcement by the curable resin is not seen and the material is wasted.

この制電性樹脂成形体の他の構成および作用効果は、前述した図1の制電性樹脂成形体と同様であるので、図2において同一部材に同一符号を付すに止め、説明を省略する。   Since the other configurations and functions and effects of the antistatic resin molded body are the same as those of the antistatic resin molded body of FIG. 1 described above, the same members in FIG. .

次に、本発明に係る制電性樹脂成形体の更に具体的な実施例を説明する。   Next, more specific examples of the antistatic resin molded body according to the present invention will be described.

[実施例1]
接着層用フィルムとして厚み100μm、全光線透過率94%、ヘーズ0.6%のポリメチルメタクリレートフィルム(PMMAフィルム)を使用し、その表面に、予め調製した塩化ビニル−酢酸ビニル共重合樹脂(酢酸ビニルの占める割合は10質量%)の溶液を塗布、乾燥して、厚み280nmの保護層を形成した。
[Example 1]
A polymethyl methacrylate film (PMMA film) having a thickness of 100 μm, a total light transmittance of 94%, and a haze of 0.6% is used as the adhesive layer film, and a vinyl chloride-vinyl acetate copolymer resin (acetic acid) prepared on the surface thereof is used. A solution of 10% by mass of vinyl was applied and dried to form a protective layer having a thickness of 280 nm.

一方、溶媒(シクロヘキサノンと酢酸エチルとの1:1混合溶媒)中に、バインダー樹脂として塩化ビニル−酢酸ビニル共重合体(酢酸ビニルの占める割合が10質量%のもの)を溶解すると共に、単層カーボンナノチューブ[文献Chemical Physics Letters,323(2000),P580−585に基づいて合成したもの、直径1.3〜1.8nm]と、分散剤として酸性ポリマーのアルキルアンモニウム塩溶液を加えて均一に混合、分散させ、単層カーボンナノチューブを0.3質量%、分散剤を0.1質量%、バインダー樹脂を2.0質量%含む塗液(以下、CNT塗液と記す)を調製し、このCNT塗液を上記の保護層の上に塗布、乾燥することにより厚み230nmの制電層を形成して、制電性フィルムを作製した。そして、この制電性フィルムを、厚み5.0mmのポリカーボネート樹脂板(全光線透過率89.5%、ヘーズ0.2%)の表面に重ねて熱圧着することにより、表1に示す構成の透明な制電性樹脂板を製造した。   On the other hand, in a solvent (a 1: 1 mixed solvent of cyclohexanone and ethyl acetate), a vinyl chloride-vinyl acetate copolymer (with a vinyl acetate ratio of 10% by mass) is dissolved as a binder resin, and a single layer is formed. Carbon nanotubes [synthesized based on the literature Chemical Physics Letters, 323 (2000), P580-585, diameter 1.3 to 1.8 nm] and an acidic polymer alkylammonium salt solution as a dispersant are added and mixed uniformly. To prepare a coating liquid (hereinafter referred to as CNT coating liquid) containing 0.3% by mass of single-walled carbon nanotubes, 0.1% by mass of a dispersant, and 2.0% by mass of a binder resin. An antistatic film having a thickness of 230 nm is formed by applying the coating liquid on the protective layer and drying. Was made. Then, this antistatic film was thermocompression-bonded on the surface of a 5.0 mm thick polycarbonate resin plate (total light transmittance 89.5%, haze 0.2%), thereby having the structure shown in Table 1. A transparent antistatic resin plate was produced.

この制電性樹脂板について、表面抵抗率、全光線透過率、ヘーズを測定した結果を下記の表2に示す。また、この制電性樹脂板の表面(制電層表面)をIPAを含ませたワイピングクロスで拭き取る作業を繰り返し、100回、200回、300回後の表面抵抗率、全光線透過率、ヘーズを測定して、その結果を下記の表2に併記した。   Table 2 below shows the results of measuring the surface resistivity, total light transmittance, and haze of this antistatic resin plate. In addition, the operation of wiping the surface of the antistatic resin plate (surface of the antistatic layer) with a wiping cloth containing IPA was repeated, and the surface resistivity, total light transmittance, haze after 100, 200, and 300 times were repeated. And the results are shown in Table 2 below.

尚、表面抵抗率は三菱化学(株)製のハイレスタで測定した値であり、全光線透過率とヘーズはASTM D1003に準拠してスガ試験機(株)製の直読ヘーズコンピューターHGM−2DPで測定した値である。   The surface resistivity is a value measured with a Hiresta manufactured by Mitsubishi Chemical Corporation, and the total light transmittance and haze are measured with a direct reading haze computer HGM-2DP manufactured by Suga Test Instruments Co., Ltd. according to ASTM D1003. It is the value.

[実施例2]
実施例1のCNT塗液にジイソシアネート類硬化剤としてXOX80ハードナー(大日本インキ化学工業株式会社製)を更に配合して調製したジイソシアネート類硬化剤含有CNT塗液(硬化剤含有率:0.2質量%)を使用し、ギアオーブンで60℃、24時間熱処理した以外は、実施例1と同様にして、表1に示す構成の透明な制電性樹脂板を製造した。なお、保護層である塩化ビニル−酢酸ビニル共重合樹脂層の厚みは250nmであり、制電層の厚みは240nmであった。
[Example 2]
Diisocyanate curing agent-containing CNT coating solution prepared by further blending XOX80 hardener (manufactured by Dainippon Ink & Chemicals, Inc.) as a diisocyanate curing agent with the CNT coating liquid of Example 1 (curing agent content: 0.2 mass) %), And a transparent antistatic resin plate having the constitution shown in Table 1 was produced in the same manner as in Example 1 except that the heat treatment was performed in a gear oven at 60 ° C. for 24 hours. The protective layer, vinyl chloride-vinyl acetate copolymer resin layer, had a thickness of 250 nm, and the antistatic layer had a thickness of 240 nm.

この制電性樹脂板について、実施例1と同様に表面抵抗率、全光線透過率、ヘーズを測定すると共に、IPAを含ませたワイピングクロスで拭き取る作業を100回、200回、300回繰り返した後の表面抵抗率、全光線透過率、ヘーズを測定して、その結果を下記の表2に併記した。   For this antistatic resin plate, the surface resistivity, total light transmittance, and haze were measured in the same manner as in Example 1, and the operation of wiping with a wiping cloth containing IPA was repeated 100 times, 200 times, and 300 times. The subsequent surface resistivity, total light transmittance, and haze were measured, and the results are also shown in Table 2 below.

[実施例3]
保護層である塩化ビニル−酢酸ビニル共重合樹脂層の厚みを250nmから60nmに変更した以外は、実施例2と同様にして、表1に示す構成の透明な制電性樹脂板を製造した。
[Example 3]
A transparent antistatic resin plate having the structure shown in Table 1 was produced in the same manner as in Example 2 except that the thickness of the vinyl chloride-vinyl acetate copolymer resin layer as the protective layer was changed from 250 nm to 60 nm.

そして、この制電性樹脂板について、実施例1と同様に表面抵抗率、全光線透過率、ヘーズを測定すると共に、IPAを含ませたワイピングクロスで拭き取る作業を100回、200回、300回繰り返した後の表面抵抗率、全光線透過率、ヘーズを測定して、その結果を下記の表2に併記した。   For this antistatic resin plate, the surface resistivity, total light transmittance, and haze were measured in the same manner as in Example 1, and the operation of wiping with a wiping cloth containing IPA was performed 100 times, 200 times, and 300 times. The surface resistivity, total light transmittance, and haze after the measurement were repeated, and the results are also shown in Table 2 below.

[実施例4]
保護層として塩化ビニル樹脂からなる厚み250μmのフィルムを用いた。そして、実施例1で使用したCNT塗液を上記保護層用フィルムの上に塗布、乾燥することにより厚み220nmの制電層を形成した。そして、厚み5.0mmのポリカーボネート樹脂板の表面に、実施例1で使用した接着層用フィルム、上記制電層を形成させた塩化ビニル樹脂フィルムを順に重ね合わせた後、熱圧着することにより、表1に示す構成の透明な制電性樹脂板を製造した。
[Example 4]
A 250 μm thick film made of vinyl chloride resin was used as the protective layer. And the antistatic layer with a thickness of 220 nm was formed by apply | coating and drying the CNT coating liquid used in Example 1 on the said film for protective layers. And after superimposing the adhesive layer film used in Example 1 on the surface of the polycarbonate resin plate having a thickness of 5.0 mm and the vinyl chloride resin film on which the antistatic layer was formed in this order, by thermocompression bonding, A transparent antistatic resin plate having the structure shown in Table 1 was produced.

そして、この制電性樹脂板について、実施例1と同様に表面抵抗率、全光線透過率、ヘーズを測定すると共に、IPAを含ませたワイピングクロスで拭き取る作業を100回、200回、300回繰り返した後の表面抵抗率、全光線透過率、ヘーズを測定して、その結果を下記の表2に併記した。   For this antistatic resin plate, the surface resistivity, total light transmittance, and haze were measured in the same manner as in Example 1, and the operation of wiping with a wiping cloth containing IPA was performed 100 times, 200 times, and 300 times. The surface resistivity, total light transmittance, and haze after the measurement were repeated, and the results are also shown in Table 2 below.

[比較例1]
塩化ビニル−酢酸ビニル共重合樹脂からなる保護層を省略して接着層用フィルムに直接CNT塗液を塗布乾燥した以外は、実施例1と同様にして、表1に示す構成の透明な制電性樹脂板を製造した。なお、制電層の厚みは240nmであった。そして、この制電性樹脂板について、実施例1と同様に表面抵抗率、全光線透過率、ヘーズを測定すると共に、IPAを含ませたワイピングクロスで拭き取る作業を100回、200回、300回繰り返した後の表面抵抗率、全光線透過率、ヘーズを測定して、その結果を下記の表2に併記した。
[Comparative Example 1]
A transparent antistatic material having the structure shown in Table 1 was obtained in the same manner as in Example 1 except that the protective layer made of vinyl chloride-vinyl acetate copolymer resin was omitted and the CNT coating liquid was applied and dried directly on the adhesive layer film. A conductive resin plate was produced. The thickness of the antistatic layer was 240 nm. For this antistatic resin plate, the surface resistivity, total light transmittance, and haze were measured in the same manner as in Example 1, and the operation of wiping with a wiping cloth containing IPA was performed 100 times, 200 times, and 300 times. The surface resistivity, total light transmittance, and haze after the measurement were repeated, and the results are also shown in Table 2 below.

Figure 2006035776
Figure 2006035776

Figure 2006035776
Figure 2006035776

表2から、保護層(塩化ビニル−酢酸ビニル共重合樹脂層、塩化ビニル樹脂フィルム層)を形成していない比較例1の制電性樹脂板は、当初の表面抵抗率が実施例1〜4の制電性樹脂板のそれと同程度の10Ω/□或は10Ω/□オーダーであるにも拘わらず、IPAを含浸させたワイピングクロスを用いた100回の拭き取り作業によって表面抵抗率が1011Ω/□オーダーに上昇している。そして、200回の拭きとり作業後は、表面抵抗率が更に1×1014Ω/□を越えるまで上昇しており、耐IPA拭き取り性に劣っていることが分かる。 From Table 2, the antistatic resin plate of Comparative Example 1 in which the protective layer (vinyl chloride-vinyl acetate copolymer resin layer, vinyl chloride resin film layer) is not formed has an initial surface resistivity of Examples 1-4. The surface resistivity can be obtained by wiping 100 times with a wiping cloth impregnated with IPA, despite the order of 10 7 Ω / □ or 10 8 Ω / □, which is similar to that of the antistatic resin plate Has risen to the order of 10 11 Ω / □. After 200 wiping operations, the surface resistivity further increases until it exceeds 1 × 10 14 Ω / □, indicating that the IPA wiping resistance is poor.

これに対し、厚さ280nm、250nmの塩化ビニル−酢酸ビニル共重合樹脂よりなる保護層を形成した実施例1、2、及び250μmの塩化ビニル樹脂フィルムよりなる保護層を形成した実施例4の制電性樹脂板は、当初から300回の拭きとり作業が終わるまで、10Ω/□オーダー以下の表面抵抗率を維持しており、耐IPA拭き取り性が良好である。また、60nmの薄い保護層を形成した実施例3の制電性樹脂板は、200回の拭きとり作業によって表面抵抗率が10Ω/□オーダーに上昇するが、その後、300回の拭きとり作業によっても10Ω/□オーダーの表面抵抗率を維持しており、比較例1の制電性樹脂板よりも表面抵抗率の上昇抑制効果が発揮されていることが分かる。 In contrast, in Examples 1 and 2 in which a protective layer made of a vinyl chloride-vinyl acetate copolymer resin having a thickness of 280 nm and 250 nm was formed, and in Example 4 in which a protective layer made of a 250 μm vinyl chloride resin film was formed. The electric resin plate maintains a surface resistivity of the order of 10 8 Ω / □ or less until the end of 300 wiping operations from the beginning, and the IPA wiping resistance is good. In addition, the antistatic resin plate of Example 3 in which a thin protective layer of 60 nm was formed has a surface resistivity of 10 9 Ω / □ on the order of 200 wiping operations. The surface resistivity of the order of 10 9 Ω / □ is maintained even by the work, and it can be seen that the effect of suppressing the increase of the surface resistivity is exhibited as compared with the antistatic resin plate of Comparative Example 1.

以上のことから、保護層は制電層の耐アルコール類拭き取り性を高め、表面抵抗率の上昇を抑えるのに有効であり、保護層厚が60nmの実施例3は表面抵抗率の上昇抑制効果が小さいけれども、保護層厚が280nmの保護層は表面抵抗率の顕著な上昇抑制効果を有することが分かる。このことより、保護層の好ましい厚さは100nm以上であることがわかる。   From the above, the protective layer is effective in enhancing the wiping-off property of the antistatic alcohol of the antistatic layer and suppressing the increase in surface resistivity, and Example 3 having a protective layer thickness of 60 nm is effective in suppressing the increase in surface resistivity. However, it can be seen that the protective layer having a protective layer thickness of 280 nm has a remarkable effect of suppressing the increase in surface resistivity. This shows that the preferred thickness of the protective layer is 100 nm or more.

また、制電層のバインダー樹脂中にジイソシアネート類硬化剤を含有させた実施例2の制電性樹脂板は、硬化剤を含まない実施例1の制電性樹脂板に比べて、IPA拭き取り洗浄前の表面抵抗率が全般的に若干低下しているとはいうものの、実施例1の制電性樹脂板の表面抵抗率は、当初に比べて300回の拭き取り後においては2.6倍程度上昇しているのに対し、実施例2の制電性樹脂板の表面抵抗率は、当初に比べて300回の拭きとり後においては1.7倍程度上昇しているだけである。このことから、硬化剤をバインダー樹脂に配合することは、制電層の耐アルコール類拭き取り性を向上させるのに有効であり、それによって表面抵抗率の上昇抑制効果が更に向上することが分かる。   In addition, the antistatic resin plate of Example 2 in which a diisocyanate curing agent is contained in the binder resin of the antistatic layer is IPA wipe-cleaned as compared with the antistatic resin plate of Example 1 that does not contain a curing agent. Although the previous surface resistivity is generally slightly lower, the surface resistivity of the antistatic resin plate of Example 1 is about 2.6 times after wiping 300 times compared to the initial. On the other hand, the surface resistivity of the antistatic resin plate of Example 2 is only about 1.7 times higher after wiping 300 times than the original. From this, it can be seen that blending the curing agent with the binder resin is effective in improving the alcohol resistance wiping property of the antistatic layer, thereby further improving the effect of suppressing the increase in surface resistivity.

さらに、制電層のバインダー樹脂中にジイソシアネート類硬化剤を含有させた実施例2、3は、硬化剤を含まない実施例1,4に比べてヘーズが低くて良好であり、ほぼ同じ厚みの制電層と保護層を持つ実施例2と実施例1とを比べると、当初で0.7%良好であり、300回の拭き取り後では1.7%も良好であることがわかる。さらに、ヘーズの増加も実施例2、3では殆どないが、実施例1では0.6%増加しており、硬化剤を含有させることでヘーズが良好に保てることがわかる。   Further, Examples 2 and 3 in which a diisocyanate curing agent is contained in the binder resin of the antistatic layer are good because the haze is lower than those in Examples 1 and 4 which do not contain a curing agent. When Example 2 having an antistatic layer and a protective layer is compared with Example 1, it can be seen that 0.7% is good at the beginning and 1.7% after 300 times of wiping. Furthermore, although there is almost no increase in haze in Examples 2 and 3, it is increased by 0.6% in Example 1, and it can be seen that haze can be kept good by containing a curing agent.

また、実施例1〜4の制電性樹脂板及び比較例1の制電性樹脂板はいずれも、全光線透過率が81.8%以上、ヘーズが6.7%以下であり、CNTを含んだ制電層を形成しているにも拘わらず透明性が良好である。これは、CNTが十分に分散して接触導通する結果、CNTの含有量を減らすことができたからである。   In addition, the antistatic resin plates of Examples 1 to 4 and the antistatic resin plate of Comparative Example 1 both have a total light transmittance of 81.8% or more, a haze of 6.7% or less, and CNTs. Despite the formation of the included antistatic layer, the transparency is good. This is because the content of CNTs can be reduced as a result of sufficient dispersion and contact conduction of CNTs.

本発明の一実施形態に係る制電性樹脂成形体を一部拡大して示す模式断面図である。It is a schematic cross section which expands and shows the antistatic resin molding which concerns on one Embodiment of this invention partially. 本発明の他の実施形態に係る制電性樹脂成形体を一部拡大して示す模式断面図である。It is a schematic cross section which expands and shows partially the antistatic resin molding which concerns on other embodiment of this invention. (A)は制電層内部における極細導電繊維の分散状態を示す模式断面図であり、(B)は制電層表面における極細導電繊維の分散状態を示す模式断面図である。(A) is a schematic cross-sectional view showing a dispersion state of ultrafine conductive fibers inside the antistatic layer, and (B) is a schematic cross sectional view showing a dispersion state of ultrafine conductive fibers on the surface of the antistatic layer. 制電層における極細導電繊維の平面的な分散状態を示す模式平面図である。It is a schematic plan view which shows the planar dispersion | distribution state of the ultrafine conductive fiber in an antistatic layer.

符号の説明Explanation of symbols

1 樹脂成形体
2 制電性フィルム
2a 接着層
2b 保護層
2c 制電層
2d 制電層のバインダー樹脂
3 極細導電繊維
4 硬化剤
DESCRIPTION OF SYMBOLS 1 Resin molded object 2 Antistatic film 2a Adhesion layer 2b Protective layer 2c Antistatic layer 2d Binder resin of antistatic layer 3 Extra fine conductive fiber 4 Hardener

Claims (7)

樹脂成形体の少なくとも片面に制電層を積層した制電性樹脂成形体であって、上記制電層が極細導電繊維を含み、且つ接着層と保護層を介して積層されていることを特徴とする制電性樹脂成形体。   An antistatic resin molded body in which an antistatic layer is laminated on at least one side of the resin molded body, wherein the antistatic layer includes ultrafine conductive fibers and is laminated via an adhesive layer and a protective layer An antistatic resin molded product. 保護層が塩化ビニル系樹脂層であることを特徴とする請求項1に記載の制電性樹脂成形体。   The antistatic resin molded article according to claim 1, wherein the protective layer is a vinyl chloride resin layer. 保護層の厚みが0.05〜250μmであることを特徴とする請求項1又は請求項2に記載の制電性樹脂成形体。   The antistatic resin molded article according to claim 1 or 2, wherein the protective layer has a thickness of 0.05 to 250 µm. 制電層が、保護層と同種又は相溶性のあるバインダー樹脂と極細導電繊維とからなる層であることを特徴とする請求項1ないし請求項3のいずれかに記載の制電性樹脂成形体。   The antistatic resin molded article according to any one of claims 1 to 3, wherein the antistatic layer is a layer composed of a binder resin having the same type or compatibility with the protective layer and an ultrafine conductive fiber. . バインダー樹脂中に硬化剤が含有されていることを特徴とする請求項4に記載の制電性樹脂成形体。   The antistatic resin molded article according to claim 4, wherein a curing agent is contained in the binder resin. 制電層の極細導電繊維が1本ずつ分離した状態で、若しくは、複数本集まって束になったものが1束ずつ分離した状態で、凝集することなく分散して互いに接触していることを特徴とする請求項1ないし請求項5のいずれかに記載の制電性樹脂成形体。   In a state where the ultrafine conductive fibers of the antistatic layer are separated one by one, or in a state where a plurality of bundles are bundled and separated one by one, they are dispersed without agglomeration and are in contact with each other The antistatic resin molded article according to any one of claims 1 to 5, wherein 極細導電繊維がカーボンナノチューブであることを特徴とする請求項1ないし請求項6のいずれかに記載の制電性樹脂成形体。   The antistatic resin molded product according to any one of claims 1 to 6, wherein the ultrafine conductive fiber is a carbon nanotube.
JP2004222454A 2004-07-29 2004-07-29 Antistatic resin molding Expired - Fee Related JP4488826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222454A JP4488826B2 (en) 2004-07-29 2004-07-29 Antistatic resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222454A JP4488826B2 (en) 2004-07-29 2004-07-29 Antistatic resin molding

Publications (2)

Publication Number Publication Date
JP2006035776A true JP2006035776A (en) 2006-02-09
JP4488826B2 JP4488826B2 (en) 2010-06-23

Family

ID=35901260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222454A Expired - Fee Related JP4488826B2 (en) 2004-07-29 2004-07-29 Antistatic resin molding

Country Status (1)

Country Link
JP (1) JP4488826B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200613A (en) * 2007-02-20 2008-09-04 Toray Ind Inc Carbon nanotube coating film and method of manufacturing the same
WO2009057560A1 (en) * 2007-10-31 2009-05-07 Sumitomo Rubber Industries, Ltd. Surface-treating liquid for conductive elastic layer, method of surface treatment of the same, and surface-treated conductive member
WO2010151013A2 (en) * 2009-06-22 2010-12-29 (주)탑나노시스 Carbon nanotube conductive film and method for manufacturing same
JP2011175890A (en) * 2010-02-25 2011-09-08 Toray Ind Inc Conductive film
JP2012210766A (en) * 2011-03-31 2012-11-01 Takiron Co Ltd Antistatic laminate and method for manufacturing the same
JP2018166454A (en) * 2017-03-30 2018-11-01 平岡織染株式会社 Film material for sheet shutter
JP2018167498A (en) * 2017-03-30 2018-11-01 平岡織染株式会社 Film material for sheet shutter
JP2018167499A (en) * 2017-03-30 2018-11-01 平岡織染株式会社 Flexible film material for industrial material and method for producing the same
JP2019177644A (en) * 2018-03-30 2019-10-17 大日本印刷株式会社 Transfer film for three-dimensional molding, resin molded article, and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432597U (en) * 1990-07-13 1992-03-17
JPH10226007A (en) * 1996-12-10 1998-08-25 Takiron Co Ltd Moldable antistatic resin molding
JP2001011344A (en) * 1999-06-30 2001-01-16 Nec Corp Coating and film formed using the same and their production
JP2001229737A (en) * 2000-02-10 2001-08-24 Fuji Photo Film Co Ltd Transparent conductive film and its grounding method
JP2004196912A (en) * 2002-12-17 2004-07-15 Toyobo Co Ltd Conductive coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432597U (en) * 1990-07-13 1992-03-17
JPH10226007A (en) * 1996-12-10 1998-08-25 Takiron Co Ltd Moldable antistatic resin molding
JP2001011344A (en) * 1999-06-30 2001-01-16 Nec Corp Coating and film formed using the same and their production
JP2001229737A (en) * 2000-02-10 2001-08-24 Fuji Photo Film Co Ltd Transparent conductive film and its grounding method
JP2004196912A (en) * 2002-12-17 2004-07-15 Toyobo Co Ltd Conductive coating

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200613A (en) * 2007-02-20 2008-09-04 Toray Ind Inc Carbon nanotube coating film and method of manufacturing the same
WO2009057560A1 (en) * 2007-10-31 2009-05-07 Sumitomo Rubber Industries, Ltd. Surface-treating liquid for conductive elastic layer, method of surface treatment of the same, and surface-treated conductive member
WO2010151013A2 (en) * 2009-06-22 2010-12-29 (주)탑나노시스 Carbon nanotube conductive film and method for manufacturing same
WO2010151013A3 (en) * 2009-06-22 2011-04-21 (주)탑나노시스 Carbon nanotube conductive film and method for manufacturing same
JP2011175890A (en) * 2010-02-25 2011-09-08 Toray Ind Inc Conductive film
JP2012210766A (en) * 2011-03-31 2012-11-01 Takiron Co Ltd Antistatic laminate and method for manufacturing the same
JP2018166454A (en) * 2017-03-30 2018-11-01 平岡織染株式会社 Film material for sheet shutter
JP2018167498A (en) * 2017-03-30 2018-11-01 平岡織染株式会社 Film material for sheet shutter
JP2018167499A (en) * 2017-03-30 2018-11-01 平岡織染株式会社 Flexible film material for industrial material and method for producing the same
JP2019177644A (en) * 2018-03-30 2019-10-17 大日本印刷株式会社 Transfer film for three-dimensional molding, resin molded article, and method for manufacturing the same
JP7119506B2 (en) 2018-03-30 2022-08-17 大日本印刷株式会社 TRANSFER FILM FOR THREE-DIMENSIONAL MOLDING, RESIN MOLDED PRODUCT, AND PRODUCTION METHOD THEREOF

Also Published As

Publication number Publication date
JP4488826B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP2007229989A (en) Conductive molded body and its manufacturing method
CN101292362B (en) Transparent conductors and its preparation method, lamination structure and display device
CN1745301A (en) Articles with projected conductive coatings
JP5431960B2 (en) Method for producing carbon nanotube-containing conductor
JP5266889B2 (en) Method for manufacturing light transmissive conductor
JP2011504280A (en) Transparent conductive film with improved conductivity and method for producing the same
KR102202997B1 (en) Laminated structure manufacturing method, laminated structure, and electronic apparatus
JP2006035771A (en) Conductive layer transfer sheet
US20080063860A1 (en) Carbon nanotube composite
US20060257638A1 (en) Articles with dispersed conductive coatings
JP2006171336A (en) Transparent electrode member for image display, and the image display device
JP5443877B2 (en) Substrate with transparent conductive film and method for producing substrate with transparent conductive film
JP4488826B2 (en) Antistatic resin molding
JP2004526838A (en) Carbon nanotube-containing coating
JP2009135044A (en) Transparent conductive material and transparent conductor
JP2008201635A (en) Method for forming micro-carbon monomolecular film, surface coating method and coated object
JP2006049843A (en) Antistatic molding for image display apparatus
JP5165360B2 (en) UV-curable conductive coating, UV-curable conductive transparent coating film, and method for producing the coating film
JP2006035773A (en) Self-adhesive conductive molding
TW201007309A (en) Transparent conductive film and method for manufacturing the same
JP4488825B2 (en) Antistatic resin molding
JP2011082165A (en) Method of manufacturing electrode substrate
JP6580431B2 (en) Transparent conductive film
JP4795780B2 (en) Antistatic resin molding
JP5519497B2 (en) Touch panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4488826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees