JP4454426B2 - Conductive film for in-mold molding - Google Patents

Conductive film for in-mold molding Download PDF

Info

Publication number
JP4454426B2
JP4454426B2 JP2004222449A JP2004222449A JP4454426B2 JP 4454426 B2 JP4454426 B2 JP 4454426B2 JP 2004222449 A JP2004222449 A JP 2004222449A JP 2004222449 A JP2004222449 A JP 2004222449A JP 4454426 B2 JP4454426 B2 JP 4454426B2
Authority
JP
Japan
Prior art keywords
conductive
conductive layer
ultrafine
film
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004222449A
Other languages
Japanese (ja)
Other versions
JP2006035772A (en
Inventor
秀己 伊藤
龍市 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2004222449A priority Critical patent/JP4454426B2/en
Publication of JP2006035772A publication Critical patent/JP2006035772A/en
Application granted granted Critical
Publication of JP4454426B2 publication Critical patent/JP4454426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、射出成形や型押し成形や真空成形や圧空成形などの成形時に金型内にセットし、インモールド成形後の成形品に帯電防止性能、静電気除去性能、導電性能、電磁波シールド性能を付与するインモールド成形用導電性フィルムに関する。   The present invention is set in a mold at the time of molding such as injection molding, stamping molding, vacuum molding and pressure forming, and the molded product after in-mold molding has antistatic performance, static elimination performance, conductive performance, and electromagnetic shielding performance. It is related with the electroconductive film for in-mold shaping | molding to provide.

従来より、クリーンルーム内で使用する、射出成形や型押し成形された合成樹脂成形品に発生する静電気を逃がして塵埃の付着を防止するために、成形品表面に帯電防止処理が施されている。また、電磁波シールドをするために、成形品内面に導電性の処理が施されている。   Conventionally, an antistatic treatment has been applied to the surface of a molded product in order to release static electricity generated in a synthetic resin molded product that is used in a clean room and is injection-molded or stamped to prevent adhesion of dust. In order to shield the electromagnetic wave, the inner surface of the molded product is subjected to conductive treatment.

かかる帯電防止処理方法として、成形後の成形品の表面に、後から帯電防止剤を塗布して成形品表面に帯電防止層を形成するという方法が知られている。また、成形時に、あらかじめ金型表面に帯電防止剤を塗布しておき、成形後の成形品表面に帯電防止層を形成するという方法が知られている。また、永久帯電防止性能を持った合成樹脂を成形するという方法が知られている。さらに、帯電防止層を有する転写箔を射出成形の金型内に挟み込み、転写側に溶融樹脂を射出して成形品の表面に帯電防止層を転写することも知られている(特許文献1)。   As such an antistatic treatment method, a method is known in which an antistatic agent is subsequently applied to the surface of a molded product after molding to form an antistatic layer on the surface of the molded product. In addition, a method is known in which an antistatic agent is applied in advance to the mold surface during molding, and an antistatic layer is formed on the surface of the molded article after molding. In addition, a method of molding a synthetic resin having permanent antistatic performance is known. Furthermore, it is also known that a transfer foil having an antistatic layer is sandwiched in an injection mold and a molten resin is injected on the transfer side to transfer the antistatic layer to the surface of the molded product (Patent Document 1). .

一方、導電性処理方法として、成形後の成形品の内側表面に、銅やニッケルなどの金属を溶射したり、銅や銀などの金属粉末あるいはカーボンの粉末を混入した導電性塗料を塗布する方法が知られている。
特開2002−321497号公報
On the other hand, as a conductive treatment method, a method of spraying a metal such as copper or nickel on the inner surface of a molded product after molding, or applying a conductive paint mixed with metal powder such as copper or silver or carbon powder It has been known.
JP 2002-321497 A

しかしながら、上記方法では、帯電防止剤や導電性塗料を成形品表面や金型表面に塗布する作業が必要であり、手間がかかるとともに、塗布時に帯電防止剤や導電性塗料が飛散し、有効に使用される量が少なく、無駄が多いという問題があった。また、飛散した過剰の帯電防止剤や導電性塗料を処理する必要があり、環境上も問題があった。さらに、帯電防止剤の性能は湿度に対する依存性があり、低湿度下では帯電防止性能を発揮しないという問題があった。また、永久帯電防止性能を持った合成樹脂は、種類が限定されており、製品設計上の制約があるという問題点があった。また、金属溶射や導電性塗料を塗布した電磁波シールド成形品は不透明であり、透明性を必要とする用途には使用できないという問題点があった。
However, in the above method, it is necessary to apply an antistatic agent or a conductive paint to the surface of the molded product or the mold surface, which is troublesome and the antistatic agent or the conductive paint is scattered during the application. There was a problem that the amount used was small and wasted. In addition, it is necessary to treat the excessive antistatic agent and conductive paint that are scattered, and there is also an environmental problem. Furthermore, the performance of the antistatic agent is dependent on humidity, and there is a problem that the antistatic performance is not exhibited under low humidity. In addition, synthetic resins having permanent antistatic performance are limited in type, and there is a problem that there are restrictions on product design. Further, the electromagnetic wave shield molded product coated with metal spray or conductive paint is opaque and cannot be used for applications requiring transparency.

一方、特許文献1の帯電防止層はアンチモンドープ二酸化スズなどの導電性無機充填剤を含有しており、このような帯電防止層では成形時の伸びに追随できず、クラックが生じて白濁したり、導電層が断裂して帯電防止性能又は静電気除去性能、あるいは導電性能を保持できないという問題があった。   On the other hand, the antistatic layer of Patent Document 1 contains a conductive inorganic filler such as antimony-doped tin dioxide, and such an antistatic layer cannot follow the elongation at the time of molding, and a crack occurs and it becomes cloudy. There is a problem in that the conductive layer is torn and the antistatic performance, static electricity removal performance, or conductive performance cannot be maintained.

本発明は上記の問題に対処するためになされたもので、帯電防止剤や導電性塗料を塗布する工程が不要で、成形時の伸びに追随し、湿度に依存せずに十分な帯電防止性能、静電気除去性能を発揮したり、透明な電磁波シールド性能を発揮するインモールド成形用導電性フィルムを提供することを解決課題としている。   The present invention has been made to address the above problems, and does not require a step of applying an antistatic agent or a conductive paint, follows the elongation during molding, and has sufficient antistatic performance without depending on humidity. An object of the present invention is to provide a conductive film for in-mold molding that exhibits static electricity removal performance or exhibits transparent electromagnetic wave shielding performance.

上記目的を達成するため、本発明のインモールド成形用導電性フィルムは、厚さ3〜500μmの合成樹脂基材の片面に極細導電繊維を含んだ導電層が形成されたフィルムであって、該導電層の厚さを5〜500nmとし、該極細導電繊維の目付け量が1.0〜450mg/m であり、該フィルムが1.0〜5.0の成形倍率でインモールド成形された後の表面抵抗率が10〜1011Ω/□であることを特徴とするものである。 To achieve the above object, in-mold molding the conductive film of the present invention is a containing ultra fine conductive fibers on one surface of the synthetic resin substrate having a thickness of 3~500μm conductive layer is formed a film, the the thickness of the conductive layer is 5 to 500 nm, a basis weight 1.0~450mg / m 2 of ultra Hososhirube conductive fibers, after the film has been in-mold molding in magnification of 1.0 to 5.0 The surface resistivity is 10 0 to 10 11 Ω / □.

本発明において、極細導電繊維が凝集することなく分散して互いに接触していること、或は、極細導電繊維が1本ずつ分離した状態で、もしくは、複数本集まって束になったものが1束ずつ分離した状態で分散して互いに接触していることが好ましい。また、これらの極細導電繊維がカーボンナノチューブであることが好ましい。そして、導電層の550nm波長の光線透過率が50%以上の透明層であることが好ましく、さらに、合成樹脂基材の片面に形成された導電層の上に接着剤層が形成されていることも好ましい。   In the present invention, the fine conductive fibers are dispersed without contacting each other and are in contact with each other, or the fine conductive fibers are separated one by one, or a plurality of bundles are gathered into one bundle. It is preferable that the bundles are dispersed and in contact with each other in a separated state. Moreover, it is preferable that these ultrafine conductive fibers are carbon nanotubes. The conductive layer is preferably a transparent layer having a light transmittance at a wavelength of 550 nm of 50% or more, and an adhesive layer is formed on the conductive layer formed on one side of the synthetic resin substrate. Is also preferable.

なお、本発明で「凝集することなく」とは、導電層を光学顕微鏡で観察し、平均径が0.5μm以上の凝集塊がないことを意味する用語である。また、「接触」とは、極細導電繊維が現実に接触している場合と、極細導電繊維が導通可能な微小間隔をあけて近接している場合の双方を意味する用語である。   In the present invention, “without agglomeration” is a term that means that the conductive layer is observed with an optical microscope and there is no aggregate having an average diameter of 0.5 μm or more. The term “contact” is a term that means both the case where the ultrafine conductive fibers are actually in contact with each other and the case where the ultrafine conductive fibers are close to each other with a small gap that allows conduction.

本発明のインモールド成形用導電性フィルムは、厚さ5〜500nmの導電層に1.0〜450mg/m の目付け量で含まれる極細導電繊維相互の接触がインモールド成形時の成形倍率によっても外れることがないし、該繊維の切断もなく、導電性を維持して10〜1011Ω/□の表面抵抗率を有するインモールド成形体とすることができる。 In the conductive film for in-mold molding of the present invention, the contact between ultrafine conductive fibers contained in a conductive layer having a thickness of 5 to 500 nm with a basis weight of 1.0 to 450 mg / m 2 depends on the molding magnification at the time of in-mold molding. In-mold molded product having a surface resistivity of 10 0 to 10 11 Ω / □ while maintaining electrical conductivity without cutting the fibers.

そして、極細導電繊維が凝集することなく分散して互いに接触していると、該繊維が凝集していない分だけ、極細導電繊維が解けて相互の十分な導通を確保できるので良好な導電性を得ることができる。そのため、極細導電繊維量を少なくしても導電性を確保でき、極細導電繊維量が減少した分だけ透明性を向上させることができるし、導電層の厚みを薄くすることもできる。この極細導電繊維がカーボンナノチューブであると、該カーボンナノチューブが細くて長いので、これら相互の接触がさらに良好に確保でき、表面抵抗率を10〜1011Ω/□に容易にコントロールできるし、また高い透明性も保持できる。 And, if the fine conductive fibers are dispersed without contacting each other and are in contact with each other, the fine conductive fibers can be undissolved and sufficient electrical conduction can be ensured because the fibers are not aggregated. Obtainable. Therefore, even if the amount of the ultrafine conductive fiber is reduced, the conductivity can be secured, the transparency can be improved by the amount of the decrease in the amount of the ultrafine conductive fiber, and the thickness of the conductive layer can be reduced. When the ultrafine conductive fiber is a carbon nanotube, the carbon nanotube is thin and long, so that the mutual contact can be ensured better, and the surface resistivity can be easily controlled to 10 0 to 10 11 Ω / □, High transparency can also be maintained.

また、極細導電繊維が1本ずつ分離した状態で、もしくは、複数本集まって束になったものが1束ずつ分離した状態で分散して互いに接触していると、分散した1本若しくは1束の極細導電繊維相互の接触機会が多くなり、十分な導通を確保でき良好な導電性を得ることができる。そのため、極細導電繊維量を少なくしても導電性を確保できるので、極細導電繊維量が減少した分だけ透明性を向上させることができるし、導電層の厚みを薄くすることもできる。そして、極細導電繊維としてカーボンナノチューブを用いると、さらに上記の接触機会が増加し、高透明の、導電性を向上させたフィルムとすることが可能となる。   Also, when the ultra-fine conductive fibers are separated one by one or when a bundle of multiple bundles are separated one by one and dispersed and are in contact with each other, the dispersed one or one bundle As a result, there are many opportunities for mutual contact between the ultrafine conductive fibers, and sufficient electrical conduction can be secured and good electrical conductivity can be obtained. Therefore, even if the amount of ultrafine conductive fibers is reduced, the conductivity can be ensured. Therefore, the transparency can be improved by the amount of decrease in the amount of ultrafine conductive fibers, and the thickness of the conductive layer can be reduced. When carbon nanotubes are used as the ultrafine conductive fibers, the above contact opportunities are further increased, and a highly transparent film with improved conductivity can be obtained.

さらに、導電層の上に接着剤層を形成していると、該接着剤層で成形体に強固に接着して剥離を防止でき、長期に亘り10〜1011Ω/□の表面抵抗率を有するインモールド成形体とすることができる。
Furthermore, when an adhesive layer is formed on the conductive layer, the adhesive layer can firmly adhere to the molded body to prevent peeling, and a surface resistivity of 10 0 to 10 11 Ω / □ over a long period of time. It can be set as the in-mold molded object which has.

以下、図面を参照して本発明の代表的な実施形態を詳述するが、本発明はこれに限定されるものではない。   Hereinafter, representative embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.

図1は本発明のインモールド成形用導電性フィルムの一実施形態を示す概略断面図、図2の(A)は導電層内部における極細導電繊維の分散状態を示す概略断面図、図2の(B)は導電層表面における極細導電繊維の分散状態を示す概略断面図、図3は導電層を平面から見た極細導電繊維の分散状態を示す概略平面図である。   1 is a schematic cross-sectional view showing an embodiment of the conductive film for in-mold molding of the present invention, FIG. 2A is a schematic cross-sectional view showing a dispersion state of ultrafine conductive fibers inside the conductive layer, and FIG. B) is a schematic cross-sectional view showing a dispersion state of ultrafine conductive fibers on the surface of the conductive layer, and FIG. 3 is a schematic plan view showing a dispersion state of ultrafine conductive fibers when the conductive layer is viewed from the plane.

このインモールド成形用導電性フィルムは、合成樹脂よりなる基材1の片面(上面)に、極細導電繊維3を含んだ透明な導電層2を積層形成したものである。なお、この導電層2は合成樹脂基材1の上下両面に形成してもよい。   This conductive film for in-mold molding is formed by laminating a transparent conductive layer 2 containing ultrafine conductive fibers 3 on one surface (upper surface) of a base material 1 made of synthetic resin. The conductive layer 2 may be formed on both the upper and lower surfaces of the synthetic resin substrate 1.

上記の合成樹脂基材1は、熱可塑性樹脂であれば特に限定されないが、透明な導電性フィルムを得るためには、透明性を付与できる透明熱可塑性樹脂が使用される。この透明熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン、環状ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリメチルメタクリレート、ポリメチルアクリレート、ポリスチレン、ニトロセルロース、トリアセチルセルロース、ポリカーボネート、ポリエチレンテレフタレート、ポリジメチルシクロヘキサンテレフタレート、ABS樹脂、ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリビニルアセタール、ポリエーテルケトン、ポリウレタン、これらの樹脂の共重合体樹脂、これらの樹脂の混合樹脂などが使用される。
The synthetic resin substrate 1 is not particularly limited as long as it is a thermoplastic resin, but in order to obtain a transparent conductive film, a transparent thermoplastic resin that can impart transparency is used. Examples of the transparent thermoplastic resin include polyethylene, polypropylene, cyclic polyolefin, polyvinyl chloride, polyvinylidene chloride, polymethyl methacrylate, polymethyl acrylate, polystyrene, nitrocellulose, triacetyl cellulose, polycarbonate, polyethylene terephthalate, polydimethylcyclohexane terephthalate. ABS resin, polyamide, polyimide, polyethersulfone, polysulfone, polyvinyl acetal, polyetherketone, polyurethane, copolymer resins of these resins, mixed resins of these resins, and the like are used.

そして、基材1は必ずしも透明である必要はないが、厚さが100μmのときに、90%以上、好ましくは95%以上の全光線透過率を有する樹脂が特に好ましく、このような樹脂としては、環状ポリオレフィン、ポリ塩化ビニル、ポリメチルメタクリレート、ポリスチレン、トリアセチルセルロース、ポリカーボネート、ポリエチレンテレフタレート、ポリジメチルシクロヘキサンテレフタレート、あるいはその共重合体樹脂、これらの樹脂の混合樹脂が用いられる。
The substrate 1 is not necessarily transparent, but when the thickness is 100 μm, a resin having a total light transmittance of 90% or more, preferably 95% or more is particularly preferable. , Cyclic polyolefin, polyvinyl chloride, polymethyl methacrylate, polystyrene, triacetyl cellulose, polycarbonate, polyethylene terephthalate, polydimethylcyclohexane terephthalate, a copolymer resin thereof, or a mixed resin of these resins.

上記合成樹脂基材1には、可塑剤、安定剤、紫外線吸収剤等が適宜配合され、成形性、熱安定性、耐候性等が高められる。更に、これらの基材1に顔料や染料などの着色剤を添加して不透明にしたり、半透明にしたりしてもよく、この場合は不透明或は半透明フィルムとなるが、導電層2が透明であるため、その色調を損なうことがない。   The synthetic resin substrate 1 is appropriately mixed with a plasticizer, a stabilizer, an ultraviolet absorber, and the like, and the moldability, thermal stability, weather resistance, and the like are improved. Further, a coloring agent such as a pigment or a dye may be added to the substrate 1 to make it opaque or translucent. In this case, an opaque or translucent film is formed, but the conductive layer 2 is transparent. Therefore, the color tone is not impaired.

基材1の厚さは、用途に応じた厚さとすればよいが、通常は3〜500μm程度の厚さの基材1が使用される。   Although the thickness of the base material 1 should just be a thickness according to a use, the base material 1 of thickness about 3-500 micrometers is normally used.

この基材1の片面に形成された導電層2は、極細導電繊維3を含んだ透明層であって、極細導電繊維3が凝集することなく分散して互いに接触している。換言すれば、極細導電繊維3が絡み合うことなく1本ずつ分離した状態で、もしくは、複数本集まって束になった繊維が1束ずつ分離した状態で分散して互いに接触している。導電層2が主に極細導電繊維3と透明なバインダーとで形成されていると、図2の(A)に示すように、該極細導電繊維3はバインダーの内部に上記の分散状態で分散し互いに接触しているか、或は図2の(B)に示すように、極細導電繊維3の一部がバインダー中に入り込み他の部分がバインダー表面から突出ないし露出して上記分散状態で分散し互いに接触しているか、或は極細導電繊維3の一部は図2の(A)のようにバインダーの内部に、他の極細導電繊維3は図2の(B)のように表面から突出乃至露出している状態で分散し互いに接触していることとなる。   The conductive layer 2 formed on one surface of the base material 1 is a transparent layer including the ultrafine conductive fibers 3, and the fine conductive fibers 3 are dispersed without being aggregated and are in contact with each other. In other words, the fine conductive fibers 3 are dispersed one by one without being entangled or in a state where a plurality of bundled fibers are separated one by one and are in contact with each other. When the conductive layer 2 is mainly formed of ultrafine conductive fibers 3 and a transparent binder, as shown in FIG. 2A, the ultrafine conductive fibers 3 are dispersed in the above dispersion state inside the binder. As shown in FIG. 2B, a part of the ultrafine conductive fiber 3 enters the binder and the other part protrudes or is exposed from the surface of the binder and dispersed in the dispersed state. A part of the fine conductive fiber 3 is in contact with the inside of the binder as shown in FIG. 2A, and the other fine conductive fiber 3 is projected or exposed from the surface as shown in FIG. 2B. Are dispersed and in contact with each other.

これらの極細導電繊維3の平面から見た分散状態を図3に概略的に示す。この図3から理解されるように、極細導電繊維3は多少曲がっているが1本ずつ或は1束ずつ分離し、互いに複雑に絡み合うことなく即ち凝集することなく、単純に交差した状態で導電層2の内部に或は表面に分散され、それぞれの交点で接触している。このように分散していると、凝集している場合に比べて、繊維が解れて広範囲に存在しているので、これら繊維同士の接触する機会が著しく増加し、その結果導通して導電性を容易に得ることができる。そのため、極細導電繊維3の量を少なくしても表面抵抗率を10〜1011Ω/□にすることができ、成形倍率を5倍にすることも可能になるのである。また、透明性を阻害する極細導電繊維の量が少なくなった分だけ透明性が向上するし、さらに、導電層2を薄くすることもでき、一層透明性を向上させることができる。 The dispersion state seen from the plane of these ultrafine conductive fibers 3 is schematically shown in FIG. As can be understood from FIG. 3, the ultra-fine conductive fibers 3 are slightly bent but separated one by one or one bundle, and do not intricately entangle each other, that is, do not agglomerate. It is dispersed inside or on the surface of the layer 2 and is in contact at each intersection. When dispersed in this way, the fibers are present in a wider range than when they are agglomerated, so the chance of contact between these fibers increases significantly, resulting in conduction and conductivity. Can be easily obtained. Therefore, even if the amount of the ultrafine conductive fiber 3 is reduced, the surface resistivity can be made 10 0 to 10 11 Ω / □, and the molding magnification can be made 5 times. Further, the transparency is improved by the amount of the ultrafine conductive fiber that hinders the transparency, and the conductive layer 2 can be made thinner, so that the transparency can be further improved.

導電層2の厚みは、5〜500nmと薄くすることが好ましく、この厚みであっても繊維を分散させることで10〜1011Ω/□の導電性を得ることができる。更に好ましい厚みは10〜300nmである。特に、厚みの下限が50nm以上であると、導電性フィルムを5倍を超える高倍率でインモールド成形した場合でも、10〜1011Ω/□の導電性を確保できる利点がある。 The thickness of the conductive layer 2 is preferably as thin as 5 to 500 nm, and even with this thickness, conductivity of 10 0 to 10 11 Ω / □ can be obtained by dispersing the fibers. A more preferred thickness is 10 to 300 nm. In particular, when the lower limit of the thickness is 50 nm or more, there is an advantage that conductivity of 10 0 to 10 11 Ω / □ can be secured even when the conductive film is in-mold molded at a high magnification exceeding 5 times.


なお、極細導電繊維3は完全に1本ずつ或は1束ずつ分離し分散している必要はなく、一部に絡み合った小さな凝集塊があっても良いが、その大きさは平均径が0.5μm以上でないことが好ましい。

The fine conductive fibers 3 do not have to be separated and dispersed completely one by one or one bundle, and there may be small agglomerates that are intertwined with each other, but the size is 0 in average diameter. It is preferably not more than 5 μm.

上記のように、極細導電繊維3が導電層2内で多少曲がっているが1本ずつ或は1束ずつ分離し、互いに複雑に絡み合うことなく即ち凝集することなく分散された状態で接触していると、該導電層2を有する本発明の導電性フィルムをインモールド成形しても、導電層2内の極細導電繊維3同士の接触が外れることがないし、万一外れたとしても近傍の他の極細導電繊維3と接触し、或は曲がった極細導電繊維3が伸びて切断することが殆どなく、導電性を保持することができる。更に、時には導電性フィルムがインモールド成形されて厚みが薄くなると同時に導電層2も薄くなるため、導電層2のバインダー内で上下方向に分散して接触していなかった極細導電繊維3同士が圧縮されて接触したり導通可能な間隔まで狭くなって導通し、表面抵抗率が減少することもあるし、また、極細導電繊維3が導電層2の表面に突出して導通するため表面抵抗率が減少することもある。そのため、本発明の導電性フィルムを、例えば射出成形用金型の内部に配置し、溶融樹脂を射出成形する際に該フィルムが1.0〜5.0倍の成形倍率で成形されても、元の導電性フィルムの表面抵抗率と同等の抵抗率を示し、10〜1011Ω/□の表面抵抗率を維持できるのである。同様に、型押し成形や真空成形や圧空成形などにおいても、成形金型内に本発明の導電性フィルムを配置して成形して、該フィルムが1.0〜5.0倍の成形倍率で成形されても、10〜1011Ω/□の表面抵抗率を維持できるのである。好ましい成形倍率は1.0〜2.0倍である。 As described above, the ultrafine conductive fibers 3 are slightly bent in the conductive layer 2 but are separated one by one or one bundle, and are in contact with each other without being intertwined in a complicated manner, that is, without agglomeration. If the conductive film of the present invention having the conductive layer 2 is molded in-mold, contact between the ultrathin conductive fibers 3 in the conductive layer 2 is not released. The ultrafine conductive fibers 3 that are in contact with or bent are hardly stretched and cut, and the conductivity can be maintained. Furthermore, sometimes the conductive film is in-molded to reduce the thickness, and at the same time the conductive layer 2 is also thinned, so that the ultrafine conductive fibers 3 that are not in contact with each other in the vertical direction dispersed in the binder of the conductive layer 2 are compressed. The surface resistivity may decrease due to contact and narrowing to the interval where contact can be made, and the surface resistivity may be reduced. Also, since the ultrafine conductive fiber 3 protrudes and conducts on the surface of the conductive layer 2, the surface resistivity is reduced. Sometimes. Therefore, even if the conductive film of the present invention is placed inside, for example, an injection mold and the molten resin is injection molded, the film is molded at a molding magnification of 1.0 to 5.0 times. It shows a resistivity equivalent to the surface resistivity of the original conductive film and can maintain a surface resistivity of 10 0 to 10 11 Ω / □. Similarly, in the case of stamping molding, vacuum molding, pressure forming, etc., the conductive film of the present invention is placed in a molding die and molded, and the film has a molding magnification of 1.0 to 5.0 times. Even if it is molded, the surface resistivity of 10 0 to 10 11 Ω / □ can be maintained. A preferable molding magnification is 1.0 to 2.0 times.

また、同様の理由で、本発明の導電性フィルムを曲げても、繊維3が伸びるだけで接触が外れたり切断することがないので、インモールド成形時に曲率が小さな曲げが必要な場合でも表面抵抗率が低下することがなく、10〜1011Ω/□の表面抵抗率を維持できる。 For the same reason, even if the conductive film of the present invention is bent, the fibers 3 are stretched and the contact is not removed or cut. Therefore, even when bending with a small curvature is required at the time of in-mold forming, the surface resistance is reduced. The surface resistivity of 10 0 to 10 11 Ω / □ can be maintained without decreasing the rate.

本発明の導電性フィルムが、5.0倍以上の成形倍率でインモールド成形されても、導電層2の厚さが50nm以上あれば、導電性を保持できるが、5.0倍以上の成形倍率でインモールド成形されると、基材フィルムが成形に追随せず、破断することがあるので望ましくない。   Even if the conductive film of the present invention is in-mold molded at a molding magnification of 5.0 times or more, if the thickness of the conductive layer 2 is 50 nm or more, conductivity can be maintained, but molding of 5.0 times or more is possible. When in-mold molding is performed at a magnification, the base film does not follow molding and may break, which is not desirable.

このように、インモールド成形する際に、本発明の導電性フィルムが1.0〜5.0倍の成形倍率で成形されても、極細導電繊維が追従して接触が外れたり切断したりすることが無く、元の表面抵抗率を維持して10〜1011Ω/□となるのである。なお、ここで成形倍率とは、成形前の成形面積と成形後の成形面積との比で示す。 In this way, even when the conductive film of the present invention is molded at a molding magnification of 1.0 to 5.0 times during in-mold molding, the ultrafine conductive fibers follow and disconnect or cut. The original surface resistivity is maintained to be 10 0 to 10 11 Ω / □. Here, the molding magnification is indicated by the ratio of the molding area before molding and the molding area after molding.

上記の導電層2に使用される極細導電繊維3は、カーボンナノチューブやカーボンナノホーン、カーボンナノワイヤ、カーボンナノファイバー、グラファイトフィブリルなどの極細長炭素繊維、白金、金、銀、ニッケル、シリコンなどの金属ナノチューブ、ナノワイヤなどの極細長金属繊維、酸化亜鉛などの金属酸化物ナノチューブ、ナノワイヤなどの極細長金属酸化物繊維などの、直径が0.3〜100nmで長さが0.1〜20μm、好ましくは長さが0.1〜10μmである導電性極細繊維が好ましく用いられる。これらの極細導電繊維3は、これが凝集することなく1本ずつ或は1束ずつ分散することにより、該導電層2の表面抵抗率が10〜1011Ω/□である時には光線透過率が50%以上のものが得られる。なお、上記光線透過率は分光光度計による550nmの波長の光の透過率を示す。
The ultrafine conductive fibers 3 used in the conductive layer 2 are ultrafine carbon fibers such as carbon nanotubes, carbon nanohorns, carbon nanowires, carbon nanofibers, and graphite fibrils, and metal nanotubes such as platinum, gold, silver, nickel, and silicon. , Ultrafine metal fibers such as nanowires, metal oxide nanotubes such as zinc oxide, ultrafine metal oxide fibers such as nanowires, and the like, with a diameter of 0.3 to 100 nm and a length of 0.1 to 20 μm, preferably long Conductive ultrafine fibers having a thickness of 0.1 to 10 μm are preferably used. These ultrafine conductive fibers 3 are dispersed one by one or one bundle without agglomeration, so that when the surface resistivity of the conductive layer 2 is 10 0 to 10 11 Ω / □, the light transmittance is high. A product of 50% or more is obtained. In addition, the said light transmittance shows the transmittance | permeability of the light of the wavelength of 550 nm by a spectrophotometer.

これらの極細導電繊維3の中でも、カーボンナノチューブは、直径が極めて細く0.3〜80nmであるので、1本ずつ或は1束ずつ分散することで該カーボンナノチューブが光透過を阻害することが少なくなり、光線透過率が50%以上の透明な導電層2を得るうえで特に好ましいのである。これらの極細導電繊維3は、導電層2の内部に或は表面に、凝集することなく、1本ずつ或は1束ずつ分散し、互いに接触して導通性を確保している。そのため、該極細導電繊維3を導電層2に1.0〜450mg/mの目付け量で含ませることで、その表面抵抗率を10〜1011Ω/□の範囲内で自由にコントロールすることができる。該目付け量は、導電層2を電子顕微鏡で観察し、その平面面積に占める極細導電繊維の面積割合を測定し、これに電子顕微鏡で観察した厚みと極細導電繊維の比重(極細導電繊維がカーボンナノチューブである場合は、グラフィトの文献値2.1〜2.3の平均値2.2を採用)を掛けることで計算した値である。 Among these ultrafine conductive fibers 3, since the carbon nanotubes are extremely thin and have a diameter of 0.3 to 80 nm, the carbon nanotubes hardly disturb light transmission by being dispersed one by one or one bundle. Therefore, it is particularly preferable for obtaining a transparent conductive layer 2 having a light transmittance of 50% or more. These ultrafine conductive fibers 3 are dispersed one by one or one bundle at a time without agglomerating inside or on the surface of the conductive layer 2 and contact with each other to ensure conductivity. Therefore, the surface resistivity is freely controlled within the range of 10 0 to 10 11 Ω / □ by including the ultrafine conductive fiber 3 in the conductive layer 2 at a basis weight of 1.0 to 450 mg / m 2. be able to. The weight per unit area is determined by observing the conductive layer 2 with an electron microscope, measuring the area ratio of the ultrafine conductive fiber in the planar area, and measuring the thickness of the conductive layer 2 and the specific gravity of the ultrafine conductive fiber (the ultrafine conductive fiber is carbon In the case of a nanotube, it is a value calculated by multiplying by an average value 2.2 of the literature values 2.1 to 2.3 of the graph.

ここで、凝集していないとは、導電層2を光学顕微鏡で観察し、凝集している塊があれば、その長径と短径とを測定し、その平均値が0.5μm以上の塊がないことを意味している。   Here, when the conductive layer 2 is not aggregated, the conductive layer 2 is observed with an optical microscope, and if there are aggregated lumps, the major axis and the minor axis are measured. It means not.

また、導電層2の光線透過率は、測定に分光光度計を用い、550nmにおける導電性フィルムの光線透過率を基材のみの光線透過率で補正することにより得ることができる。   Moreover, the light transmittance of the conductive layer 2 can be obtained by correcting the light transmittance of the conductive film at 550 nm with the light transmittance of only the substrate using a spectrophotometer for measurement.

上記カーボンナノチューブには、中心軸線の周りに直径が異なる複数の円筒状に閉じたカーボン壁を同心的に備えた多層カーボンナノチューブや、中心軸線の周りに単独の円筒状に閉じたカーボン壁を備えた単層カーボンナノチューブがある。   The carbon nanotube includes a multi-wall carbon nanotube concentrically provided with a plurality of cylindrically closed carbon walls having different diameters around the central axis, and a single cylindrically closed carbon wall around the central axis. Single-walled carbon nanotubes.

前者の多層カーボンナノチューブは、上記のように直径が異なる複数の円筒状に閉じたカーボン壁からなるチューブが中心軸線の周りに多層になって構成されており、カーボン壁は、カーボンの六角網目構造にて形成されている。その他、上記カーボン壁が渦巻き状に多層に形成されているものもある。好ましい多層カーボンナノチューブは、このカーボン壁が2〜30層重なったものであり、そのような多層カーボンナノチューブを上記の如き分散状態で分散させると、光線透過率を良好にすることができる。より好ましくはカーボン壁が2〜15層重なったものが用いられる。該多層カーボンナノチューブは1本ずつ分離した状態で分散しているものが殆どであるが、2〜3層カーボンナノチューブは、束になって分散している場合もある。   The former multi-walled carbon nanotube is composed of a plurality of cylindrically closed carbon walls with different diameters as described above, and the tube is made of multi-layers around the central axis, and the carbon wall has a carbon hexagonal network structure. It is formed by. In other cases, the carbon walls are spirally formed in multiple layers. Preferred multi-walled carbon nanotubes are those in which these carbon walls are overlapped by 2 to 30 layers. When such multi-walled carbon nanotubes are dispersed in the above dispersed state, the light transmittance can be improved. More preferably, carbon walls having 2 to 15 layers are used. Most of the multi-walled carbon nanotubes are dispersed in a state of being separated one by one, but the two- to three-walled carbon nanotubes may be dispersed in a bundle.

一方、後者の単層カーボンナノチューブは、上記のように中心軸線の周りに円筒状に閉じた単独のカーボン壁から構成されており、カーボン壁はカーボンの六角網目構造にて形成されている。このような単層カーボンナノチューブは1本ずつ分離した状態では分散されにくく、2本以上集まって束になり、それが1束ずつ分離して、束同士が複雑に絡み合うことなく凝集せずに、単純に交差した状態で導電層の内部若しくは表面に分散され、それぞれの交点で接触している。好ましくは、10〜50本の単層カーボンナノチューブが集まって束になったものが用いられる。   On the other hand, the latter single-walled carbon nanotube is composed of a single carbon wall closed in a cylindrical shape around the central axis as described above, and the carbon wall is formed of a carbon hexagonal network structure. Such single-walled carbon nanotubes are difficult to disperse in a state where they are separated one by one, and two or more are gathered into a bundle, which separates one bundle at a time, and the bundles do not aggregate without intricately intertwining, It is dispersed in the interior or surface of the conductive layer in a simply intersected state, and is in contact at each intersection. Preferably, a bundle of 10 to 50 single-walled carbon nanotubes is used.

上記のように極細導電繊維3が絡み合うことなく凝集せずに導電層2に分散してお互いに接触している本発明の導電性フィルムは、導電層2における極細導電繊維3の目付け量を1.0〜450mg/mとすると、導電層2の厚みを5〜500nmと薄くしても、極細導電繊維3が解れているので相互の十分な導通が確保され、表面抵抗率が10〜1011Ω/□の範囲となって導電性を発現できるようになる。そして、極細導電繊維が解れて凝集塊がなくなり光透過を阻害しないので透明性が良好になると共に、導電層2の厚みを薄くして極細導電繊維3の目付け量を少なくした分だけ透明性が向上するようになる。 As described above, the conductive films of the present invention in which the fine conductive fibers 3 are not agglomerated without being entangled but dispersed in the conductive layer 2 and are in contact with each other, the basis weight of the ultra fine conductive fibers 3 in the conductive layer 2 is 1 When the thickness is from 0 to 450 mg / m 2 , even if the thickness of the conductive layer 2 is reduced to 5 to 500 nm, the ultrathin conductive fibers 3 are released, so that sufficient mutual conduction is ensured and the surface resistivity is 10 0 to Conductivity can be expressed in the range of 10 11 Ω / □. And, since the ultrafine conductive fibers are unwound and aggregates disappear and light transmission is not hindered, transparency is improved, and transparency is reduced by reducing the thickness of the conductive layer 2 and reducing the weight of the ultrafine conductive fibers 3. To improve.

極細導電繊維3を導電層2中に含ませ、導電性及び透明性を発現させるためには、極細導電繊維3の分散性を高め、さらに作製した塗液の粘度を下げて作業性を向上させて、薄い導電層2を形成することが重要であり、そのためには、分散剤を併用して分散性を向上することが重要である。このような分散剤としては、酸性ポリマーのアルキルアンモニウム塩溶液や3級アミン修飾アクリル共重合物やポリオキシエチレン-ポリオキシプロピレン共重合物などの高分子系分散剤、カップリング剤等が好ましく使用される。   In order to include the ultrafine conductive fiber 3 in the conductive layer 2 and develop conductivity and transparency, the dispersibility of the ultrafine conductive fiber 3 is increased, and the viscosity of the prepared coating liquid is further lowered to improve workability. Thus, it is important to form the thin conductive layer 2, and for that purpose, it is important to improve the dispersibility by using a dispersant together. As such a dispersant, a polymer dispersant such as an alkyl ammonium salt solution of an acidic polymer, a tertiary amine-modified acrylic copolymer or a polyoxyethylene-polyoxypropylene copolymer, a coupling agent, etc. are preferably used. Is done.

なお、この導電層2には紫外線吸収剤、表面改質剤、安定剤等の添加剤を適宜加えて、耐候性その他の物性を向上させても良い。   In addition, an additive such as an ultraviolet absorber, a surface modifier, and a stabilizer may be appropriately added to the conductive layer 2 to improve weather resistance and other physical properties.

導電層2に使用するバインダーとしては、透明な熱可塑性樹脂、特にポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、弗化ビニリデンなどの透明樹脂が使用され、これらの透明バインダー樹脂と上記極細導電繊維とからなる導電層2が透明層となるようになされている。なお、これらのバインダーにはコロイダルシリカのような無機材が添加されてもよい。基材1が透明な熱可塑性樹脂で形成されていれば、これと同種の透明な熱可塑性樹脂、又は相溶性のある異種の透明な熱可塑性樹脂が、互いの積層性に優れ、本発明の導電性フィルムを得るうえで好ましく使用される。また、バインダーとしてアクリル系、ウレタン系、エポキシ系等の熱や紫外線や電子線や放射線などで硬化する透明な硬化性樹脂やコロイダルシリカを含むバインダーを使用すると耐磨耗性などに優れるフィルムを得ることができる。このように、導電層2は基板1の表面に形成されるものであるから、要求される耐候性、表面硬度、耐摩耗性などに適したバインダーを選択使用することが望ましい。
As the binder used for the conductive layer 2, transparent thermoplastic resins such as polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorinated polypropylene, vinylidene fluoride, etc. Transparent resin is used, and the conductive layer 2 composed of these transparent binder resins and the above-mentioned ultrafine conductive fibers is made to be a transparent layer. In addition, an inorganic material such as colloidal silica may be added to these binders. If the base material 1 is formed of a transparent thermoplastic resin, the same type of transparent thermoplastic resin or a compatible different type of transparent thermoplastic resin is excellent in mutual laminating properties, and It is preferably used for obtaining a conductive film. In addition, when a binder containing a transparent curable resin or colloidal silica that cures with heat, ultraviolet rays, electron beams, radiation, etc. such as acrylic, urethane, and epoxy is used as a binder, a film having excellent wear resistance and the like is obtained. be able to. Thus, since the conductive layer 2 is formed on the surface of the substrate 1, it is desirable to select and use a binder suitable for the required weather resistance, surface hardness, wear resistance and the like.

上述したように、導電層2における極細導電繊維3の目付け量を1.0〜450mg/mとし、導電層2の厚みを5〜500nmと薄くして、極細導電繊維3を凝集することなく1本ずつ或は1束ずつ分散させることで、表面抵抗率が10〜1011Ω/□の導電性及び透明性が発現される。より好ましい極細導電繊維3の目付け量は1.0〜200mg/mである。なお、極細導電繊維の他に導電性金属酸化物の粉末を30〜50質量%程度含有させてもよい。 As described above, the basis weight of the fine conductive fibers 3 in the conductive layer 2 is 1.0 to 450 mg / m 2 , the thickness of the conductive layer 2 is thinned to 5 to 500 nm, and the fine conductive fibers 3 are not aggregated. By dispersing one by one or one by one, conductivity and transparency with a surface resistivity of 10 0 to 10 11 Ω / □ are expressed. A more preferable basis weight of the ultrafine conductive fiber 3 is 1.0 to 200 mg / m 2 . In addition to the ultrafine conductive fiber, a conductive metal oxide powder may be contained in an amount of about 30 to 50% by mass.

以上のような本発明の導電性フィルムは、例えば次の方法で効率良く量産することができる。ひとつの方法は、導電層形成用の前記バインダーを揮発性溶剤に溶解した溶液に極細導電繊維3を均一に分散させて塗液を調製し、この塗液を基材1の片面に塗布、固化させて導電層2を形成することにより本発明の導電性フィルムを製造する方法である。他の方法は、極細導電繊維2を添加した樹脂と基材樹脂との共押し成形で製造する方法である。なお、その他の公知の製法によっても製造され得ることは言うまでもない。   The conductive film of the present invention as described above can be mass-produced efficiently by the following method, for example. One method is to prepare a coating liquid by uniformly dispersing ultrafine conductive fibers 3 in a solution obtained by dissolving the binder for forming a conductive layer in a volatile solvent, and applying and solidifying the coating liquid on one side of the substrate 1. And forming the conductive layer 2 to produce the conductive film of the present invention. The other method is a method of manufacturing by co-extrusion molding of a resin added with ultrafine conductive fibers 2 and a base resin. Needless to say, it can also be produced by other known production methods.

図4は、上記の本発明のインモールド成形用導電性フィルムを射出成形によりインサートする方法を示す説明図である。   FIG. 4 is an explanatory view showing a method of inserting the in-mold conductive film of the present invention by injection molding.

図4に示すように、開いた射出成形金型4の雌金型41の近傍に、本発明の導電性フィルムを導電層2が雌金型41側となるように配置した後に、雄金型42を閉じ、射出成形すると、溶融樹脂で導電性フィルムが押されて延伸されつつ溶融樹脂と積層一体化される。このようにして得られた導電性射出成形体は、たとえ導電性フィルムが引き伸ばされて成形されても10〜1011Ω/□の表面抵抗率を有し、該射出成形体表面に導電層2が位置しているため、表面抵抗率が10〜1011Ω/□の場合には帯電防止能を有して塵などが付着することがないし、表面抵抗率が10〜10Ω/□の場合には電磁波シールド性能を有して電磁波ノイズをカットすることができる。 As shown in FIG. 4, after the conductive film of the present invention is disposed in the vicinity of the female mold 41 of the open injection mold 4 so that the conductive layer 2 is on the female mold 41 side, When 42 is closed and injection molding is performed, the conductive film is pushed by the molten resin and stretched and integrated with the molten resin. The conductive injection molded body thus obtained has a surface resistivity of 10 0 to 10 11 Ω / □ even when the conductive film is stretched and molded, and a conductive layer is formed on the surface of the injection molded body. 2 is located, and when the surface resistivity is 10 5 to 10 11 Ω / □, it has antistatic ability and dust does not adhere, and the surface resistivity is 10 0 to 10 5 Ω. In the case of / □, electromagnetic wave noise can be cut with electromagnetic wave shielding performance.

図5は本発明のインモールド成形用導電性フィルムの他の実施形態の断面図である。   FIG. 5 is a cross-sectional view of another embodiment of the in-mold conductive film of the present invention.

この導電性フィルムは、導電層2の表面に透明な接着剤層5を形成してなる転写可能な導電性フィルムである。合成樹脂基材1は、導電層2が剥離できる離形性に富んだ樹脂が使用され、代表的な樹脂としてはポリエチレンテレフタレートが挙げられる。   This conductive film is a transferable conductive film formed by forming a transparent adhesive layer 5 on the surface of the conductive layer 2. The synthetic resin substrate 1 is made of a resin having a good releasability from which the conductive layer 2 can be peeled, and a typical resin is polyethylene terephthalate.

また、透明な接着剤層5を形成する接着剤は、公知の接着性を発揮するものが全て使用でき、例えば、アクリル系、ウレタン系、ポリエステル系、ポリビニールエーテル系、塩ビ系などの接着剤が用いられる。この中でも、耐候性に優れ安価で透明性に優れるアクリル系接着剤が好適に用いられる。   Moreover, the adhesive which forms the transparent adhesive bond layer 5 can use all what exhibits well-known adhesiveness, for example, adhesives, such as an acrylic type, a urethane type, a polyester type, a polyvinyl ether type, a vinyl chloride type Is used. Among these, acrylic adhesives that are excellent in weather resistance, inexpensive, and excellent in transparency are preferably used.

この転写可能な導電性フィルムを得るには、ポリエチレンテレフタレートなどの剥離フィルムを基材1とし、この片面に極細導電繊維3を含む塗料を塗布、固化させて導電層2を形成し、さらに接着剤層5を塗布などの方法で形成することで転写可能な本発明の導電性フィルムを作製することができる。   In order to obtain this transferable conductive film, a release film such as polyethylene terephthalate is used as a base material 1, a coating containing ultrafine conductive fibers 3 is applied and solidified on one side, and a conductive layer 2 is formed. By forming the layer 5 by a method such as coating, a transferable conductive film of the present invention can be produced.

なお、導電層2は前記実施形態と同様であるので説明を省略する。   Since the conductive layer 2 is the same as that in the above embodiment, the description is omitted.

この転写可能な導電性フィルムを、例えば図4に示すような射出成形時に転写させるためには、導電性フィルムの基材1を雌金型41側となるように配置した後に射出成形して、接着層5を成形体と圧着・一体化させ、その後基材1を成形体から剥離することにより、成形体に接着剤層5と制電層2とが転写された射出成形体を得ることができる。   In order to transfer the transferable conductive film, for example, at the time of injection molding as shown in FIG. 4, the conductive film base 1 is placed on the female mold 41 side and then injection molded. It is possible to obtain an injection molded body in which the adhesive layer 5 and the antistatic layer 2 are transferred to the molded body by pressing and integrating the adhesive layer 5 with the molded body and then peeling the base material 1 from the molded body. it can.

次に、本発明の更に具体的な実施例を挙げる。   Next, more specific examples of the present invention will be given.

[実施例1]




溶媒としてのイソプロピルアルコール/水混合物(混合比3:1)中に単層カーボンナノチューブ(文献Chemical Physics Letters,323(2000)P580−585に基づき合成した物、直径1.3〜1.8nm)と分散剤としてのポリオキシエチレン-ポリオキシプロピレン共重合物を加えて均一に混合、分散させ、単層カーボンナノチューブを0.003質量%、分散剤を0.05質量%含む塗液を調整した。そしてこの塗液を、市販の厚さ100μmのアクリルフィルム(鐘淵化学工業株式会社製SD014NRT、全光線透過率94.0%、ヘーズ0.6%)の片側の表面に塗布することにより導電層を形成し、本発明のインモールド成形用導電性フィルムを得た。
[Example 1]




Single-walled carbon nanotubes (synthesized based on the literature Chemical Physics Letters, 323 (2000) P580-585, diameter 1.3-1.8 nm) in isopropyl alcohol / water mixture (mixing ratio 3: 1) as solvent A polyoxyethylene-polyoxypropylene copolymer as a dispersant was added and mixed and dispersed uniformly to prepare a coating solution containing 0.003% by mass of single-walled carbon nanotubes and 0.05% by mass of a dispersant. And this conductive liquid is apply | coated to the surface of the one side of a commercially available 100-micrometer-thick acrylic film (SD014NRT by Kaneka Chemical Co., Ltd., total light transmittance 94.0%, haze 0.6%). To obtain an in-mold conductive film of the present invention.

この導電性フィルムの表面抵抗率を三菱化学社製のロレスタ−EPで測定したところ、表面抵抗率が4.8×10Ω/□であった。 When the surface resistivity of this conductive film was measured by Loresta EP manufactured by Mitsubishi Chemical Corporation, the surface resistivity was 4.8 × 10 2 Ω / □.

また、この導電フィルムの全光線透過率とヘーズとを、ASTM D1003に準拠して、スガ試験機社製の直読ヘーズコンピューターHGM−2DPで測定したところ、全光線透過率が81.1%、ヘーズが4.6%であった。   Moreover, when the total light transmittance and haze of this conductive film were measured with a direct reading haze computer HGM-2DP manufactured by Suga Test Instruments Co., Ltd. in accordance with ASTM D1003, the total light transmittance was 81.1%, haze. Was 4.6%.

また、導電性フィルムの導電層の550nm波長の光線透過率を、島津製作所製島津自記分光光度計UV−3100PCを用いて、導電性フィルムと、元のアクリルフィルムとの波長550nmにおける光線透過率をそれぞれ測定し、それらの差を導電層の光線透過率とした。この光線透過率は、86.5%であった。   In addition, the light transmittance at 550 nm wavelength of the conductive layer of the conductive film was measured using the Shimadzu Shimadzu spectrophotometer UV-3100PC manufactured by Shimadzu Corporation. Each was measured, and the difference between them was used as the light transmittance of the conductive layer. The light transmittance was 86.5%.

さらに、この導電性フィルムの導電層を光学顕微鏡で観察したところ、0.5μ以上の凝集塊は存在しておらず、単層カーボンナノチューブの分散が十分に行われていた。そこで、このフィルムの導電層を走査電子顕微鏡で観察したところ、単層カーボンナノチューブの分散が十分に行われていて、この電子顕微鏡観察においても凝集塊は存在していなかった。そして、多数のカーボンナノチューブが1束ずつ分離した状態で均一に分散し、単純に交差した状態で接触していることがわかった。そして、カーボンナノチューブの面積割合を測定したところ68.7%であった。また、導電層の厚さは45nmであった。このことより、導電層の単層カーボンナノチューブの目付け量は面積割合68.7%と厚み45nmと比重(2.2)を掛け合せた68mg/mであった。 Furthermore, when the conductive layer of this conductive film was observed with an optical microscope, there was no aggregate of 0.5 μm or more, and the single-walled carbon nanotubes were sufficiently dispersed. Therefore, when the conductive layer of this film was observed with a scanning electron microscope, the single-walled carbon nanotubes were sufficiently dispersed, and no agglomerates existed even in this electron microscope observation. Then, it was found that a large number of carbon nanotubes were uniformly dispersed in a state where they were separated one by one, and simply contacted in a crossed state. And when the area ratio of the carbon nanotube was measured, it was 68.7%. The thickness of the conductive layer was 45 nm. From this, the basis weight of the single-walled carbon nanotube of the conductive layer was 68 mg / m 2 obtained by multiplying the area ratio 68.7%, the thickness 45 nm and the specific gravity (2.2).

この導電性フィルムを加熱成形したところ、成形倍率が1.2倍の時に表面抵抗率が1.5×10Ω/□、全光線透過率が83.1%、ヘーズが9.6%になった。また、成形倍率が1.6倍の時に表面抵抗率が9.8×10Ω/□、全光線透過率が86.9%、ヘーズが10.3%になった。表面抵抗率が10Ω/□オーダーであれば電磁波シールド性能があることは公知である。


When this conductive film was heat-molded, the surface resistivity was 1.5 × 10 3 Ω / □, the total light transmittance was 83.1%, and the haze was 9.6% when the molding magnification was 1.2 times. became. When the molding magnification was 1.6, the surface resistivity was 9.8 × 10 3 Ω / □, the total light transmittance was 86.9%, and the haze was 10.3%. If the surface resistivity is on the order of 10 3 Ω / □, it is known that there is electromagnetic shielding performance.


[実施例2]
溶剤としてのシクロヘキサノンに、熱可塑性樹脂として塩化ビニル樹脂の粉末を1.7質量%添加して溶解した。この溶液中に単層カーボンナノチューブ(カーボンナノテクノロジーズ社製、直径0.7〜2nm)と分散剤としての酸性ポリマーのアルキルアンモニウム塩溶液を加えて均一に混合、分散させ、カーボンナノチューブを0.3質量%、分散剤を0.18質量%含む塗液を調整した。この塗液を実施例1で用いたのと同じ市販の厚さ100μmのアクリルフィルムの片側の表面に塗布することにより導電層を形成し、本発明のインモールド成形用導電性フィルムを得た。
[Example 2]
To cyclohexanone as a solvent, 1.7% by mass of vinyl chloride resin powder as a thermoplastic resin was added and dissolved. In this solution, a single-walled carbon nanotube (carbon nanotechnology, diameter 0.7-2 nm) and an alkyl ammonium salt solution of an acidic polymer as a dispersing agent are added and mixed and dispersed uniformly. A coating solution containing 0.18% by mass of a dispersant and 0.18% by mass of a dispersant was prepared. The coating layer was applied to the surface of one side of the same commercially available 100 μm-thick acrylic film as used in Example 1 to form a conductive layer, and an in-mold conductive film of the present invention was obtained.

この導電性フィルムの表面抵抗率を三菱化学社製のハイレスタ−UPで測定したところ、表面抵抗率が7.4×1010Ω/□であった。また、この導電フィルムの全光線透過率は85.9%、ヘーズは3.0%であった。そして、導電性フィルムの導電層の550nm波長の光線透過率は91.4%であった。さらに、この導電性フィルムの導電層には0.5μ以上の凝集塊は存在しておらず、導電層の単層カーボンナノチューブの目付け量は15mg/mであった。 When the surface resistivity of this conductive film was measured with a Hiresta UP manufactured by Mitsubishi Chemical Corporation, the surface resistivity was 7.4 × 10 10 Ω / □. Further, this conductive film had a total light transmittance of 85.9% and a haze of 3.0%. And the light transmittance of 550 nm wavelength of the conductive layer of the conductive film was 91.4%. Further, no agglomerates of 0.5 μm or more were present in the conductive layer of this conductive film, and the basis weight of single-walled carbon nanotubes in the conductive layer was 15 mg / m 2 .

この導電性フィルムを加熱成形したところ、成形倍率が2倍の時に表面抵抗率が1.3×10Ω/□、全光線透過率が89.0%、ヘーズが2.9%になり、成形倍率が3倍の時に表面抵抗率が4.7×10Ω/□、全光線透過率が89.2%、ヘーズが3.2%になり、成形倍率が5倍の時に表面抵抗率が2.1×10Ω/□、全光線透過率が88.8%、ヘーズが3.1%になった。 When this conductive film was heat-molded, the surface resistivity was 1.3 × 10 7 Ω / □, the total light transmittance was 89.0%, and the haze was 2.9% when the molding magnification was 2 times. The surface resistivity is 4.7 × 10 7 Ω / □ when the molding magnification is 3 times, the total light transmittance is 89.2%, the haze is 3.2%, and the surface resistivity is 5 times when the molding magnification is 5 times. Of 2.1 × 10 8 Ω / □, the total light transmittance was 88.8%, and the haze was 3.1%.

本実施例で、熱成形後の表面抵抗率が成形前の表面抵抗率より減少した理由は、導電性フィルムが成形されて厚みが薄くなると同時に導電層も薄くなるため、導電層のバインダー内で上下方向に分散して接触していなかったカーボンナノチューブ同士が圧縮されて接触したり導通可能な間隔まで狭くなって導通し、表面抵抗率が減少した、あるいは、カーボンナノチューブが導電層の表面に突出して導通するため表面抵抗率が減少したと考えられる。

In this example, the reason why the surface resistivity after thermoforming is less than the surface resistivity before molding is that the conductive film is formed and the thickness is reduced at the same time as the conductive layer is reduced. The carbon nanotubes that were not in contact by being dispersed in the vertical direction were compressed and contacted or narrowed to a space where they could conduct, and the surface resistivity decreased, or the carbon nanotubes protruded to the surface of the conductive layer. The surface resistivity is thought to have decreased due to electrical conduction.

本発明のインモールド成形用導電性フィルムの一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the electroconductive film for in-mold shaping | molding of this invention. (A)は本発明の導電層内部における極細導電繊維の分散状態を示す概略断面図であり、(B)は本発明の導電層表面における極細導電繊維の分散状態を示す概略断面図である。(A) is a schematic sectional drawing which shows the dispersion | distribution state of the ultrafine conductive fiber in the inside of the conductive layer of this invention, (B) is a schematic sectional drawing which shows the dispersion | distribution state of the ultrafine conductive fiber in the conductive layer surface of this invention. 本発明の導電層を平面から見た極細導電繊維の分散状態を示す概略平面図である。It is a schematic plan view which shows the dispersion state of the ultrafine conductive fiber which looked at the conductive layer of this invention from the plane. 本発明のインモールド成形用導電性フィルムを射出成形によりインサートする方法を示す説明図である。It is explanatory drawing which shows the method of inserting the electroconductive film for in-mold shaping | molding of this invention by injection molding. 本発明のインモールド成形用導電性フィルムの他の実施形態の概略断面図である。It is a schematic sectional drawing of other embodiment of the electroconductive film for in-mold shaping | molding of this invention.

符号の説明Explanation of symbols

1 基材
2 導電層
3 極細導電繊維
4 射出成形金型
41雌金型
42雄金型
5 接着剤層
DESCRIPTION OF SYMBOLS 1 Base material 2 Conductive layer 3 Extra fine conductive fiber 4 Injection molding die 41 Female die 42 Male die 5 Adhesive layer

Claims (6)

厚さ3〜500μmの合成樹脂基材の片面に極細導電繊維を含んだ導電層が形成されたフィルムであって、該導電層の厚さを5〜500nmとし、該極細導電繊維の目付け量が1.0〜450mg/m であり、該フィルムが1.0〜5.0の成形倍率でインモールド成形された後の表面抵抗率が10〜1011Ω/□であることを特徴とするインモールド成形用導電性フィルム。 A film in which a conductive layer containing ultrafine conductive fibers is formed on one surface of a synthetic resin substrate having a thickness of 3 to 500 μm , and the conductive layer has a thickness of 5 to 500 nm, and the basis weight of the ultrafine conductive fibers is 1.0 to 450 mg / m 2 , and the surface resistivity after the film is in-molded at a molding magnification of 1.0 to 5.0 is 10 0 to 10 11 Ω / □. Conductive film for in-mold molding. 極細導電繊維が、凝集することなく分散して互いに接触していることを特徴とする請求項1に記載のインモールド成形用導電性フィルム。   The conductive film for in-mold molding according to claim 1, wherein the ultrafine conductive fibers are dispersed and in contact with each other without agglomeration. 極細導電繊維が、1本ずつ分離した状態で、もしくは、複数本集まって束になったものが1束ずつ分離した状態で分散して互いに接触していることを特徴とする請求項1に記載のインモールド成形用導電性フィルム。   2. The ultra-fine conductive fibers are dispersed in contact with each other in a state of being separated one by one or in a state where a plurality of bundles are bundled and separated one by one. Conductive film for in-mold molding. 極細導電繊維がカーボンナノチューブであることを特徴とする請求項1ないし請求項3のいずれかに記載のインモールド成形用導電性フィルム。   The conductive film for in-mold molding according to any one of claims 1 to 3, wherein the ultrafine conductive fiber is a carbon nanotube. 導電層の550nm波長の光線透過率が50%以上の透明層であることを特徴とする請求項1ないし請求項4のいずれかに記載のインモールド成形用導電性フィルム。   The conductive film for in-mold molding according to any one of claims 1 to 4, wherein the conductive layer is a transparent layer having a light transmittance at a wavelength of 550 nm of 50% or more. 合成樹脂基材の片面に形成された導電層の上に接着剤層が形成されてなる請求項1ないし請求項5のいずれかに記載のインモールド成形用導電性フィルム。   The conductive film for in-mold molding according to any one of claims 1 to 5, wherein an adhesive layer is formed on a conductive layer formed on one side of the synthetic resin base material.
JP2004222449A 2004-07-29 2004-07-29 Conductive film for in-mold molding Active JP4454426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222449A JP4454426B2 (en) 2004-07-29 2004-07-29 Conductive film for in-mold molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222449A JP4454426B2 (en) 2004-07-29 2004-07-29 Conductive film for in-mold molding

Publications (2)

Publication Number Publication Date
JP2006035772A JP2006035772A (en) 2006-02-09
JP4454426B2 true JP4454426B2 (en) 2010-04-21

Family

ID=35901256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222449A Active JP4454426B2 (en) 2004-07-29 2004-07-29 Conductive film for in-mold molding

Country Status (1)

Country Link
JP (1) JP4454426B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100791999B1 (en) 2006-04-04 2008-01-04 (주)탑나노시스 Method for manufacturing conductive composite material
JP4838645B2 (en) * 2006-06-29 2011-12-14 秀明 轟 Direct ignition plug cap
JP5148376B2 (en) * 2008-06-11 2013-02-20 日本写真印刷株式会社 Injection mold and method of manufacturing resin molded product using the same
JP2011175890A (en) * 2010-02-25 2011-09-08 Toray Ind Inc Conductive film
CN104520793B (en) 2012-09-27 2017-09-29 东丽薄膜先端加工股份有限公司 Electrically conducting transparent lamilate
JP6083233B2 (en) 2012-12-19 2017-02-22 Jnc株式会社 Transfer film for in-mold molding, method for producing in-mold molded body, and molded body
CN105655406A (en) * 2016-03-01 2016-06-08 京东方科技集团股份有限公司 Carbon nano tube thin film transistor and manufacturing method thereof
KR102066730B1 (en) * 2017-08-18 2020-01-15 주식회사 네패스 Electro-magnetic interference shield flim

Also Published As

Publication number Publication date
JP2006035772A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
JP3903159B2 (en) Method for producing conductive molded body
JP4471346B2 (en) Electromagnetic shield
JP2006035771A (en) Conductive layer transfer sheet
US20060257638A1 (en) Articles with dispersed conductive coatings
JP2007112133A (en) Electroconductive shaped article
JP2007229989A (en) Conductive molded body and its manufacturing method
US7956287B2 (en) Transparent conductive formed article for a touch panel and touch panel
US20150010695A1 (en) Transparent conductive electrodes comprising merged metal nanowires, their structure design, and method of making such structures
US20150014025A1 (en) Transparent conductive electrodes comprising merged metal nanowires, their structure design, and method of making such structures
JP2006171336A (en) Transparent electrode member for image display, and the image display device
JP2006035773A (en) Self-adhesive conductive molding
JP2006049843A (en) Antistatic molding for image display apparatus
TWI508104B (en) A method for producing a transparent conductive film and a transparent conductive film
JP4454426B2 (en) Conductive film for in-mold molding
JP2005277405A (en) Optically transparent antinoise formed body for image display device
US20150140287A1 (en) Transparent conductive electrodes comprising merged metal nanowires, their structure design, and method of making such structures
JP3398587B2 (en) Moldable antistatic resin molded product
JP2008126469A (en) Conductive resin molding and its manufacturing method
JP2007297501A (en) Conductive molded product and its manufacturing method
JP4795780B2 (en) Antistatic resin molding
JP4488826B2 (en) Antistatic resin molding
CN110246607A (en) A kind of flexible transparent conductive film and its preparation method and application of high transparency high bond strength
JP4488825B2 (en) Antistatic resin molding
JP7137026B2 (en) Laminates and secondary moldings
JP2006035775A (en) Antistatic resin molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4454426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250