JP2012124133A - Collector, electrode structure, nonaqueous electrolyte battery and power storage component - Google Patents

Collector, electrode structure, nonaqueous electrolyte battery and power storage component Download PDF

Info

Publication number
JP2012124133A
JP2012124133A JP2010276311A JP2010276311A JP2012124133A JP 2012124133 A JP2012124133 A JP 2012124133A JP 2010276311 A JP2010276311 A JP 2010276311A JP 2010276311 A JP2010276311 A JP 2010276311A JP 2012124133 A JP2012124133 A JP 2012124133A
Authority
JP
Japan
Prior art keywords
acrylic resin
current collector
resin layer
contact angle
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010276311A
Other languages
Japanese (ja)
Other versions
JP5600576B2 (en
Inventor
Osamu Kato
治 加藤
Sohei Saito
聡平 斉藤
Mitsuyuki Wasamoto
充幸 和佐本
Kenichi Kadowaki
賢一 角脇
Sachio Motokawa
幸翁 本川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Furukawa Sky KK
Original Assignee
Nippon Foil Manufacturing Co Ltd
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd, Furukawa Sky KK filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP2010276311A priority Critical patent/JP5600576B2/en
Publication of JP2012124133A publication Critical patent/JP2012124133A/en
Application granted granted Critical
Publication of JP5600576B2 publication Critical patent/JP5600576B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a collector for a nonaqueous electrolyte battery and for a power storage component such as an electric double layer capacitor, in which high-rate characteristics can be enhanced by reducing the internal resistance.SOLUTION: In a collector 1 where a conductive acrylic resin layer 5 is formed on at least one surface of a conductive base material 3, the acrylic resin layer 5 contains an acrylic resin and conductive particles, and the water contact angle on the surface of the acrylic resin layer measured by the θ/2 method in a constant temperature chamber of 23°C is 30-110 degrees. An electrode structure 7 is also obtained by forming an active material layer 9 in the collector 1.

Description

本発明は集電体、電極構造体、非水電解質電池及び蓄電部品に関する。さらに詳しくは非水電解質電池、電気二重層キャパシタおよびリチウムイオンキャパシタの電極に用いるのに好適な集電体に関する。   The present invention relates to a current collector, an electrode structure, a nonaqueous electrolyte battery, and a power storage component. More particularly, the present invention relates to a current collector suitable for use in electrodes of nonaqueous electrolyte batteries, electric double layer capacitors, and lithium ion capacitors.

従来、リチウムイオン電池に代表される非水電解質電池は充電時間の短縮に対する要求があり、そのためには大電流密度で充電させる必要がある。特に、自動車用の非水電解質電池は十分な加速性能を得るために、大電流密度で放電できることも要求されている。このように大電流密度で充放電する場合において電池容量が低下しない特性(ハイレート特性)を向上させるには電池の内部抵抗の低減が重要である。内部抵抗には構成要素間の界面抵抗と電解液中の荷電粒子であるイオンの移動抵抗等があり、これらを低減する必要がある。この中で重要な内部抵抗のひとつが界面抵抗であり、この界面抵抗を低減させる方法のひとつとして構成要素間の密着性向上が効果的であることが知られている。   Conventionally, non-aqueous electrolyte batteries typified by lithium ion batteries have been required to shorten the charging time, and for this purpose, they must be charged at a high current density. In particular, non-aqueous electrolyte batteries for automobiles are required to be able to discharge at a high current density in order to obtain sufficient acceleration performance. Thus, in order to improve the characteristic (high rate characteristic) in which the battery capacity does not decrease when charging / discharging at a large current density, it is important to reduce the internal resistance of the battery. The internal resistance includes interfacial resistance between constituent elements and resistance to movement of ions as charged particles in the electrolyte, and these must be reduced. Of these, one of the important internal resistances is the interface resistance, and it is known that improving the adhesion between the components is effective as one of the methods for reducing the interface resistance.

例えば、集電体と活物質層の密着性を向上させる方法として、集電体として導電性樹脂で金属箔を被覆するものが従来提案されており、以下の特許文献にはアクリル系樹脂で被覆する技術が開示されている。特許文献1には密着性に優れた正極の製造方法として、金属箔に、ポリアクリル酸又はアクリル酸とアクリル酸エステルとの共重合体を主結着剤とし、炭素粉を導電フィラーとして含む導電性媒体を塗布し、この導電性樹脂層上に正極合剤層を形成し、乾燥一体化する正極の製造方法が開示されている。特許文献2には負極集電体の上に負極材層が形成されており、この負極材層がリチウムイオンの吸蔵、放出が可能な炭素粉末とPVDF(ポリフッ化ビニリデン)からなる結着剤とを含有しているリチウム二次電池用負極板において、前記負極集電体と前記負極材層との間に導電材が混入されたアクリル系共重合体からなる結着層が形成されているリチウム二次電池用負極板が開示されている。特許文献3には結着性に優れ、サイクル特性に優れる電極構造が得られるとして、エチレン−メタクリル酸共重合体のアイオノマーと導電性フィラーとからなる樹脂層でコーティングした金属箔からなる集電体が開示されている。   For example, as a method for improving the adhesion between the current collector and the active material layer, a method of covering a metal foil with a conductive resin as a current collector has been proposed, and the following patent documents are coated with an acrylic resin. Techniques to do this are disclosed. In Patent Document 1, as a method for producing a positive electrode having excellent adhesion, a conductive material containing polyacrylic acid or a copolymer of acrylic acid and an acrylic ester as a main binder and carbon powder as a conductive filler is used as a metal foil. A method for producing a positive electrode is disclosed in which a conductive medium is applied, a positive electrode mixture layer is formed on the conductive resin layer, and then dried and integrated. In Patent Document 2, a negative electrode material layer is formed on a negative electrode current collector, and the negative electrode material layer includes a carbon powder capable of occluding and releasing lithium ions and a binder made of PVDF (polyvinylidene fluoride). In the negative electrode plate for a lithium secondary battery containing lithium, a binder layer made of an acrylic copolymer in which a conductive material is mixed between the negative electrode current collector and the negative electrode material layer is formed. A negative electrode plate for a secondary battery is disclosed. Patent Document 3 discloses that an electrode structure having excellent binding properties and excellent cycle characteristics can be obtained. A current collector comprising a metal foil coated with a resin layer comprising an ionomer of an ethylene-methacrylic acid copolymer and a conductive filler. Is disclosed.

特開昭62−160656号公報Japanese Patent Laid-Open No. 62-160656 特開平9−35707号公報JP-A-9-35707 特開平11−144737号公報Japanese Patent Laid-Open No. 11-144737

しかしながら、これらの技術では必ずしも十分なハイレート特性が得られない場合があった。集電体をアルミニウムや銅等の導電性基材に導電性樹脂で被覆する構成とし、この集電体と活物質層の界面抵抗を低減させる場合、この導電性樹脂層と活物質層との高い密着性と導電性樹脂層そのものの体積固有抵抗が低いことが重要である。ここでいう密着性とは導電性樹脂層と活物質層の界面抵抗に影響するものであり、電解液が浸潤した状態においても剥離がなく、強固に密着していることを意味する。さらに非水電解質電池では充放電によって活物質層の体積が変化することから活物質層と集電体の剥離が起こりやすく、ハイレートの充放電では活物質の体積変化が急激であることから、特に強固な密着性が必要である。従来の技術では導電性樹脂層と活物質層との密着性や導電性樹脂層そのものの体積固有抵抗の低減が必ずしも十分ではなかったものと推定される。また、集電体を導電性樹脂層で被覆する構成とする場合、導電性基材と導電性樹脂層との密着性による界面抵抗も放電レートに影響を与えると考えられるが、従来からの提案は集電体と活物質層との密着性の提案がほとんどで、導電性基材と導電性樹脂層との密着性について併せて考慮されているものではなかった。   However, these techniques may not always provide sufficient high rate characteristics. When the current collector is covered with a conductive resin on a conductive substrate such as aluminum or copper, and the interface resistance between the current collector and the active material layer is reduced, the conductive resin layer and the active material layer It is important that the adhesiveness is high and the volume resistivity of the conductive resin layer itself is low. The adhesion mentioned here affects the interfacial resistance between the conductive resin layer and the active material layer, and means that there is no peeling even when the electrolyte is infiltrated, and that the adhesion is strong. Furthermore, since the volume of the active material layer changes due to charge / discharge in nonaqueous electrolyte batteries, the active material layer and the current collector are likely to peel off, and the volume change of the active material is rapid during high-rate charge / discharge. Strong adhesion is required. In the conventional technique, it is estimated that the reduction in the adhesion between the conductive resin layer and the active material layer and the volume resistivity of the conductive resin layer itself are not necessarily sufficient. In addition, when the current collector is covered with a conductive resin layer, the interface resistance due to the adhesion between the conductive substrate and the conductive resin layer is thought to affect the discharge rate. However, most of the proposals for the adhesion between the current collector and the active material layer were not considered together with the adhesion between the conductive substrate and the conductive resin layer.

本発明の目的は非水電解質電池の内部抵抗を低減でき、リチウムイオン二次電池等の非水電解質電池や電気二重層用キャパシタやリチウムイオンキャパシタ等の蓄電部品に好適に用いることができ、ハイレート特性を向上させることができる集電体を提供することである。本発明の集電体は活物質層又は電極材層を形成することにより、活物質層又は電極材層との界面抵抗が低い電極構造体を提供することができる。また、本発明の集電体に活物質層を形成した電極構造体を用いた非水電解質電池は、上記特性を有する集電体を有する内部抵抗を低減して、ハイレート特性を向上させた非水電解質電池を提供することができる。更に、本発明はコピー機や自動車などに用いられる大電流の充放電が必要な電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品を提供する。   The object of the present invention is to reduce the internal resistance of a non-aqueous electrolyte battery, and can be suitably used for non-aqueous electrolyte batteries such as lithium ion secondary batteries, electric double layer capacitors, lithium ion capacitors and other power storage components. An object of the present invention is to provide a current collector capable of improving characteristics. The current collector of the present invention can provide an electrode structure having a low interface resistance with the active material layer or the electrode material layer by forming the active material layer or the electrode material layer. In addition, a nonaqueous electrolyte battery using an electrode structure in which an active material layer is formed on a current collector of the present invention is a non-aqueous electrolyte battery that has a current collector having the above characteristics and has reduced internal resistance and improved high rate characteristics. A water electrolyte battery can be provided. Furthermore, the present invention provides a power storage component such as an electric double layer capacitor or a lithium ion capacitor that is required for charging and discharging with a large current used in a copying machine or an automobile.

以下のような集電体を用いることにより、ハイレート特性に優れる非水電解質電池や、電気二重層キャパシタやリチウムイオンキャパシタ等の帯電部品を得ることができる。   By using the following current collector, it is possible to obtain a non-aqueous electrolyte battery excellent in high-rate characteristics, a charged component such as an electric double layer capacitor or a lithium ion capacitor.

すなわち、本発明によれば、導電性基材の少なくとも片面に導電性を有するアクリル系樹脂層を形成した集電体であって、該アクリル系樹脂層はアクリル系樹脂と導電性粒子を含み、該アクリル樹脂層表面の23℃の恒温室内でθ/2法によって測定した水接触角が30度以上110度以下であることを特徴とする集電体、および、この集電体を具備した電極構造体、非水電解質電池、蓄電部品(例:電気二重層キャパシタ又はリチウムイオンキャパシタ)が提供される。   That is, according to the present invention, a current collector in which an acrylic resin layer having conductivity is formed on at least one surface of a conductive substrate, the acrylic resin layer includes an acrylic resin and conductive particles, A current collector having a water contact angle of 30 degrees or more and 110 degrees or less measured in a constant temperature room of 23 ° C. on the surface of the acrylic resin layer by the θ / 2 method, and an electrode provided with the current collector A structure, a nonaqueous electrolyte battery, and a power storage component (eg, an electric double layer capacitor or a lithium ion capacitor) are provided.

本発明者らが非水電解質電池等のハイレート特性を向上させるべく鋭意検討を行ったところ、アクリル系樹脂層表面の水接触角がハイレート特性に強く相関していることを見出した。そして、水接触角が30度以上110度以下である場合に、ハイレート特性が非常に優れていることを見出し、本発明の完成に至った。   When the present inventors diligently studied to improve the high rate characteristics of a non-aqueous electrolyte battery or the like, it was found that the water contact angle on the surface of the acrylic resin layer strongly correlates with the high rate characteristics. And when the water contact angle was 30 degrees or more and 110 degrees or less, it discovered that a high rate characteristic was very excellent and came to completion of this invention.

本発明は2つの知見によって成立している。1つ目の知見は、水接触角が110度以下である場合にハイレート特性が良好であるということである。接触角は異なる材料が互いに密着しやすいかどうかを示す指標の一つであり、接触角が小さいほど異なる材料間の密着性が高くなる傾向がある。従って、接触角が110度以下の場合に、導電性基材とアクリル系樹脂層、及びアクリル系樹脂層と活物質層との密着性が高くなり、ハイレート特性が良好になる。   The present invention is based on two findings. The first finding is that the high rate characteristic is good when the water contact angle is 110 degrees or less. The contact angle is one of indexes indicating whether different materials are likely to adhere to each other. The smaller the contact angle, the higher the adhesion between different materials. Therefore, when the contact angle is 110 degrees or less, the adhesiveness between the conductive substrate and the acrylic resin layer, and between the acrylic resin layer and the active material layer is increased, and the high rate characteristics are improved.

もう一つの知見は水接触角が30度以上である場合にハイレート特性が良好であるということである。上記のように、接触角は異なる材料が互いに密着しやすいかどうかを示す指標の一つであるので、接触角が小さいほど異なる材料間の密着性が高くなる傾向がある。本発明者らは、当初、好ましい水接触角の範囲には下限が無く、水接触角が小さければ小さいほど、異なる材料間での密着性が向上してハイレート特性が向上するものと考えていたが、意外にも水接触角が30度未満の場合に、ハイレート特性が悪化することを知見した。このような結果が得られた理由にはついては現在検討中であり必ずしも明らかではないが、水接触角が小さすぎると、導電性基材とアクリル系樹脂層との間の密着性が悪化することが原因ではないかと推測している。   Another finding is that the high rate characteristics are good when the water contact angle is 30 degrees or more. As described above, the contact angle is one of the indexes indicating whether different materials are likely to adhere to each other. Therefore, the smaller the contact angle, the higher the adhesion between different materials. The inventors initially thought that there is no lower limit to the range of preferred water contact angles, and that the smaller the water contact angle, the better the adhesion between different materials and the higher the high rate characteristics. However, it was surprisingly found that the high rate characteristics deteriorate when the water contact angle is less than 30 degrees. The reason why such a result was obtained is currently under investigation and is not necessarily clear, but if the water contact angle is too small, the adhesion between the conductive substrate and the acrylic resin layer may deteriorate. I guess that is the cause.

ところで、アクリル樹脂層の水接触角は、アクリル樹脂層の材料組成によって一意的に定まるものではなく、アクリル樹脂層の形成方法が変わると大きく変化するものである。本発明者らが実際に実験を行ったところ、同じ組成の樹脂材であっても、乾燥温度・乾燥時間・乾燥方法を変化させることによって、アクリル系樹脂層の水接触角が大きく変化し、例えば樹脂組成と乾燥温度が分かっていても、乾燥時間等の製造条件を変えるだけで水接触角は変化するので、本発明においては水接触角を定めることが極めて重要であることを知見した。   By the way, the water contact angle of the acrylic resin layer is not uniquely determined by the material composition of the acrylic resin layer, and greatly changes when the method of forming the acrylic resin layer changes. When the inventors actually conducted an experiment, even with resin materials having the same composition, the water contact angle of the acrylic resin layer was greatly changed by changing the drying temperature, drying time, and drying method, For example, even if the resin composition and the drying temperature are known, the water contact angle changes only by changing the production conditions such as the drying time. Therefore, it has been found that the determination of the water contact angle is extremely important in the present invention.

図1は、本発明の一実施形態の集電体の構成を示す断面図である。FIG. 1 is a cross-sectional view illustrating a configuration of a current collector according to an embodiment of the present invention. 図2は、本発明の一実施形態の集電体を用いて形成された電極構造体の構成を示す断面図である。FIG. 2 is a cross-sectional view showing a configuration of an electrode structure formed using the current collector of one embodiment of the present invention.

以下、図1を用いて、本発明の一実施形態の集電体について説明する。
図1に示すように、本発明の集電体1は、導電性基材3の少なくとも片面に導電性を有するアクリル系樹脂層(集電体用樹脂層)5を形成した集電体1であり、アクリル系樹脂層5は、アクリル系樹脂と導電性粒子を含み、アクリル樹脂層5表面の23℃の恒温室内でθ/2法によって測定した水接触角が30度以上110度以下である。
また、図2に示すように、集電体1のアクリル系樹脂層5上に活物質層又は電極材層9を形成することによって、非水電解質電池用、電気二重層キャパシタ用、又はリチウムイオンキャパシタ用として好適な電極構造体7を形成することができる。
以下、各構成要素について詳細に説明する。
Hereinafter, the current collector of one embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1, a current collector 1 of the present invention is a current collector 1 in which an acrylic resin layer (current collector resin layer) 5 having conductivity is formed on at least one surface of a conductive substrate 3. Yes, the acrylic resin layer 5 contains an acrylic resin and conductive particles, and the water contact angle measured by the θ / 2 method in a temperature-controlled room at 23 ° C. on the surface of the acrylic resin layer 5 is not less than 30 degrees and not more than 110 degrees. .
Further, as shown in FIG. 2, by forming an active material layer or an electrode material layer 9 on the acrylic resin layer 5 of the current collector 1, it can be used for a non-aqueous electrolyte battery, an electric double layer capacitor, or a lithium ion. An electrode structure 7 suitable for a capacitor can be formed.
Hereinafter, each component will be described in detail.

(1)導電性基材
本発明の導電性基材としては、各種金属箔が使用可能である。金属箔としては正極又は負極用としてアルミニウム箔、アルミニウム合金箔、負極用として銅箔、ステンレス箔、ニッケル箔などが使用可能である。その中でも導電性の高さとコストのバランスからアルミニウム箔、アルミニウム合金箔、銅箔が好ましい。正極としてアルミニウム箔を用いる場合、本発明はハイレート特性の向上を目的としていることから、導電性の高いJIS A1085などの純アルミニウム系を用いることが好ましい。箔の厚さとしては5μm以上、50μm以下であることが好ましい。厚さが5μmより薄いと箔の強度が不足してアクリル系樹脂層等の形成が困難になる場合がある。一方、50μmを超えるとその分、その他の構成要素、特に活物質層あるいは電極材層を薄くせざるを得ず、特に非水電解質電池や、電気二重層キャパシタ又はリチウムイオンキャパシタ等の蓄電部品とした場合、十分な容量が得られなくなる場合がある。
(1) Conductive base material As the conductive base material of the present invention, various metal foils can be used. As the metal foil, aluminum foil, aluminum alloy foil for positive electrode or negative electrode, copper foil, stainless steel foil, nickel foil or the like for negative electrode can be used. Among these, aluminum foil, aluminum alloy foil, and copper foil are preferable from the viewpoint of balance between high conductivity and cost. When an aluminum foil is used as the positive electrode, the present invention aims at improving high rate characteristics, and therefore, it is preferable to use a pure aluminum system such as JIS A1085 having high conductivity. The thickness of the foil is preferably 5 μm or more and 50 μm or less. If the thickness is less than 5 μm, the strength of the foil may be insufficient and it may be difficult to form an acrylic resin layer or the like. On the other hand, if it exceeds 50 μm, other components, particularly the active material layer or the electrode material layer, must be thinned. Especially, non-aqueous electrolyte batteries, electric double layer capacitors, lithium ion capacitors and other power storage components In such a case, a sufficient capacity may not be obtained.

(2)アクリル系樹脂層
本発明では導電性基材の上に導電性粒子を添加したアクリル系樹脂層を形成する。形成方法は特に限定されないが、アクリル系樹脂の溶液や分散液を導電性基材上に塗工することが好ましい。塗工方法としてはロールコーター、グラビアコーター、スリットダイコーター等が使用可能である。本発明に用いる樹脂はアクリル系でなければならない。種々の樹脂に導電性粒子を添加して樹脂層の体積固有抵抗を調査した結果、水接触角を規定したアクリル系樹脂を用いると十分に低い抵抗が得られるという本発明者の知見に基づくものである。なお、この抵抗の違いは、同じ導電性粒子を添加しても樹脂によって樹脂層中での分布状態が異なり、後述する水接触角の規定と相まって抵抗に差が出るためと推定される。
(2) Acrylic resin layer In this invention, the acrylic resin layer which added the electroconductive particle on the electroconductive base material is formed. The forming method is not particularly limited, but it is preferable to apply an acrylic resin solution or dispersion onto the conductive substrate. As a coating method, a roll coater, a gravure coater, a slit die coater or the like can be used. The resin used in the present invention must be acrylic. As a result of investigating the volume resistivity of the resin layer by adding conductive particles to various resins, it is based on the inventor's knowledge that sufficiently low resistance can be obtained by using an acrylic resin with a specified water contact angle It is. Note that this difference in resistance is presumed to be because the distribution state in the resin layer differs depending on the resin even if the same conductive particles are added, and the resistance is different from the regulation of the water contact angle described later.

本発明で用いるアクリル系樹脂は、アクリル酸若しくはメタクリル酸、又はこれらの誘導体を主成分とするモノマから形成された樹脂である。アクリル系樹脂のモノマ中のアクリル成分の割合は、例えば50質量%以上であり、好ましくは、80質量%以上である。上限は、特に規定されず、アクリル系樹脂のモノマが実質的にアクリル成分のみで構成されてもよい。また、アクリル系樹脂のモノマは、アクリル成分一種を単独で又はを二種以上含んでいてもよい。
アクリル系樹脂の中でもメタクリル酸又はその誘導体と極性基含有アクリル系化合物の中から少なくともひとつをモノマとして含むアクリル共重合体が好ましい。これらのモノマを含むアクリル共重合体を用いることにより、ハイレート特性がさらに向上するからである。メタクリル酸又はその誘導体としては、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピルなどが挙げられる。極性基含有アクリル系化合物としてはアクリロニトリル、メタアクリロニトリル、アクリルアミド、メタクリルアミドなどがある。さらに極性基含有アクリル系化合物の中でもアミド基を有するアクリル化合物が好ましい。アミド基を有するアクリル化合物としてアクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミドなどがある。
アクリル系樹脂の重量平均分子量は、特に限定されないが、30000以上、200000以下が好ましい。分子量が小さすぎると、樹脂層の柔軟性が低く、小さい曲率半径で集電体を捲回すると樹脂層にクラックが発生して電池等の容量が低下する場合があり、分子量が大きすぎると、密着性が低くなる傾向があるからである。重量平均分子量は、導電材添加前の樹脂液にてGPC(ゲル排除クロマトグラフィー)を用いて測定することができる。
The acrylic resin used in the present invention is a resin formed from a monomer mainly composed of acrylic acid or methacrylic acid, or a derivative thereof. The ratio of the acrylic component in the monomer of the acrylic resin is, for example, 50% by mass or more, and preferably 80% by mass or more. The upper limit is not particularly defined, and the monomer of the acrylic resin may be substantially composed of only the acrylic component. In addition, the acrylic resin monomer may contain one or more acrylic components alone.
Among acrylic resins, an acrylic copolymer containing at least one of methacrylic acid or a derivative thereof and a polar group-containing acrylic compound as a monomer is preferable. This is because the high rate characteristics are further improved by using an acrylic copolymer containing these monomers. Examples of methacrylic acid or derivatives thereof include methacrylic acid, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate and the like. Examples of the polar group-containing acrylic compound include acrylonitrile, methacrylonitrile, acrylamide, and methacrylamide. Further, among the polar group-containing acrylic compounds, an acrylic compound having an amide group is preferable. Examples of the acrylic compound having an amide group include acrylamide, N-methylol acrylamide, and diacetone acrylamide.
The weight average molecular weight of the acrylic resin is not particularly limited, but is preferably 30,000 or more and 200,000 or less. If the molecular weight is too small, the flexibility of the resin layer is low, and if the current collector is wound with a small radius of curvature, the resin layer may crack and the capacity of the battery may decrease, and if the molecular weight is too large, This is because the adhesion tends to be low. The weight average molecular weight can be measured using GPC (gel exclusion chromatography) in a resin solution before addition of a conductive material.

集電体は電極から対極に移動する電子の通路となるので、その表面にも電子導電性が必要である。アクリル系樹脂は絶縁体であるので、電子伝導性を付与するために導電性粒子を添加しなければならない。本発明で用いる導電性粒子としては炭素粉末、金属粉末などが使用可能であるが、その中でも炭素粉末が好ましい。炭素粉末としてはアセチレンブラック、ケッチェンブラック、ファーネスブラック、カーボンナノチューブなどが使用可能である。また、導電性があれば炭素繊維やカーボンナノチューブなども使用可能である。これらの中でも、比較的アグリゲートが長く比較的少ない添加量で導電性を向上させやすいアセチレンブラックを用いることが好ましい。添加量を少なくすることでアクリル系樹脂層表面の水接触角の上昇を抑えることができ、後述する所望の水接触角にすることができ、活物質層あるいは電極材層との密着性の低下を抑えることができる。導電性粒子の添加量は、樹脂層の樹脂100質量部に対して20質量部以上、80質量部以下が好ましい。20質量部未満ではアクリル系樹脂層の抵抗が高くなり、80質量部を超えると樹脂層表面の水接触角が上昇し、活物質層あるいは電極材層との密着性が低下する場合があるからである。導電材を樹脂液に分散するにはプラネタリミキサ、ボールミル、ホモジナイザ等を用いることによって分散することが可能である。   Since the current collector serves as a passage for electrons moving from the electrode to the counter electrode, the surface of the current collector must also have electronic conductivity. Since acrylic resin is an insulator, conductive particles must be added to impart electronic conductivity. As the conductive particles used in the present invention, carbon powder, metal powder, and the like can be used. Among them, carbon powder is preferable. As the carbon powder, acetylene black, ketjen black, furnace black, carbon nanotubes and the like can be used. In addition, carbon fibers and carbon nanotubes can be used as long as they are conductive. Among these, it is preferable to use acetylene black which has a relatively long aggregate and can easily improve conductivity with a relatively small addition amount. By reducing the amount added, the increase in the water contact angle on the surface of the acrylic resin layer can be suppressed, the desired water contact angle described later can be achieved, and the adhesion with the active material layer or the electrode material layer is reduced. Can be suppressed. The addition amount of the conductive particles is preferably 20 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the resin in the resin layer. If the amount is less than 20 parts by mass, the resistance of the acrylic resin layer increases. If the amount exceeds 80 parts by mass, the water contact angle on the surface of the resin layer increases, and the adhesion to the active material layer or the electrode material layer may decrease. It is. The conductive material can be dispersed in the resin liquid by using a planetary mixer, a ball mill, a homogenizer, or the like.

本発明のアクリル系樹脂層表面の水接触角は、30度以上、110度以下であることが必要である。単にアクリル系樹脂に導電性粒子を添加してアクリル系樹脂層を形成しても、導電性基材とアクリル系樹脂層の界面およびアクリル系樹脂層と活物質層の界面あるいはアクリル系樹脂層と電極材層の界面に十分な密着性が得られない場合がある。これはアクリル系樹脂であっても樹脂の種類や形成条件によって、樹脂層の状態が変化するためである。特に密着性に影響が大きい表面性状として液体の濡れ性を示す接触角があり、比較的表面張力の大きい水の接触角を測定することにより、集電体とその上に形成する活物質層や電極材層の密着性を評価することができる。この場合、アクリル系樹脂層と水接触角について一見、水接触角が小さいほど密着性が向上し、放電レートの向上が図れるように見えるが、接触角が小さすぎると、導電性基材との密着性や放電レート特性に悪影響を及ぼす可能性がでてくるため、本発明においては水接触角を規定することが必要になる。なお、この点については後にも述べる。   The water contact angle on the surface of the acrylic resin layer of the present invention needs to be 30 degrees or more and 110 degrees or less. Even if conductive particles are simply added to an acrylic resin to form an acrylic resin layer, the interface between the conductive substrate and the acrylic resin layer, the interface between the acrylic resin layer and the active material layer, or the acrylic resin layer In some cases, sufficient adhesion cannot be obtained at the interface of the electrode material layer. This is because even the acrylic resin changes the state of the resin layer depending on the type and forming conditions of the resin. In particular, there is a contact angle indicating wettability of liquid as a surface property that has a great influence on adhesion, and by measuring the contact angle of water with relatively large surface tension, the current collector and the active material layer formed on it The adhesion of the electrode material layer can be evaluated. In this case, it seems that the acrylic resin layer and the water contact angle seem to improve the adhesion and the discharge rate as the water contact angle is small, but if the contact angle is too small, In the present invention, it is necessary to define the water contact angle because it may adversely affect the adhesion and discharge rate characteristics. This point will be described later.

本明細書において、水接触角は、23℃の恒温室内でθ/2法によって測定して得られた値を意味する。水接触角は接触角計を用いて測定することができる。集電体に樹脂層を形成した後、その表面に純水を数μリットルの水滴を付着させて接触角を測定する。温度によって水の表面張力が変化するので、水接触角は、23℃の恒温室内で測定する。   In the present specification, the water contact angle means a value obtained by measuring by a θ / 2 method in a constant temperature room at 23 ° C. The water contact angle can be measured using a contact angle meter. After the resin layer is formed on the current collector, a contact angle is measured by adhering several μl of pure water to pure water on the surface. Since the surface tension of water changes with temperature, the water contact angle is measured in a thermostatic chamber at 23 ° C.

種々の条件にてアクリル系樹脂層を形成して水接触角を測定した結果、110度以下であれば、活物質層や電極材層と十分な密着性が得られることがわかった。さらに好ましくは95度以下、さらに好ましくは80度以下である。また、水接触角の異なるアクリル系樹脂層を形成して、導電性基材とアクリル系樹脂層の密着性の関係を調査した結果、アクリル系樹脂層の表面の水接触角が30度未満であるとハイレート特性が劣ることがわかった。原因は明らかではないが、導電性基材とアクリル系樹脂層の微妙な密着状態の差を検出しているものと推定される。従って、水接触角は、30度以上であることが必要である。特に、水接触角は、65度以上が好ましい。これは本発明者の数多くの実験に基づく知見によるもので、水接触角が65度以上である場合に、導電性基材とアクリル系樹脂層の密着性が特に良好になる。以上のように、本発明の水接触角の規定は、アクリル系樹脂と活物質層又は電極材層との密着性だけでなく、導電性基材とアクリル系樹脂層との密着性についても考慮したものであり、このように水接触角の規定された本発明の集電体は、特に電極構造体として電池や帯電部品に用いるとハイレート特性を良好に付与できる。 As a result of forming an acrylic resin layer under various conditions and measuring the water contact angle, it was found that if it was 110 degrees or less, sufficient adhesion to the active material layer and the electrode material layer was obtained. More preferably, it is 95 degrees or less, More preferably, it is 80 degrees or less. In addition, as a result of forming an acrylic resin layer having a different water contact angle and investigating the adhesive relationship between the conductive substrate and the acrylic resin layer, the water contact angle on the surface of the acrylic resin layer was less than 30 degrees. It was found that the high rate characteristic was inferior when it was. Although the cause is not clear, it is presumed that a subtle difference in adhesion between the conductive substrate and the acrylic resin layer is detected. Therefore, the water contact angle needs to be 30 degrees or more. In particular, the water contact angle is preferably 65 degrees or more. This is based on knowledge based on numerous experiments by the present inventors. When the water contact angle is 65 degrees or more, the adhesion between the conductive substrate and the acrylic resin layer is particularly good. As described above, the regulation of the water contact angle of the present invention considers not only the adhesion between the acrylic resin and the active material layer or the electrode material layer, but also the adhesion between the conductive substrate and the acrylic resin layer. Thus, the current collector of the present invention in which the water contact angle is defined as described above can give high rate characteristics satisfactorily when used in a battery or a charged part as an electrode structure.

本発明の集電体を得るには、先に述べたアルミニウム箔等の導電性基材の少なくとも片面にアクリル系樹脂層を公知の方法で形成して得ることができるが、上記水接触角を有するものにする必要がある。例えば、塗工にてアクリル系樹脂層を形成する場合、焼付温度と焼付時間が水接触角に影響する。焼付温度は導電性基材の到達温度として100〜200℃、焼付時間は10〜60秒が好ましい。このような条件でアクリル系樹脂層を形成した場合に、その表面での水接触角が30度以上、110度以下の範囲内の調整に寄与するからである。但し、水接触角は、樹脂組成、樹脂液中の樹脂濃度、焼付温度、焼付時間、焼付方法などの種々の因子によって総合的に決定されるものであるので、焼付温度と焼付時間が上記範囲内であっても、水接触角は30度未満になったり、110度を超えたりする場合がある。また、逆に焼付温度と焼付時間が上記範囲外であっても、水接触角が30〜110度の範囲内になる場合がある。
一般に焼付温度が高いほど、焼付時間が長いほど、水接触角が大きくなる傾向がある。従って、水接触角を30度以上、110度以下にするには、最初に、ある条件でアクリル系樹脂層を形成し、形成したアクリル系樹脂層において水接触角を測定し、測定された水接触角が30度より低ければ、焼付温度を高くするか焼付時間を長くし、測定された水接触角が110度よりも大きければ焼付温度を低くするか焼付時間を短くする等の調整が必要である。従って、アクリル系樹脂の組成や焼付温度のみでは水接触角の値は決定されないが、上記の方法を用いれば、数回の試行錯誤を行うだけで、水接触角を所望の値に設定することが可能である。
In order to obtain the current collector of the present invention, an acrylic resin layer can be formed on at least one surface of the conductive substrate such as the aluminum foil described above by a known method. It is necessary to have. For example, when an acrylic resin layer is formed by coating, the baking temperature and baking time affect the water contact angle. The baking temperature is preferably 100 to 200 ° C. as the temperature reached by the conductive substrate, and the baking time is preferably 10 to 60 seconds. This is because when the acrylic resin layer is formed under such conditions, the water contact angle on the surface contributes to adjustment within the range of 30 degrees or more and 110 degrees or less. However, since the water contact angle is comprehensively determined by various factors such as the resin composition, the resin concentration in the resin liquid, the baking temperature, the baking time, and the baking method, the baking temperature and baking time are within the above range. Even within, the water contact angle may be less than 30 degrees or may exceed 110 degrees. Conversely, even if the baking temperature and baking time are outside the above ranges, the water contact angle may be within the range of 30 to 110 degrees.
In general, the higher the baking temperature and the longer the baking time, the greater the water contact angle. Therefore, in order to set the water contact angle to 30 degrees or more and 110 degrees or less, first, an acrylic resin layer is formed under a certain condition, the water contact angle is measured in the formed acrylic resin layer, and the measured water If the contact angle is lower than 30 degrees, adjustment is required to increase the baking temperature or increase the baking time, and if the measured water contact angle is larger than 110 degrees, the baking temperature is decreased or the baking time is shortened. It is. Therefore, the value of the water contact angle is not determined only by the composition of the acrylic resin and the baking temperature, but if the above method is used, the water contact angle can be set to a desired value with only a few trials and errors. Is possible.

本発明の集電体を用いれば、活物質層又は電極材層を形成し電解液が浸潤した状態においても、アクリル系樹脂層と活物質層あるいはアクリル系樹脂層と電極材層の界面に十分な密着性が確保できるだけでなく、導電性基材との界面にも十分な密着性の確保を兼ね備えることができる。また、充放電を繰り返した後においても大きな剥離は認められず、十分な密着性と優れた放電レート特性が得られる。   When the current collector of the present invention is used, even when an active material layer or an electrode material layer is formed and the electrolyte is infiltrated, it is sufficient for the interface between the acrylic resin layer and the active material layer or the acrylic resin layer and the electrode material layer. In addition to ensuring sufficient adhesion, it is also possible to ensure sufficient adhesion at the interface with the conductive substrate. Further, even after repeated charge and discharge, no large peeling is observed, and sufficient adhesion and excellent discharge rate characteristics can be obtained.

アクリル系樹脂層の厚さは0.1μm以上、5μm以下が好ましい。0.1μm未満では完全には被覆できない部分が発生して、十分な電池特性が得られない場合がある。5μmを超えると後述する電池や蓄電部品にする際、その分活物質層や電極材層を薄くせざるを得ない場合があることから十分な容量密度が得られない場合がある。また、リチウムイオン二次電池等の角型電池に用いる場合、電極構造体をセパレータと組み合わせて巻回した際、曲率半径が非常に小さい最内巻き部において、比較的硬いアクリル系樹脂層に亀裂が入り、活物質層等と剥離する部分が発生する場合がある。さらに好ましくは0.3μm以上、3μm以下であることが好ましい。   The thickness of the acrylic resin layer is preferably 0.1 μm or more and 5 μm or less. If the thickness is less than 0.1 μm, a portion that cannot be completely coated is generated, and sufficient battery characteristics may not be obtained. If the thickness exceeds 5 μm, when the battery or power storage component described later is used, the active material layer or the electrode material layer may have to be thinned, so that a sufficient capacity density may not be obtained. In addition, when used in a prismatic battery such as a lithium ion secondary battery, when the electrode structure is wound in combination with a separator, a relatively hard acrylic resin layer is cracked in the innermost winding portion having a very small radius of curvature. In some cases, a part that peels off from the active material layer or the like is generated. More preferably, it is 0.3 to 3 μm.

本発明の集電体の製造方法は、特に制限されるものではないが、導電性基材にアクリル系樹脂層を形成する際、導電性基材表面の密着性が向上するように導電性基材に公知の前処理を実施することも効果的である。特に圧延にて製造した金属箔を用いる場合、圧延油や磨耗粉が残留している場合があり、脱脂などによって除去することにより、密着性を向上させることができる。また、コロナ放電処理のような乾式活性化処理によっても密着性を向上させることができる。   The method for producing the current collector of the present invention is not particularly limited. However, when the acrylic resin layer is formed on the conductive substrate, the conductive group is improved so that the adhesion of the surface of the conductive substrate is improved. It is also effective to perform a known pretreatment on the material. In particular, when a metal foil produced by rolling is used, rolling oil or wear powder may remain, and adhesion can be improved by removing it by degreasing or the like. The adhesion can also be improved by a dry activation treatment such as a corona discharge treatment.

3.電極構造体
本発明の集電体の少なくとも片面に活物質層又は電極材層を形成することによって、本発明の電極構造体を得ることができる。電極材層を形成した蓄電部品用の電極構造体については後述する。まず、活物質層を形成した電極構造体の場合、この電極構造体とセパレータ、非水電解質等を用いて非水電解質電池を製造することができる。本発明の非水電解質電池用電極構造体および非水電解質電池において集電体以外の部材は、公知の非水電池用部材を用いることが可能である。
本発明において形成される活物質層は、従来、非水電解質電池用として提案されているものでよい。例えば、正極としてはアルミニウム箔を用いた本発明の集電体に、活物質としてLiCoO、LiMnO、LiNiO等を用い、導電材としてアセチレンブラック等のカーボンブラックを用い、これらをバインダであるPVDFに分散したペーストを塗工することにより、本発明の正極構造体を得ることができる。
負極としては、導電性基材として銅箔を用いた本発明の集電体に活物質として例えば黒鉛、グラファイト、メソカーボンマイクロビーズ等を用い、これらを増粘剤であるCMCに分散後、バインダであるSBRと混合したペーストを塗工することにより、本発明の負極構造体を得ることができる。
3. Electrode Structure The electrode structure of the present invention can be obtained by forming an active material layer or an electrode material layer on at least one surface of the current collector of the present invention. The electrode structure for an electrical storage component in which the electrode material layer is formed will be described later. First, in the case of an electrode structure in which an active material layer is formed, a nonaqueous electrolyte battery can be manufactured using this electrode structure, a separator, a nonaqueous electrolyte, and the like. In the electrode structure for a nonaqueous electrolyte battery and the nonaqueous electrolyte battery of the present invention, a member other than the current collector can be a known nonaqueous battery member.
The active material layer formed in the present invention may be one that has been conventionally proposed for non-aqueous electrolyte batteries. For example, the current collector of the present invention using an aluminum foil as a positive electrode, LiCoO 2 , LiMnO 2 , LiNiO 2 or the like as an active material, carbon black such as acetylene black as a conductive material, and these are binders By applying a paste dispersed in PVDF, the positive electrode structure of the present invention can be obtained.
As the negative electrode, for example, graphite, graphite, mesocarbon microbeads or the like are used as the active material for the current collector of the present invention using copper foil as the conductive base material, and these are dispersed in CMC as a thickener, and then the binder. The negative electrode structure of the present invention can be obtained by applying a paste mixed with SBR.

4.非水電解質電池
前記正極構造体と負極構造体の間に非水電解質を有する非水電解質電池用電解液を含浸させたセパレータで挟むことにより、本発明の非水電解質電池を構成することができる。非水電解質およびセパレータは公知の非水電解質電池用として用いられているものを使用可能である。電解液は溶媒として、カーボネート類やラクトン類等を用いることができ、例えば、EC(エチレンカーボネイト)とEMC(エチルメチルカーボネイト)の混合液に電解質としてLiPFやLiBFを溶解したものを用いることができる。セパレータとしては例えばポリオレフィン製のマイクロポーラスを有する膜を用いることができる。
4). Nonaqueous electrolyte battery The nonaqueous electrolyte battery of the present invention can be constituted by sandwiching a separator impregnated with an electrolyte for a nonaqueous electrolyte battery having a nonaqueous electrolyte between the positive electrode structure and the negative electrode structure. . As the nonaqueous electrolyte and the separator, those used for known nonaqueous electrolyte batteries can be used. As the electrolytic solution, carbonates or lactones can be used as a solvent. For example, a solution obtained by dissolving LiPF 6 or LiBF 4 as an electrolyte in a mixed solution of EC (ethylene carbonate) and EMC (ethyl methyl carbonate) is used. Can do. As the separator, for example, a film having a microporous made of polyolefin can be used.

5.蓄電部品(電気二重層キャパシタ、リチウムイオンキャパシタ等)
本発明の集電体は大電流密度での放電が必要な電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品にも適応可能である。本発明の蓄電部品用電極構造体は本発明の集電体に電極材層を形成することによって得られ、この電極構造体とセパレータ、電解液等によって、電気二重層キャパシタやリチウムイオンキャパシタ等の蓄電部品を製造することができる。本発明の電極構造体および蓄電部品において集電体以外の部材は、公知の電気二重層キャパシタ用やリチウムイオンキャパシタ用の部材を用いることが可能である。
5. Power storage components (electric double layer capacitors, lithium ion capacitors, etc.)
The current collector of the present invention can also be applied to power storage components such as an electric double layer capacitor and a lithium ion capacitor that require discharging at a large current density. The electrode structure for a power storage component of the present invention is obtained by forming an electrode material layer on the current collector of the present invention. By using this electrode structure and a separator, an electrolytic solution, etc., an electric double layer capacitor, a lithium ion capacitor, etc. A power storage component can be manufactured. In the electrode structure and power storage component of the present invention, members other than the current collector can be members for known electric double layer capacitors or lithium ion capacitors.

電極材層は正極、負極共、電極材、導電材、バインダよりなる。本発明においては、本発明の集電体の少なくとも片側に前記電極材層を形成することによって電極構造体を得ることができる。ここで、電極材には従来、電気二重層キャパシタ用、リチウムイオンキャパシタ用電極材料として用いられているものが使用可能である。例えば、活性炭、黒鉛などの炭素粉末や炭素繊維を用いることができる。導電材としてはアセチレンブラック等のカーボンブラックを用いることができる。バインダとしては、例えば、PVDF(ポリフッ化ビニリデン)やSBR(スチレンブタジエンゴム)を用いることができる。また、本発明の蓄電部品は、本発明の電極構造体にセパレータを挟んで固定し、セパレータに電解液を浸透させることによって、電気二重層キャパシタやリチウムイオンキャパシタを構成することができる。セパレータとしては例えばポリオレフィン製のマイクロポーラスを有する膜や電気二重層キャパシタ用不織布等を用いることができる。電解液は溶媒として例えばカーボネート類やラクトン類を用いることができ、電解質は陽イオンとしてはテトラエチルアンモニウム塩、トリエチルメチルアンモニウム塩等、陰イオンとしては六フッ化りん酸塩、四フッ化ほう酸塩等を用いることができる。リチウムイオンキャパシタはリチウムイオン電池の負極、電気二重層キャパシタの正極を組み合わせたものである。これらの製造方法は本発明の集電体を用いる以外は、公知の方法に従って行うことができ、特に制限されるものではない。   The electrode material layer is composed of an electrode material, a conductive material, and a binder for both the positive electrode and the negative electrode. In the present invention, an electrode structure can be obtained by forming the electrode material layer on at least one side of the current collector of the present invention. Here, as the electrode material, those conventionally used as electrode materials for electric double layer capacitors and lithium ion capacitors can be used. For example, carbon powder or carbon fiber such as activated carbon or graphite can be used. As the conductive material, carbon black such as acetylene black can be used. As the binder, for example, PVDF (polyvinylidene fluoride) or SBR (styrene butadiene rubber) can be used. In addition, the electric storage component of the present invention can constitute an electric double layer capacitor or a lithium ion capacitor by fixing the electrode structure of the present invention with a separator interposed therebetween and allowing the electrolyte to penetrate into the separator. As the separator, for example, a polyolefin microporous film, an electric double layer capacitor nonwoven fabric, or the like can be used. For example, carbonates and lactones can be used as the solvent in the electrolyte, and the electrolyte includes tetraethylammonium salt and triethylmethylammonium salt as the cation, and hexafluorophosphate and tetrafluoroborate as the anion. Can be used. A lithium ion capacitor is a combination of a negative electrode of a lithium ion battery and a positive electrode of an electric double layer capacitor. These production methods can be carried out according to known methods, except that the current collector of the present invention is used, and are not particularly limited.

(1)リチウムイオン電池
本発明の集電体をリチウムイオン電池に適応した場合の実施例を以下に説明する。
(1) Lithium ion battery An example in which the current collector of the present invention is applied to a lithium ion battery will be described below.

(実施例1)モノマとしてアクリル酸、ブチルアクリレート、メチルアクリレートを含むアクリル共重合体を配合比5:45:50で、重量平均分子量が90000〜120000の範囲に入るように重合し、界面活性剤を用いて水に分散した樹脂液に、樹脂の固形分に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散して塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にバーコータで塗布し、基材到達温度が120℃となるように30秒間加熱して集電体を作製した。焼付後の膜厚は2μmとした。この加熱は、恒温槽で行った。
正極は活物質のLiCoOと導電材のアセチレンブラックをバインダであるPVDF(ポリフッ化ビニリデン)に分散したペーストを厚さ70μmにて前記集電体に塗工し、正極構造体とした。負極は活物質の黒鉛をCMC(カルボキシメチルセルロース)に分散後、バインダであるSBR(スチレンブタジエンゴム)と混合したペーストを厚さ20μmの銅箔に厚さ70μmにて塗工し、負極構造体とした。これらの電極構造体にポリプロピレン製マイクロポーラスセパレータを挟んで電池ケースに収め、コイン電池を作製した。電解液としてはEC(エチレンカーボネート)とEMC(エチルメチルカーボネート)の混合液に1MのLiPFを添加した電解液を用いた。
(Example 1) An acrylic copolymer containing acrylic acid, butyl acrylate and methyl acrylate as monomers is polymerized at a blending ratio of 5:45:50 so that the weight average molecular weight falls within the range of 90000-120000, and a surfactant. 60% by mass of acetylene black based on the solid content of the resin was added to the resin liquid dispersed in water using a varnish and dispersed for 8 hours in a ball mill to obtain a paint. This paint was applied to one side of a 20 μm thick aluminum foil (JIS A1085) with a bar coater and heated for 30 seconds so that the substrate temperature reached 120 ° C. to prepare a current collector. The film thickness after baking was 2 μm. This heating was performed in a thermostatic bath.
For the positive electrode, a paste in which LiCoO 2 as an active material and acetylene black as a conductive material were dispersed in PVDF (polyvinylidene fluoride) as a binder was applied to the current collector at a thickness of 70 μm to obtain a positive electrode structure. The negative electrode is obtained by dispersing graphite, which is an active material, in CMC (carboxymethylcellulose), and then applying a paste mixed with SBR (styrene butadiene rubber) as a binder to a copper foil having a thickness of 20 μm at a thickness of 70 μm. did. A coin battery was manufactured by sandwiching a polypropylene microporous separator between these electrode structures in a battery case. As the electrolytic solution, an electrolytic solution obtained by adding 1M LiPF 6 to a mixed solution of EC (ethylene carbonate) and EMC (ethyl methyl carbonate) was used.

(実施例2)モノマとしてアクリル酸、ブチルアクリレート、アクリルアミドを配合比5:30:65で含むアクリル共重合体を用いて、実施例1と同様にコイン電池を作製した。
(実施例3)モノマとしてメタクリル酸エチル、ブチルアクリレート、メチルメタクリレートを配合比10:70:20で含むアクリル共重合体を用いて、実施例1と同様にコイン電池を作製した。
(実施例4)モノマとしてメタクリル酸、ブチルメタクリレート、アクリロニトリルを配合比5:70:15で含むアクリル共重合体を用いて、実施例1と同様にコイン電池を作製した。
(実施例5)モノマとしてメタクリル酸、ブチルアクリレート、アクリルアミドを配合比5:30:65で含むアクリル共重合体を用いて、焼付後の膜厚は0.5μmとし、その他の条件は実施例1と同様にコイン電池を作製した。
(実施例6)モノマとしてメタクリル酸、ブチルアクリレート、アクリルアミドを配合比5:30:65で含むアクリル共重合体を用いて、焼付後の膜厚を4μmとし、その他の条件は実施例1と同様にコイン電池を作製した。
(実施例7)モノマとしてアクリル酸、ブチルアクリレート、メチルアクリレートを配合比5:45:50で含むアクリル共重合体を水に分散した樹脂液を基材到達温度が90℃となるように60秒間加熱して集電体を作製した。焼付後の膜厚は2μmとした。その他の条件は実施例1と同じにしてコイン電池を作製した。
Example 2 A coin battery was fabricated in the same manner as in Example 1 using an acrylic copolymer containing acrylic acid, butyl acrylate, and acrylamide as a monomer at a blending ratio of 5:30:65.
(Example 3) A coin battery was fabricated in the same manner as in Example 1 by using an acrylic copolymer containing ethyl methacrylate, butyl acrylate, and methyl methacrylate in a blending ratio of 10:70:20 as a monomer.
(Example 4) A coin battery was fabricated in the same manner as in Example 1 using an acrylic copolymer containing methacrylic acid, butyl methacrylate, and acrylonitrile in a blending ratio of 5:70:15 as a monomer.
(Example 5) Using an acrylic copolymer containing methacrylic acid, butyl acrylate, and acrylamide as a monomer at a blending ratio of 5:30:65, the film thickness after baking is 0.5 μm, and other conditions are as in Example 1. A coin battery was prepared in the same manner as described above.
(Example 6) Using an acrylic copolymer containing methacrylic acid, butyl acrylate, and acrylamide as a monomer at a blending ratio of 5:30:65, the film thickness after baking is 4 μm, and other conditions are the same as in Example 1 A coin battery was prepared.
(Example 7) A resin solution in which an acrylic copolymer containing acrylic acid, butyl acrylate, and methyl acrylate as a monomer in a mixing ratio of 5:45:50 is dispersed in water for 60 seconds so that the substrate temperature reaches 90 ° C. A current collector was produced by heating. The film thickness after baking was 2 μm. Other conditions were the same as in Example 1 to produce a coin battery.

(比較例1)エポキシ樹脂とメラミン樹脂を配合比95:5でMEKに溶解した樹脂液に、樹脂の固形分に対して60%のアセチレンブラックを添加し、ボールミルにて8時間分散して塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にバーコータで塗布し、基材到達温度が240℃となるように15秒間加熱した。焼付後の膜厚は2μmとした。その他の条件は実施例1と同じにしてコイン電池を作製した。
(比較例2)モノマとしてアクリル酸、ブチルアクリレート、メチルアクリレートを配合比5:40:55で含むアクリル共重合体を水に分散した樹脂液を基材到達温度が220℃となるように70秒間加熱して集電体を作製した。焼付後の膜厚は2μmとした。その他の条件は実施例1と同じにしてコイン電池を作製した。
(比較例3)モノマとしてアクリル酸、ブチルアクリレート、メチルアクリレートを配合比5:40:55で含むアクリル共重合体を水に分散した樹脂液を基材到達温度が50℃となるように60秒間加熱して集電体を作製した。焼付後の膜厚は2μmとした。その他の条件は実施例1と同じにしてコイン電池を作製した。
(比較例4)モノマとしてアクリル酸、ブチルアクリレート、メチルアクリレートを配合比5:40:55で含むアクリル共重合体を水に分散した樹脂液を基材上に塗布し、60℃のホットプレート上にて10分間加熱して、集電体を作製した。焼付後の膜厚は2μmとした。その他の条件は実施例1と同じにしてコイン電池を作製した。
(Comparative example 1) 60% of acetylene black is added to a resin solution obtained by dissolving an epoxy resin and a melamine resin in MEK at a blending ratio of 95: 5, and dispersed by a ball mill for 8 hours. It was. This paint was applied to one side of a 20 μm thick aluminum foil (JIS A1085) with a bar coater, and heated for 15 seconds so that the substrate temperature reached 240 ° C. The film thickness after baking was 2 μm. Other conditions were the same as in Example 1 to produce a coin battery.
(Comparative Example 2) A resin solution in which an acrylic copolymer containing acrylic acid, butyl acrylate, and methyl acrylate as a monomer in a blending ratio of 5:40:55 is dispersed in water for 70 seconds so that the substrate temperature reaches 220 ° C. A current collector was produced by heating. The film thickness after baking was 2 μm. Other conditions were the same as in Example 1 to produce a coin battery.
(Comparative Example 3) A resin solution in which an acrylic copolymer containing acrylic acid, butyl acrylate, and methyl acrylate as a monomer in a blending ratio of 5:40:55 is dispersed in water for 60 seconds so that the substrate temperature reaches 50 ° C. A current collector was produced by heating. The film thickness after baking was 2 μm. Other conditions were the same as in Example 1 to produce a coin battery.
(Comparative Example 4) A resin liquid in which an acrylic copolymer containing acrylic acid, butyl acrylate, and methyl acrylate as a monomer in a mixing ratio of 5:40:55 is dispersed in water is applied on a base material, and then on a hot plate at 60 ° C. Was heated for 10 minutes to prepare a current collector. The film thickness after baking was 2 μm. Other conditions were the same as in Example 1 to produce a coin battery.

これらの集電体に形成した導電性樹脂層の水接触角、基材とアクリル系樹脂層の密着性、アクリル系樹脂層と活物質層の密着性とコイン電池の放電レート特性を調査した結果を表1に示す。水接触角は接触角計(協和界面科学社製Drop Master DM-500)を用い、23℃の恒温室内にて1μリットルの水滴を樹脂層表面に付着させ、2秒後の接触角をθ/2法にて測定した。密着性はニチバン製セロテープを樹脂層表面に貼り付け、十分押さえた後、一気に剥がしたときの目視による剥離状況にて評価した。評価基準は剥離なしを○、剥離面積が90%以内であれば△、剥離面積が90%を超えれば×とした。放電レート特性は充電上限電圧4.2V、充電電流0.2C、放電終了電圧2.8V、温度25℃において、放電電流1C、5C、10C、20Cにおける放電容量(0.2C基準、単位%)を測定した。(1Cはその電池の電流容量(Ah)を1時間(h)で取り出すときの電流値(A)である。20Cでは1/20h=3minでその電池の電流容量を取り出すことができる。あるいは充電することができる。)   Results of investigating the water contact angle of the conductive resin layer formed on these current collectors, the adhesion between the base material and the acrylic resin layer, the adhesion between the acrylic resin layer and the active material layer, and the discharge rate characteristics of the coin battery Is shown in Table 1. The water contact angle was measured using a contact angle meter (Drop Master DM-500, manufactured by Kyowa Interface Science Co., Ltd.) in a thermostatic chamber at 23 ° C., with 1 μl of water droplets attached to the resin layer surface, and the contact angle after 2 seconds was θ / It was measured by 2 methods. Adhesiveness was evaluated by visually checking the peeled state when the Nichiban cellophane tape was applied to the surface of the resin layer and pressed sufficiently, and then peeled off at once. The evaluation criteria were ○ for no peel, Δ if the peel area was within 90%, and x if the peel area exceeded 90%. Discharge rate characteristics are: discharge upper limit voltage 4.2V, charge current 0.2C, discharge end voltage 2.8V, temperature 25 ° C, discharge current 1C, 5C, 10C, 20C discharge capacity (0.2C reference, unit%) Was measured. (1C is the current value (A) when the current capacity (Ah) of the battery is taken out in one hour (h). At 20C, the current capacity of the battery can be taken out in 1 / 20h = 3 min. can do.)

実施例1〜実施例6はいずれも20Cにおける放電レート特性が80%以上あり、ハイレート特性に優れることがわかる。実施例7は、20Cにおける放電レート特性が79%であり、若干低かった。この結果は、実施例7においては基材とアクリル系樹脂層の密着性が実施例1〜実施例6に比べると若干劣っていたためであると考えられる。一方、比較例1は樹脂系がエポキシ系であることから、密着性は十分であるにもかかわらずハイレート特性が劣り、比較例2は、樹脂系はアクリル系であるが、アクリル系樹脂層の水接触角が110度よりも大きく、密着性が劣ることから界面抵抗が大きくなり、ハイレート特性が劣る結果となった。比較例3は、水接触角は低かったが、基材とアクリル系樹脂層の密着性が低く、ハイレート特性が劣っていた。比較例4では、他の実施例・比較例とは違ってホットプレート上で加熱することによって、樹脂液層を乾燥させた。ホットプレートの温度は比較的低かったが、水接触角は125度という比較的大きい値となり、ハイレート特性も悪かった。   Each of Examples 1 to 6 has a discharge rate characteristic at 20C of 80% or more, which indicates that the high rate characteristic is excellent. In Example 7, the discharge rate characteristic at 20 C was 79%, which was slightly low. This result is considered to be because in Example 7, the adhesion between the base material and the acrylic resin layer was slightly inferior to those in Examples 1 to 6. On the other hand, since Comparative Example 1 is an epoxy resin, the high rate property is inferior in spite of sufficient adhesion, and Comparative Example 2 is an acrylic resin layer, although the resin system is acrylic. Since the water contact angle was larger than 110 degrees and the adhesion was poor, the interface resistance was increased, resulting in poor high rate characteristics. In Comparative Example 3, the water contact angle was low, but the adhesion between the base material and the acrylic resin layer was low, and the high rate characteristics were inferior. In Comparative Example 4, unlike the other Examples and Comparative Examples, the resin liquid layer was dried by heating on a hot plate. Although the temperature of the hot plate was relatively low, the water contact angle was a relatively large value of 125 degrees, and the high rate characteristics were also poor.

(2)電気二重層キャパシタ
本発明の集電体を電気二重層キャパシタに適応した場合の実施例を以下に説明する。
(2) Electric Double Layer Capacitor An example where the current collector of the present invention is applied to an electric double layer capacitor will be described below.

(実施例8)モノマとしてアクリル酸、ブチルアクリレート、メチルアクリレートを含むアクリル共重合体を配合比5:45:50で重量平均分子量が90000〜120000の範囲に入るように重合し、界面活性剤を用いて水に分散した樹脂液に、樹脂の固形分に対して60質量%のアセチレンブラックを添加し、ボールミルにて8時間分散して塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にバーコータで塗布し、基材到達温度が120℃となるように30秒間加熱して集電体を作製した。焼付後の膜厚は2μmとした。この加熱は、恒温槽で行った。
電極材の活性炭、導電材のケッチェンブラックをバインダのPVDFに分散したペーストを厚さ80μmにて前記集電体に塗工し、電極構s造体とした。この電極構造体を電解液を含浸した電気二重層キャパシタ用不織布を挟んで固定し、電気二重層キャパシタを構成した。電解液は溶媒であるプロピレンカーボネートに1.5MのTEMA(トリエチルメチルアンモニウム)と四フッ化ほう酸を添加したものを用いた。
(Example 8) An acrylic copolymer containing acrylic acid, butyl acrylate, and methyl acrylate as monomers is polymerized so that the weight average molecular weight falls within the range of 90000-120000 at a blending ratio of 5:45:50, and a surfactant is obtained. The resin liquid used and dispersed in water was added with 60% by mass of acetylene black based on the solid content of the resin, and dispersed in a ball mill for 8 hours to obtain a paint. This paint was applied to one side of a 20 μm thick aluminum foil (JIS A1085) with a bar coater and heated for 30 seconds so that the substrate temperature reached 120 ° C. to prepare a current collector. The film thickness after baking was 2 μm. This heating was performed in a thermostatic bath.
A paste obtained by dispersing activated carbon as an electrode material and ketjen black as a conductive material in PVDF as a binder was applied to the current collector at a thickness of 80 μm to obtain an electrode structure. The electrode structure was fixed with a non-woven fabric for an electric double layer capacitor impregnated with an electrolytic solution in between, thereby constituting an electric double layer capacitor. The electrolytic solution used was propylene carbonate, which is a solvent, with 1.5 M TEMA (triethylmethylammonium) and tetrafluoroboric acid added.

(実施例9)モノマとしてアクリル酸、ブチルアクリレート、アクリルアミドを配合比5:30:65で含むアクリル共重合体を用いて、実施例8と同様に電気二重層キャパシタを作製した。
(実施例10)モノマとしてメタクリル酸エチル、ブチルアクリレート、メチルメタクリレートを配合比10:70:20で含むアクリル共重合体を用いて、実施例8と同様に電気二重層キャパシタを作製した。
(実施例11)モノマとしてメタクリル酸、ブチルメタクリレート、アクリロニトリルを配合比5:70:15で含むアクリル共重合体を用いて、実施例8と同様に電気二重層キャパシタを作製した。
(実施例12)モノマとしてメタクリル酸、ブチルアクリレート、アクリルアミドを配合比5:30:65で含むアクリル共重合体を用いて、焼付後の膜厚は0.5μmとし、その他の条件は実施例8と同様に電気二重層キャパシタを作製した。
(実施例13)モノマとしてメタクリル酸、ブチルアクリレート、アクリルアミドを配合比5:30:65で含むアクリル共重合体を用いて、焼付後の膜厚を4μmとし、その他の条件は実施例8と同様に電気二重層キャパシタを作製した。
(実施例14)モノマとしてアクリル酸、ブチルアクリレート、メチルアクリレートを配合比5:45:50で含むアクリル共重合体を水に分散した樹脂液を基材到達温度が90℃となるように60秒間加熱して集電体を作製した。焼付後の膜厚は2μmとした。その他の条件は実施例8と同様に電気二重層キャパシタを作製した。
Example 9 An electric double layer capacitor was produced in the same manner as in Example 8 using an acrylic copolymer containing acrylic acid, butyl acrylate, and acrylamide as a monomer at a blending ratio of 5:30:65.
Example 10 An electric double layer capacitor was produced in the same manner as in Example 8 using an acrylic copolymer containing ethyl methacrylate, butyl acrylate, and methyl methacrylate as a monomer in a blending ratio of 10:70:20.
Example 11 An electric double layer capacitor was produced in the same manner as in Example 8 using an acrylic copolymer containing methacrylic acid, butyl methacrylate, and acrylonitrile in a blending ratio of 5:70:15 as a monomer.
(Example 12) Using an acrylic copolymer containing methacrylic acid, butyl acrylate, and acrylamide as a monomer at a blending ratio of 5:30:65, the film thickness after baking is 0.5 μm, and other conditions are as in Example 8. An electric double layer capacitor was fabricated in the same manner as described above.
(Example 13) Using an acrylic copolymer containing methacrylic acid, butyl acrylate, and acrylamide as a monomer in a blending ratio of 5:30:65, the film thickness after baking was 4 μm, and other conditions were the same as in Example 8. An electric double layer capacitor was prepared.
(Example 14) A resin solution in which an acrylic copolymer containing acrylic acid, butyl acrylate, and methyl acrylate as a monomer in a mixing ratio of 5:45:50 is dispersed in water is used for 60 seconds so that the substrate temperature reaches 90 ° C. A current collector was produced by heating. The film thickness after baking was 2 μm. Other conditions were the same as in Example 8 to produce an electric double layer capacitor.

(比較例5)エポキシ樹脂とメラミン樹脂を配合比95:5でMEKに溶解した樹脂液に、樹脂の固形分に対して60%のアセチレンブラックを添加し、ボールミルにて8時間分散して塗料とした。この塗料を厚さ20μmのアルミニウム箔(JIS A1085)の片面にバーコータで塗布し、基材到達温度が240℃となるように15秒間加熱した。焼付後の膜厚は2μmとした。その他の条件は実施例8と同じにして電気二重層キャパシタを作製した。
(比較例6)モノマとしてアクリル酸、ブチルアクリレート、メチルアクリレートを配合比5:40:55で含むアクリル共重合体を水に分散した樹脂液を基材到達温度が220℃となるように70秒間加熱して集電体を作製した。焼付後の膜厚は2μmとした。その他の条件は実施例8と同じにして電気二重層キャパシタを作製した。
(比較例7)モノマとしてアクリル酸、ブチルアクリレート、メチルアクリレートを配合比5:40:55で含むアクリル共重合体を水に分散した樹脂液を基材到達温度が50℃となるように60秒間加熱して集電体を作製した。焼付後の膜厚は2μmとした。その他の条件は実施例8と同じにして電気二重層キャパシタを作製した。
(比較例8)モノマとしてアクリル酸、ブチルアクリレート、メチルアクリレートを配合比5:40:55で含むアクリル共重合体を水に分散した樹脂液を基材上に塗布し、ホットプレート上で10分間加熱することによって樹脂液層を乾燥させて、集電体を作製した。焼付後の膜厚は2μmとした。その他の条件は実施例8と同じにして電気二重層キャパシタを作製した。
(Comparative Example 5) 60% acetylene black with respect to the solid content of the resin was added to a resin solution obtained by dissolving an epoxy resin and a melamine resin in MEK at a blending ratio of 95: 5, and dispersed by a ball mill for 8 hours. It was. This paint was applied to one side of a 20 μm thick aluminum foil (JIS A1085) with a bar coater, and heated for 15 seconds so that the substrate temperature reached 240 ° C. The film thickness after baking was 2 μm. Other conditions were the same as in Example 8, and an electric double layer capacitor was produced.
(Comparative Example 6) A resin solution in which an acrylic copolymer containing acrylic acid, butyl acrylate, and methyl acrylate as a monomer in a mixing ratio of 5:40:55 is dispersed in water is 70 seconds so that the substrate temperature reaches 220 ° C. A current collector was produced by heating. The film thickness after baking was 2 μm. Other conditions were the same as in Example 8, and an electric double layer capacitor was produced.
(Comparative Example 7) A resin solution in which an acrylic copolymer containing acrylic acid, butyl acrylate, and methyl acrylate as a monomer in a blending ratio of 5:40:55 is dispersed in water for 60 seconds so that the substrate temperature reaches 50 ° C. A current collector was produced by heating. The film thickness after baking was 2 μm. Other conditions were the same as in Example 8, and an electric double layer capacitor was produced.
(Comparative Example 8) A resin liquid in which an acrylic copolymer containing acrylic acid, butyl acrylate, and methyl acrylate as a monomer at a blending ratio of 5:40:55 is dispersed in water is applied on a base material, and then on a hot plate for 10 minutes. The resin liquid layer was dried by heating to produce a current collector. The film thickness after baking was 2 μm. Other conditions were the same as in Example 8, and an electric double layer capacitor was produced.

これらの集電体の水接触角、基材とアクリル系樹脂層の密着性、アクリル系樹脂層と電極材層の密着性と電気二重層キャパシタの放電レート特性を調査した結果を表2に示す。水接触角、密着性の評価方法はリチウムイオン電池の場合と同じである。放電レート特性は充電上限電圧2.8V、充電率1C、充電終了条件2h、放電終了電圧0V、温度25℃、放電率100C、300C、500Cにおいて、放電容量(1C基準、単位%)を測定した。   Table 2 shows the results of investigating the water contact angle of these current collectors, the adhesion between the substrate and the acrylic resin layer, the adhesion between the acrylic resin layer and the electrode material layer, and the discharge rate characteristics of the electric double layer capacitor. . The water contact angle and adhesion evaluation methods are the same as in the case of the lithium ion battery. As for the discharge rate characteristics, the discharge capacity (1 C reference, unit%) was measured at a charge upper limit voltage of 2.8 V, a charge rate of 1 C, a charge end condition of 2 h, a discharge end voltage of 0 V, a temperature of 25 ° C., and discharge rates of 100 C, 300 C, and 500 C. .

実施例8〜実施例13はいずれも500Cにおける放電レート特性が80%以上あり、ハイレート特性に優れることがわかる。実施例14は、500Cにおける放電レート特性が79%であり、若干低かった。この結果は、実施例14においては基材とアクリル系樹脂層の密着性が実施例8〜実施例13に比べると若干劣っていたためであると考えられる。一方、比較例5は樹脂系がエポキシ系であることからハイレート特性が劣り、比較例6は樹脂系はアクリル系であるが、アクリル系樹脂層表面の水接触角が110度よりも大きく、密着性が劣ることから界面抵抗が大きくなり、ハイレート特性が劣る結果となった。比較例7は、水接触角は低かったが、基材とアクリル系樹脂層の密着性が低く、ハイレート特性が劣っていた。比較例8では、他の実施例・比較例とは違ってホットプレートで加熱することによって、樹脂液層を乾燥させた。ホットプレートの温度は比較的低かったが、水接触角は125度という比較的大きい値となり、ハイレート特性も悪かった。   It can be seen that all of Examples 8 to 13 have an excellent discharge rate characteristic at 500 C of 80% or more and are excellent in the high rate characteristic. In Example 14, the discharge rate characteristic at 500 C was 79%, which was slightly low. This result is considered to be because in Example 14, the adhesion between the base material and the acrylic resin layer was slightly inferior to those in Examples 8 to 13. On the other hand, Comparative Example 5 is inferior in high-rate characteristics because the resin system is an epoxy system, and Comparative Example 6 is an acrylic resin system, but the water contact angle on the surface of the acrylic resin layer is larger than 110 degrees, and adhesion As a result, the interfacial resistance is increased due to inferior properties, resulting in poor high rate characteristics. In Comparative Example 7, the water contact angle was low, but the adhesion between the substrate and the acrylic resin layer was low, and the high-rate characteristics were inferior. In Comparative Example 8, unlike the other Examples and Comparative Examples, the resin liquid layer was dried by heating with a hot plate. Although the temperature of the hot plate was relatively low, the water contact angle was a relatively large value of 125 degrees, and the high rate characteristics were also poor.

1:集電体
3:導電性基材
5:アクリル系樹脂層(集電体用樹脂層)
7:電極構造体
9:活物質層又は電極材層
1: Current collector
3: Conductive substrate
5: Acrylic resin layer (resin layer for current collector)
7: Electrode structure 9: Active material layer or electrode material layer

Claims (4)

導電性基材の少なくとも片面に導電性を有するアクリル系樹脂層を形成した集電体であって、該アクリル系樹脂層はアクリル系樹脂と導電性粒子を含み、該アクリル系樹脂層表面の23℃の恒温室内でθ/2法によって測定した水接触角が30度以上110度以下であることを特徴とする集電体。 A current collector in which an acrylic resin layer having conductivity is formed on at least one surface of a conductive substrate, the acrylic resin layer including an acrylic resin and conductive particles, A current collector having a water contact angle of 30 ° to 110 ° measured in a constant temperature room at 0 ° C. by the θ / 2 method. 請求項1の集電体に活物質層又は電極材層を形成したことを特徴とする電極構造体。 An electrode structure comprising an active material layer or an electrode material layer formed on the current collector of claim 1. 請求項1の集電体に活物質層を形成した電極構造体を用いたことを特徴とする非水電解質電池。 A non-aqueous electrolyte battery using an electrode structure in which an active material layer is formed on the current collector of claim 1. 請求項1の集電体に電極材層を形成した電極構造体を用いたことを特徴とする蓄電部品。 A power storage component comprising an electrode structure in which an electrode material layer is formed on the current collector of claim 1.
JP2010276311A 2010-12-10 2010-12-10 Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component Expired - Fee Related JP5600576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010276311A JP5600576B2 (en) 2010-12-10 2010-12-10 Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010276311A JP5600576B2 (en) 2010-12-10 2010-12-10 Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component

Publications (2)

Publication Number Publication Date
JP2012124133A true JP2012124133A (en) 2012-06-28
JP5600576B2 JP5600576B2 (en) 2014-10-01

Family

ID=46505345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010276311A Expired - Fee Related JP5600576B2 (en) 2010-12-10 2010-12-10 Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component

Country Status (1)

Country Link
JP (1) JP5600576B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030411A (en) * 2011-07-29 2013-02-07 Furukawa Sky Kk Collector, electrode structure, nonaqueous electrolyte battery, and capacitor component
WO2013154176A1 (en) * 2012-04-13 2013-10-17 古河スカイ株式会社 Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
WO2015146787A1 (en) * 2014-03-28 2015-10-01 日本ゼオン株式会社 Conductive adhesive composition for electrochemical element electrodes and collector for electrochemical element electrodes
WO2016068156A1 (en) * 2014-10-29 2016-05-06 昭和電工株式会社 Collector for electrodes, method for producing collector for electrodes, electrode, lithium ion secondary battery, redox flow battery and electric double layer capacitor
WO2016072090A1 (en) * 2014-11-06 2016-05-12 株式会社豊田自動織機 Current collector for lithium-ion secondary cell, manufacturing method thereof and nonaqueous electrolyte secondary cell
JP2016195117A (en) * 2016-05-02 2016-11-17 株式会社Uacj Collector, electrode structure, nonaqueous electrolyte battery, and capacitor component
CN106981680A (en) * 2015-12-23 2017-07-25 罗伯特·博世有限公司 Conductive measurement layer for measuring potential difference
JP2018190693A (en) * 2017-05-12 2018-11-29 東洋インキScホールディングス株式会社 Underlying layer-attached current collector for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056778A (en) * 1991-06-21 1993-01-14 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH056778A (en) * 1991-06-21 1993-01-14 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030411A (en) * 2011-07-29 2013-02-07 Furukawa Sky Kk Collector, electrode structure, nonaqueous electrolyte battery, and capacitor component
WO2013154176A1 (en) * 2012-04-13 2013-10-17 古河スカイ株式会社 Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
WO2015146787A1 (en) * 2014-03-28 2015-10-01 日本ゼオン株式会社 Conductive adhesive composition for electrochemical element electrodes and collector for electrochemical element electrodes
JPWO2015146787A1 (en) * 2014-03-28 2017-04-13 日本ゼオン株式会社 Electroconductive element electrode conductive adhesive composition and electrochemical element electrode collector
WO2016068156A1 (en) * 2014-10-29 2016-05-06 昭和電工株式会社 Collector for electrodes, method for producing collector for electrodes, electrode, lithium ion secondary battery, redox flow battery and electric double layer capacitor
JPWO2016068156A1 (en) * 2014-10-29 2017-08-17 昭和電工株式会社 Current collector for electrode, method for producing current collector for electrode, electrode, lithium ion secondary battery, redox flow battery, electric double layer capacitor
WO2016072090A1 (en) * 2014-11-06 2016-05-12 株式会社豊田自動織機 Current collector for lithium-ion secondary cell, manufacturing method thereof and nonaqueous electrolyte secondary cell
CN106981680A (en) * 2015-12-23 2017-07-25 罗伯特·博世有限公司 Conductive measurement layer for measuring potential difference
JP2016195117A (en) * 2016-05-02 2016-11-17 株式会社Uacj Collector, electrode structure, nonaqueous electrolyte battery, and capacitor component
JP2018190693A (en) * 2017-05-12 2018-11-29 東洋インキScホールディングス株式会社 Underlying layer-attached current collector for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5600576B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5600576B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component
JP6121325B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component
JP6076254B2 (en) Current collector and electrode structure using the same, nonaqueous electrolyte battery, electric double layer capacitor, lithium ion capacitor, or power storage component
JP6185984B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery or power storage component
JP5985161B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component
EP2835851A1 (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
TW201843870A (en) Collector for electricity storage devices, method for producing same, and coating liquid used in production of same
JP6184552B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component
WO2013154176A1 (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
JP6140073B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component
WO2013172257A1 (en) Collector, electrode structure, nonaqueous electrolyte battery and power storage component, and method for producing collector
JP6938919B2 (en) Manufacturing method of lithium ion secondary battery
JP5780871B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component
JP6130018B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component
JP5788985B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, power storage component, nitrified cotton-based resin material
JP5788730B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component
WO2017199798A1 (en) Collector for electricity storage devices, method for producing same, electrode for electricity storage devices, method for producing electrode for electricity storage devices, slurry for forming protective layer, and electricity storage device
JP6031223B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, and power storage component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131023

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R150 Certificate of patent or registration of utility model

Ref document number: 5600576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees